Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffunALTV2 Structured version   Visualization version   GIF version

Theorem dffunALTV2 36726
Description: Alternate definition of the function relation predicate, cf. dfdisjALTV2 36752. (Contributed by Peter Mazsa, 8-Feb-2018.)
Assertion
Ref Expression
dffunALTV2 ( FunALTV 𝐹 ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹))

Proof of Theorem dffunALTV2
StepHypRef Expression
1 df-funALTV 36720 . 2 ( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹))
2 cnvrefrelcoss2 36578 . . 3 ( CnvRefRel ≀ 𝐹 ↔ ≀ 𝐹 ⊆ I )
32anbi1i 623 . 2 (( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹) ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹))
41, 3bitri 274 1 ( FunALTV 𝐹 ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wss 3883   I cid 5479  Rel wrel 5585  ccoss 36260   CnvRefRel wcnvrefrel 36269   FunALTV wfunALTV 36291
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-coss 36464  df-cnvrefrel 36570  df-funALTV 36720
This theorem is referenced by:  dffunALTV3  36727  dffunALTV4  36728  dffunALTV5  36729  funALTVss  36737
  Copyright terms: Public domain W3C validator