![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvlexchb2 | Structured version Visualization version GIF version |
Description: An atomic covering lattice has the exchange property. (Contributed by NM, 22-Jun-2012.) |
Ref | Expression |
---|---|
cvlexch.b | ⊢ 𝐵 = (Base‘𝐾) |
cvlexch.l | ⊢ ≤ = (le‘𝐾) |
cvlexch.j | ⊢ ∨ = (join‘𝐾) |
cvlexch.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
cvlexchb2 | ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑄 ∨ 𝑋) ↔ (𝑃 ∨ 𝑋) = (𝑄 ∨ 𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvlexch.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | cvlexch.l | . . 3 ⊢ ≤ = (le‘𝐾) | |
3 | cvlexch.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
4 | cvlexch.a | . . 3 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | 1, 2, 3, 4 | cvlexchb1 39273 | . 2 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑋 ∨ 𝑄) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) |
6 | cvllat 39269 | . . . . 5 ⊢ (𝐾 ∈ CvLat → 𝐾 ∈ Lat) | |
7 | 6 | 3ad2ant1 1131 | . . . 4 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → 𝐾 ∈ Lat) |
8 | simp22 1205 | . . . . 5 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → 𝑄 ∈ 𝐴) | |
9 | 1, 4 | atbase 39232 | . . . . 5 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
10 | 8, 9 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → 𝑄 ∈ 𝐵) |
11 | simp23 1206 | . . . 4 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → 𝑋 ∈ 𝐵) | |
12 | 1, 3 | latjcom 18493 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑄 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑄 ∨ 𝑋) = (𝑋 ∨ 𝑄)) |
13 | 7, 10, 11, 12 | syl3anc 1369 | . . 3 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑄 ∨ 𝑋) = (𝑋 ∨ 𝑄)) |
14 | 13 | breq2d 5161 | . 2 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑄 ∨ 𝑋) ↔ 𝑃 ≤ (𝑋 ∨ 𝑄))) |
15 | simp21 1204 | . . . . 5 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → 𝑃 ∈ 𝐴) | |
16 | 1, 4 | atbase 39232 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
17 | 15, 16 | syl 17 | . . . 4 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → 𝑃 ∈ 𝐵) |
18 | 1, 3 | latjcom 18493 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → (𝑃 ∨ 𝑋) = (𝑋 ∨ 𝑃)) |
19 | 7, 17, 11, 18 | syl3anc 1369 | . . 3 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ∨ 𝑋) = (𝑋 ∨ 𝑃)) |
20 | 19, 13 | eqeq12d 2749 | . 2 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → ((𝑃 ∨ 𝑋) = (𝑄 ∨ 𝑋) ↔ (𝑋 ∨ 𝑃) = (𝑋 ∨ 𝑄))) |
21 | 5, 14, 20 | 3bitr4d 311 | 1 ⊢ ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵) ∧ ¬ 𝑃 ≤ 𝑋) → (𝑃 ≤ (𝑄 ∨ 𝑋) ↔ (𝑃 ∨ 𝑋) = (𝑄 ∨ 𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ w3a 1085 = wceq 1535 ∈ wcel 2104 class class class wbr 5149 ‘cfv 6558 (class class class)co 7425 Basecbs 17234 lecple 17294 joincjn 18357 Latclat 18477 Atomscatm 39206 CvLatclc 39208 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5366 ax-pr 5430 ax-un 7747 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-ral 3058 df-rex 3067 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3479 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6510 df-fun 6560 df-fn 6561 df-f 6562 df-f1 6563 df-fo 6564 df-f1o 6565 df-fv 6566 df-riota 7381 df-ov 7428 df-oprab 7429 df-proset 18341 df-poset 18359 df-lub 18392 df-glb 18393 df-join 18394 df-meet 18395 df-lat 18478 df-ats 39210 df-atl 39241 df-cvlat 39265 |
This theorem is referenced by: hlexchb2 39329 |
Copyright terms: Public domain | W3C validator |