Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  erALTVeq1d Structured version   Visualization version   GIF version

Theorem erALTVeq1d 38663
Description: Equality theorem for equivalence relation on domain quotient, deduction version. (Contributed by Peter Mazsa, 25-Sep-2021.)
Hypothesis
Ref Expression
erALTVeq1d.1 (𝜑𝑅 = 𝑆)
Assertion
Ref Expression
erALTVeq1d (𝜑 → (𝑅 ErALTV 𝐴𝑆 ErALTV 𝐴))

Proof of Theorem erALTVeq1d
StepHypRef Expression
1 erALTVeq1d.1 . 2 (𝜑𝑅 = 𝑆)
2 erALTVeq1 38661 . 2 (𝑅 = 𝑆 → (𝑅 ErALTV 𝐴𝑆 ErALTV 𝐴))
31, 2syl 17 1 (𝜑 → (𝑅 ErALTV 𝐴𝑆 ErALTV 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540   ErALTV werALTV 38195
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-ec 8673  df-qs 8677  df-refrel 38503  df-symrel 38535  df-trrel 38565  df-eqvrel 38576  df-dmqs 38630  df-erALTV 38656
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator