| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dffunALTV2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the function relation predicate, cf. dfdisjALTV2 38692. (Contributed by Peter Mazsa, 8-Feb-2018.) |
| Ref | Expression |
|---|---|
| dffunALTV2 | ⊢ ( FunALTV 𝐹 ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-funALTV 38660 | . 2 ⊢ ( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹)) | |
| 2 | cnvrefrelcoss2 38514 | . . 3 ⊢ ( CnvRefRel ≀ 𝐹 ↔ ≀ 𝐹 ⊆ I ) | |
| 3 | 2 | anbi1i 624 | . 2 ⊢ (( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹) ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹)) |
| 4 | 1, 3 | bitri 275 | 1 ⊢ ( FunALTV 𝐹 ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ⊆ wss 3903 I cid 5513 Rel wrel 5624 ≀ ccoss 38155 CnvRefRel wcnvrefrel 38164 FunALTV wfunALTV 38186 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-coss 38388 df-cnvrefrel 38504 df-funALTV 38660 |
| This theorem is referenced by: dffunALTV3 38667 dffunALTV4 38668 dffunALTV5 38669 funALTVss 38677 |
| Copyright terms: Public domain | W3C validator |