![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvlexchb2 | Structured version Visualization version GIF version |
Description: An atomic covering lattice has the exchange property. (Contributed by NM, 22-Jun-2012.) |
Ref | Expression |
---|---|
cvlexch.b | ⊢ 𝐵 = (Base‘𝐾) |
cvlexch.l | ⊢ ≤ = (le‘𝐾) |
cvlexch.j | ⊢ ∨ = (join‘𝐾) |
cvlexch.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
cvlexchb2 | ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑄 ∨ 𝑋) ↔ (𝑃 ∨ 𝑋) = (𝑄 ∨ 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvlexch.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cvlexch.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | cvlexch.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
4 | cvlexch.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 1, 2, 3, 4 | cvlexchb1 38802 | . 2 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) |
6 | cvllat 38798 | . . . . 5 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ Lat) | |
7 | 6 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → 𝐾 ∈ Lat) |
8 | simp22 1205 | . . . . 5 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → 𝑄 ∈ 𝐴) | |
9 | 1, 4 | atbase 38761 | . . . . 5 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → 𝑄 ∈ 𝐵) |
11 | simp23 1206 | . . . 4 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → 𝑋 ∈ 𝐵) | |
12 | 1, 3 | latjcom 18439 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑄 ∨ 𝑋) = (𝑋 ∨ 𝑄)) |
13 | 7, 10, 11, 12 | syl3anc 1369 | . . 3 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑄 ∨ 𝑋) = (𝑋 ∨ 𝑄)) |
14 | 13 | breq2d 5160 | . 2 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑄 ∨ 𝑋) ↔ 𝑃 ≤ (𝑋 ∨ 𝑄))) |
15 | simp21 1204 | . . . . 5 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → 𝑃 ∈ 𝐴) | |
16 | 1, 4 | atbase 38761 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → 𝑃 ∈ 𝐵) |
18 | 1, 3 | latjcom 18439 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑃 ∨ 𝑋) = (𝑋 ∨ 𝑃)) |
19 | 7, 17, 11, 18 | syl3anc 1369 | . . 3 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ∨ 𝑋) = (𝑋 ∨ 𝑃)) |
20 | 19, 13 | eqeq12d 2744 | . 2 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → ((𝑃 ∨ 𝑋) = (𝑄 ∨ 𝑋) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) |
21 | 5, 14, 20 | 3bitr4d 311 | 1 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑄 ∨ 𝑋) ↔ (𝑃 ∨ 𝑋) = (𝑄 ∨ 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 class class class wbr 5148 ‘cfv 6548 (class class class)co 7420 Basecbs 17180 lecple 17240 joincjn 18303 Latclat 18423 Atomscatm 38735 CvLatclc 38737 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-riota 7376 df-ov 7423 df-oprab 7424 df-proset 18287 df-poset 18305 df-lub 18338 df-glb 18339 df-join 18340 df-meet 18341 df-lat 18424 df-ats 38739 df-atl 38770 df-cvlat 38794 |
This theorem is referenced by: hlexchb2 38858 |
Copyright terms: Public domain | W3C validator |