Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlatexch2 Structured version   Visualization version   GIF version

Theorem cvlatexch2 38195
Description: Atom exchange property. (Contributed by NM, 5-Nov-2012.)
Hypotheses
Ref Expression
cvlatexch.l ≀ = (leβ€˜πΎ)
cvlatexch.j ∨ = (joinβ€˜πΎ)
cvlatexch.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
cvlatexch2 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑅) β†’ (𝑃 ≀ (𝑄 ∨ 𝑅) β†’ 𝑄 ≀ (𝑃 ∨ 𝑅)))

Proof of Theorem cvlatexch2
StepHypRef Expression
1 cvlatexch.l . . 3 ≀ = (leβ€˜πΎ)
2 cvlatexch.j . . 3 ∨ = (joinβ€˜πΎ)
3 cvlatexch.a . . 3 𝐴 = (Atomsβ€˜πΎ)
41, 2, 3cvlatexch1 38194 . 2 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑅) β†’ (𝑃 ≀ (𝑅 ∨ 𝑄) β†’ 𝑄 ≀ (𝑅 ∨ 𝑃)))
5 cvllat 38184 . . . . 5 (𝐾 ∈ CvLat β†’ 𝐾 ∈ Lat)
653ad2ant1 1133 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑅) β†’ 𝐾 ∈ Lat)
7 simp22 1207 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑅) β†’ 𝑄 ∈ 𝐴)
8 eqid 2732 . . . . . 6 (Baseβ€˜πΎ) = (Baseβ€˜πΎ)
98, 3atbase 38147 . . . . 5 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ (Baseβ€˜πΎ))
107, 9syl 17 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑅) β†’ 𝑄 ∈ (Baseβ€˜πΎ))
11 simp23 1208 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑅) β†’ 𝑅 ∈ 𝐴)
128, 3atbase 38147 . . . . 5 (𝑅 ∈ 𝐴 β†’ 𝑅 ∈ (Baseβ€˜πΎ))
1311, 12syl 17 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑅) β†’ 𝑅 ∈ (Baseβ€˜πΎ))
148, 2latjcom 18396 . . . 4 ((𝐾 ∈ Lat ∧ 𝑄 ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ)) β†’ (𝑄 ∨ 𝑅) = (𝑅 ∨ 𝑄))
156, 10, 13, 14syl3anc 1371 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑅) β†’ (𝑄 ∨ 𝑅) = (𝑅 ∨ 𝑄))
1615breq2d 5159 . 2 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑅) β†’ (𝑃 ≀ (𝑄 ∨ 𝑅) ↔ 𝑃 ≀ (𝑅 ∨ 𝑄)))
17 simp21 1206 . . . . 5 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑅) β†’ 𝑃 ∈ 𝐴)
188, 3atbase 38147 . . . . 5 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ (Baseβ€˜πΎ))
1917, 18syl 17 . . . 4 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑅) β†’ 𝑃 ∈ (Baseβ€˜πΎ))
208, 2latjcom 18396 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃 ∈ (Baseβ€˜πΎ) ∧ 𝑅 ∈ (Baseβ€˜πΎ)) β†’ (𝑃 ∨ 𝑅) = (𝑅 ∨ 𝑃))
216, 19, 13, 20syl3anc 1371 . . 3 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑅) β†’ (𝑃 ∨ 𝑅) = (𝑅 ∨ 𝑃))
2221breq2d 5159 . 2 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑅) β†’ (𝑄 ≀ (𝑃 ∨ 𝑅) ↔ 𝑄 ≀ (𝑅 ∨ 𝑃)))
234, 16, 223imtr4d 293 1 ((𝐾 ∈ CvLat ∧ (𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴 ∧ 𝑅 ∈ 𝐴) ∧ 𝑃 β‰  𝑅) β†’ (𝑃 ≀ (𝑄 ∨ 𝑅) β†’ 𝑄 ≀ (𝑃 ∨ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   β‰  wne 2940   class class class wbr 5147  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  lecple 17200  joincjn 18260  Latclat 18380  Atomscatm 38121  CvLatclc 38123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-proset 18244  df-poset 18262  df-plt 18279  df-lub 18295  df-glb 18296  df-join 18297  df-meet 18298  df-p0 18374  df-lat 18381  df-covers 38124  df-ats 38125  df-atl 38156  df-cvlat 38180
This theorem is referenced by:  hlatexch2  38255  4atexlemnclw  38929  4atexlemex2  38930  cdleme21ct  39188  cdleme22f  39205  cdleme22f2  39206  cdlemf1  39420
  Copyright terms: Public domain W3C validator