Proof of Theorem cvlsupr7
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cvllat 39327 | . . . . . 6
⊢ (𝐾 ∈ CvLat → 𝐾 ∈ Lat) | 
| 2 | 1 | 3ad2ant1 1134 | . . . . 5
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → 𝐾 ∈ Lat) | 
| 3 |  | simp21 1207 | . . . . . 6
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → 𝑃 ∈ 𝐴) | 
| 4 |  | eqid 2737 | . . . . . . 7
⊢
(Base‘𝐾) =
(Base‘𝐾) | 
| 5 |  | cvlsupr5.a | . . . . . . 7
⊢ 𝐴 = (Atoms‘𝐾) | 
| 6 | 4, 5 | atbase 39290 | . . . . . 6
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ (Base‘𝐾)) | 
| 7 | 3, 6 | syl 17 | . . . . 5
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → 𝑃 ∈ (Base‘𝐾)) | 
| 8 |  | simp23 1209 | . . . . . 6
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → 𝑅 ∈ 𝐴) | 
| 9 | 4, 5 | atbase 39290 | . . . . . 6
⊢ (𝑅 ∈ 𝐴 → 𝑅 ∈ (Base‘𝐾)) | 
| 10 | 8, 9 | syl 17 | . . . . 5
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → 𝑅 ∈ (Base‘𝐾)) | 
| 11 |  | eqid 2737 | . . . . . 6
⊢
(le‘𝐾) =
(le‘𝐾) | 
| 12 |  | cvlsupr5.j | . . . . . 6
⊢  ∨ =
(join‘𝐾) | 
| 13 | 4, 11, 12 | latlej1 18493 | . . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → 𝑃(le‘𝐾)(𝑃 ∨ 𝑅)) | 
| 14 | 2, 7, 10, 13 | syl3anc 1373 | . . . 4
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → 𝑃(le‘𝐾)(𝑃 ∨ 𝑅)) | 
| 15 |  | simp3r 1203 | . . . 4
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅)) | 
| 16 | 14, 15 | breqtrd 5169 | . . 3
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → 𝑃(le‘𝐾)(𝑄 ∨ 𝑅)) | 
| 17 |  | simp22 1208 | . . . . 5
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → 𝑄 ∈ 𝐴) | 
| 18 | 4, 5 | atbase 39290 | . . . . 5
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ (Base‘𝐾)) | 
| 19 | 17, 18 | syl 17 | . . . 4
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → 𝑄 ∈ (Base‘𝐾)) | 
| 20 | 4, 12 | latjcom 18492 | . . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑄 ∨ 𝑅) = (𝑅 ∨ 𝑄)) | 
| 21 | 2, 19, 10, 20 | syl3anc 1373 | . . 3
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → (𝑄 ∨ 𝑅) = (𝑅 ∨ 𝑄)) | 
| 22 | 16, 21 | breqtrd 5169 | . 2
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → 𝑃(le‘𝐾)(𝑅 ∨ 𝑄)) | 
| 23 |  | simp1 1137 | . . 3
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → 𝐾 ∈ CvLat) | 
| 24 |  | simp3l 1202 | . . 3
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → 𝑃 ≠ 𝑄) | 
| 25 | 11, 12, 5 | cvlatexchb2 39336 | . . 3
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) ∧ 𝑃 ≠ 𝑄) → (𝑃(le‘𝐾)(𝑅 ∨ 𝑄) ↔ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄))) | 
| 26 | 23, 3, 8, 17, 24, 25 | syl131anc 1385 | . 2
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → (𝑃(le‘𝐾)(𝑅 ∨ 𝑄) ↔ (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄))) | 
| 27 | 22, 26 | mpbid 232 | 1
⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ (𝑃 ≠ 𝑄 ∧ (𝑃 ∨ 𝑅) = (𝑄 ∨ 𝑅))) → (𝑃 ∨ 𝑄) = (𝑅 ∨ 𝑄)) |