![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cvlatcvr2 | Structured version Visualization version GIF version |
Description: An atom is covered by its join with a different atom. (Contributed by NM, 5-Nov-2012.) |
Ref | Expression |
---|---|
cvlatcvr1.j | β’ β¨ = (joinβπΎ) |
cvlatcvr1.c | β’ πΆ = ( β βπΎ) |
cvlatcvr1.a | β’ π΄ = (AtomsβπΎ) |
Ref | Expression |
---|---|
cvlatcvr2 | β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β CvLat) β§ π β π΄ β§ π β π΄) β (π β π β ππΆ(π β¨ π))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cvlatcvr1.j | . . 3 β’ β¨ = (joinβπΎ) | |
2 | cvlatcvr1.c | . . 3 β’ πΆ = ( β βπΎ) | |
3 | cvlatcvr1.a | . . 3 β’ π΄ = (AtomsβπΎ) | |
4 | 1, 2, 3 | cvlatcvr1 38199 | . 2 β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β CvLat) β§ π β π΄ β§ π β π΄) β (π β π β ππΆ(π β¨ π))) |
5 | simp13 1205 | . . . . 5 β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β CvLat) β§ π β π΄ β§ π β π΄) β πΎ β CvLat) | |
6 | cvllat 38184 | . . . . 5 β’ (πΎ β CvLat β πΎ β Lat) | |
7 | 5, 6 | syl 17 | . . . 4 β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β CvLat) β§ π β π΄ β§ π β π΄) β πΎ β Lat) |
8 | eqid 2732 | . . . . . 6 β’ (BaseβπΎ) = (BaseβπΎ) | |
9 | 8, 3 | atbase 38147 | . . . . 5 β’ (π β π΄ β π β (BaseβπΎ)) |
10 | 9 | 3ad2ant2 1134 | . . . 4 β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β CvLat) β§ π β π΄ β§ π β π΄) β π β (BaseβπΎ)) |
11 | 8, 3 | atbase 38147 | . . . . 5 β’ (π β π΄ β π β (BaseβπΎ)) |
12 | 11 | 3ad2ant3 1135 | . . . 4 β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β CvLat) β§ π β π΄ β§ π β π΄) β π β (BaseβπΎ)) |
13 | 8, 1 | latjcom 18396 | . . . 4 β’ ((πΎ β Lat β§ π β (BaseβπΎ) β§ π β (BaseβπΎ)) β (π β¨ π) = (π β¨ π)) |
14 | 7, 10, 12, 13 | syl3anc 1371 | . . 3 β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β CvLat) β§ π β π΄ β§ π β π΄) β (π β¨ π) = (π β¨ π)) |
15 | 14 | breq2d 5159 | . 2 β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β CvLat) β§ π β π΄ β§ π β π΄) β (ππΆ(π β¨ π) β ππΆ(π β¨ π))) |
16 | 4, 15 | bitrd 278 | 1 β’ (((πΎ β OML β§ πΎ β CLat β§ πΎ β CvLat) β§ π β π΄ β§ π β π΄) β (π β π β ππΆ(π β¨ π))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 class class class wbr 5147 βcfv 6540 (class class class)co 7405 Basecbs 17140 joincjn 18260 Latclat 18380 CLatccla 18447 OMLcoml 38033 β ccvr 38120 Atomscatm 38121 CvLatclc 38123 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-proset 18244 df-poset 18262 df-plt 18279 df-lub 18295 df-glb 18296 df-join 18297 df-meet 18298 df-p0 18374 df-lat 18381 df-clat 18448 df-oposet 38034 df-ol 38036 df-oml 38037 df-covers 38124 df-ats 38125 df-atl 38156 df-cvlat 38180 |
This theorem is referenced by: atcvr2 38277 |
Copyright terms: Public domain | W3C validator |