Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlexchb2 Structured version   Visualization version   GIF version

Theorem cvlexchb2 39279
Description: An atomic covering lattice has the exchange property. (Contributed by NM, 22-Jun-2012.)
Hypotheses
Ref Expression
cvlexch.b 𝐵 = (Base‘𝐾)
cvlexch.l = (le‘𝐾)
cvlexch.j = (join‘𝐾)
cvlexch.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvlexchb2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑄 𝑋) ↔ (𝑃 𝑋) = (𝑄 𝑋)))

Proof of Theorem cvlexchb2
StepHypRef Expression
1 cvlexch.b . . 3 𝐵 = (Base‘𝐾)
2 cvlexch.l . . 3 = (le‘𝐾)
3 cvlexch.j . . 3 = (join‘𝐾)
4 cvlexch.a . . 3 𝐴 = (Atoms‘𝐾)
51, 2, 3, 4cvlexchb1 39278 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑋 𝑄) ↔ (𝑋 𝑃) = (𝑋 𝑄)))
6 cvllat 39274 . . . . 5 (𝐾 ∈ CvLat → 𝐾 ∈ Lat)
763ad2ant1 1133 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → 𝐾 ∈ Lat)
8 simp22 1207 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → 𝑄𝐴)
91, 4atbase 39237 . . . . 5 (𝑄𝐴𝑄𝐵)
108, 9syl 17 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → 𝑄𝐵)
11 simp23 1208 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → 𝑋𝐵)
121, 3latjcom 18511 . . . 4 ((𝐾 ∈ Lat ∧ 𝑄𝐵𝑋𝐵) → (𝑄 𝑋) = (𝑋 𝑄))
137, 10, 11, 12syl3anc 1371 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑄 𝑋) = (𝑋 𝑄))
1413breq2d 5178 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑄 𝑋) ↔ 𝑃 (𝑋 𝑄)))
15 simp21 1206 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → 𝑃𝐴)
161, 4atbase 39237 . . . . 5 (𝑃𝐴𝑃𝐵)
1715, 16syl 17 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → 𝑃𝐵)
181, 3latjcom 18511 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑋𝐵) → (𝑃 𝑋) = (𝑋 𝑃))
197, 17, 11, 18syl3anc 1371 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 𝑋) = (𝑋 𝑃))
2019, 13eqeq12d 2756 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → ((𝑃 𝑋) = (𝑄 𝑋) ↔ (𝑋 𝑃) = (𝑋 𝑄)))
215, 14, 203bitr4d 311 1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑋𝐵) ∧ ¬ 𝑃 𝑋) → (𝑃 (𝑄 𝑋) ↔ (𝑃 𝑋) = (𝑄 𝑋)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  w3a 1087   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6568  (class class class)co 7443  Basecbs 17252  lecple 17312  joincjn 18375  Latclat 18495  Atomscatm 39211  CvLatclc 39213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7764
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5701  df-rel 5702  df-cnv 5703  df-co 5704  df-dm 5705  df-rn 5706  df-res 5707  df-ima 5708  df-iota 6520  df-fun 6570  df-fn 6571  df-f 6572  df-f1 6573  df-fo 6574  df-f1o 6575  df-fv 6576  df-riota 7399  df-ov 7446  df-oprab 7447  df-proset 18359  df-poset 18377  df-lub 18410  df-glb 18411  df-join 18412  df-meet 18413  df-lat 18496  df-ats 39215  df-atl 39246  df-cvlat 39270
This theorem is referenced by:  hlexchb2  39334
  Copyright terms: Public domain W3C validator