Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlsupr7 Structured version   Visualization version   GIF version

Theorem cvlsupr7 39387
Description: Consequence of superposition condition (𝑃 𝑅) = (𝑄 𝑅). (Contributed by NM, 24-Nov-2012.)
Hypotheses
Ref Expression
cvlsupr5.a 𝐴 = (Atoms‘𝐾)
cvlsupr5.j = (join‘𝐾)
Assertion
Ref Expression
cvlsupr7 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → (𝑃 𝑄) = (𝑅 𝑄))

Proof of Theorem cvlsupr7
StepHypRef Expression
1 cvllat 39365 . . . . . 6 (𝐾 ∈ CvLat → 𝐾 ∈ Lat)
213ad2ant1 1133 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → 𝐾 ∈ Lat)
3 simp21 1207 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → 𝑃𝐴)
4 eqid 2731 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
5 cvlsupr5.a . . . . . . 7 𝐴 = (Atoms‘𝐾)
64, 5atbase 39328 . . . . . 6 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
73, 6syl 17 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → 𝑃 ∈ (Base‘𝐾))
8 simp23 1209 . . . . . 6 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → 𝑅𝐴)
94, 5atbase 39328 . . . . . 6 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
108, 9syl 17 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → 𝑅 ∈ (Base‘𝐾))
11 eqid 2731 . . . . . 6 (le‘𝐾) = (le‘𝐾)
12 cvlsupr5.j . . . . . 6 = (join‘𝐾)
134, 11, 12latlej1 18349 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → 𝑃(le‘𝐾)(𝑃 𝑅))
142, 7, 10, 13syl3anc 1373 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → 𝑃(le‘𝐾)(𝑃 𝑅))
15 simp3r 1203 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → (𝑃 𝑅) = (𝑄 𝑅))
1614, 15breqtrd 5112 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → 𝑃(le‘𝐾)(𝑄 𝑅))
17 simp22 1208 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → 𝑄𝐴)
184, 5atbase 39328 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
1917, 18syl 17 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → 𝑄 ∈ (Base‘𝐾))
204, 12latjcom 18348 . . . 4 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑄 𝑅) = (𝑅 𝑄))
212, 19, 10, 20syl3anc 1373 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → (𝑄 𝑅) = (𝑅 𝑄))
2216, 21breqtrd 5112 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → 𝑃(le‘𝐾)(𝑅 𝑄))
23 simp1 1136 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → 𝐾 ∈ CvLat)
24 simp3l 1202 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → 𝑃𝑄)
2511, 12, 5cvlatexchb2 39374 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑅𝐴𝑄𝐴) ∧ 𝑃𝑄) → (𝑃(le‘𝐾)(𝑅 𝑄) ↔ (𝑃 𝑄) = (𝑅 𝑄)))
2623, 3, 8, 17, 24, 25syl131anc 1385 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → (𝑃(le‘𝐾)(𝑅 𝑄) ↔ (𝑃 𝑄) = (𝑅 𝑄)))
2722, 26mpbid 232 1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ (𝑃𝑄 ∧ (𝑃 𝑅) = (𝑄 𝑅))) → (𝑃 𝑄) = (𝑅 𝑄))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928   class class class wbr 5086  cfv 6476  (class class class)co 7341  Basecbs 17115  lecple 17163  joincjn 18212  Latclat 18332  Atomscatm 39302  CvLatclc 39304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-proset 18195  df-poset 18214  df-plt 18229  df-lub 18245  df-glb 18246  df-join 18247  df-meet 18248  df-p0 18324  df-lat 18333  df-covers 39305  df-ats 39306  df-atl 39337  df-cvlat 39361
This theorem is referenced by:  cvlsupr8  39388  4atexlemswapqr  40102  4atexlemcnd  40111  cdleme21c  40366
  Copyright terms: Public domain W3C validator