| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > erALTVeq1i | Structured version Visualization version GIF version | ||
| Description: Equality theorem for equivalence relation on domain quotient, inference version. (Contributed by Peter Mazsa, 25-Sep-2021.) |
| Ref | Expression |
|---|---|
| erALTVeq1i.1 | ⊢ 𝑅 = 𝑆 |
| Ref | Expression |
|---|---|
| erALTVeq1i | ⊢ (𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | erALTVeq1i.1 | . 2 ⊢ 𝑅 = 𝑆 | |
| 2 | erALTVeq1 38777 | . 2 ⊢ (𝑅 = 𝑆 → (𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴)) | |
| 3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝑅 ErALTV 𝐴 ↔ 𝑆 ErALTV 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1541 ErALTV werALTV 38258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-ec 8633 df-qs 8637 df-refrel 38614 df-symrel 38646 df-trrel 38680 df-eqvrel 38691 df-dmqs 38745 df-erALTV 38772 |
| This theorem is referenced by: dfcomember 38780 |
| Copyright terms: Public domain | W3C validator |