Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlatexch2 Structured version   Visualization version   GIF version

Theorem cvlatexch2 35357
Description: Atom exchange property. (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlatexch.l = (le‘𝐾)
cvlatexch.j = (join‘𝐾)
cvlatexch.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
cvlatexch2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 (𝑄 𝑅) → 𝑄 (𝑃 𝑅)))

Proof of Theorem cvlatexch2
StepHypRef Expression
1 cvlatexch.l . . 3 = (le‘𝐾)
2 cvlatexch.j . . 3 = (join‘𝐾)
3 cvlatexch.a . . 3 𝐴 = (Atoms‘𝐾)
41, 2, 3cvlatexch1 35356 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 (𝑅 𝑄) → 𝑄 (𝑅 𝑃)))
5 cvllat 35346 . . . . 5 (𝐾 ∈ CvLat → 𝐾 ∈ Lat)
653ad2ant1 1164 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → 𝐾 ∈ Lat)
7 simp22 1265 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → 𝑄𝐴)
8 eqid 2800 . . . . . 6 (Base‘𝐾) = (Base‘𝐾)
98, 3atbase 35309 . . . . 5 (𝑄𝐴𝑄 ∈ (Base‘𝐾))
107, 9syl 17 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → 𝑄 ∈ (Base‘𝐾))
11 simp23 1266 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → 𝑅𝐴)
128, 3atbase 35309 . . . . 5 (𝑅𝐴𝑅 ∈ (Base‘𝐾))
1311, 12syl 17 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → 𝑅 ∈ (Base‘𝐾))
148, 2latjcom 17373 . . . 4 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑄 𝑅) = (𝑅 𝑄))
156, 10, 13, 14syl3anc 1491 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑄 𝑅) = (𝑅 𝑄))
1615breq2d 4856 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 (𝑄 𝑅) ↔ 𝑃 (𝑅 𝑄)))
17 simp21 1264 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → 𝑃𝐴)
188, 3atbase 35309 . . . . 5 (𝑃𝐴𝑃 ∈ (Base‘𝐾))
1917, 18syl 17 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → 𝑃 ∈ (Base‘𝐾))
208, 2latjcom 17373 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Base‘𝐾) ∧ 𝑅 ∈ (Base‘𝐾)) → (𝑃 𝑅) = (𝑅 𝑃))
216, 19, 13, 20syl3anc 1491 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 𝑅) = (𝑅 𝑃))
2221breq2d 4856 . 2 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑄 (𝑃 𝑅) ↔ 𝑄 (𝑅 𝑃)))
234, 16, 223imtr4d 286 1 ((𝐾 ∈ CvLat ∧ (𝑃𝐴𝑄𝐴𝑅𝐴) ∧ 𝑃𝑅) → (𝑃 (𝑄 𝑅) → 𝑄 (𝑃 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1108   = wceq 1653  wcel 2157  wne 2972   class class class wbr 4844  cfv 6102  (class class class)co 6879  Basecbs 16183  lecple 16273  joincjn 17258  Latclat 17359  Atomscatm 35283  CvLatclc 35285
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2378  ax-ext 2778  ax-rep 4965  ax-sep 4976  ax-nul 4984  ax-pow 5036  ax-pr 5098  ax-un 7184
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2592  df-eu 2610  df-clab 2787  df-cleq 2793  df-clel 2796  df-nfc 2931  df-ne 2973  df-ral 3095  df-rex 3096  df-reu 3097  df-rab 3099  df-v 3388  df-sbc 3635  df-csb 3730  df-dif 3773  df-un 3775  df-in 3777  df-ss 3784  df-nul 4117  df-if 4279  df-pw 4352  df-sn 4370  df-pr 4372  df-op 4376  df-uni 4630  df-iun 4713  df-br 4845  df-opab 4907  df-mpt 4924  df-id 5221  df-xp 5319  df-rel 5320  df-cnv 5321  df-co 5322  df-dm 5323  df-rn 5324  df-res 5325  df-ima 5326  df-iota 6065  df-fun 6104  df-fn 6105  df-f 6106  df-f1 6107  df-fo 6108  df-f1o 6109  df-fv 6110  df-riota 6840  df-ov 6882  df-oprab 6883  df-proset 17242  df-poset 17260  df-plt 17272  df-lub 17288  df-glb 17289  df-join 17290  df-meet 17291  df-p0 17353  df-lat 17360  df-covers 35286  df-ats 35287  df-atl 35318  df-cvlat 35342
This theorem is referenced by:  hlatexch2  35416  4atexlemnclw  36090  4atexlemex2  36091  cdleme21ct  36349  cdleme22f  36366  cdleme22f2  36367  cdlemf1  36581
  Copyright terms: Public domain W3C validator