Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffunALTV2 Structured version   Visualization version   GIF version

Theorem dffunALTV2 38734
Description: Alternate definition of the function relation predicate, cf. dfdisjALTV2 38760. (Contributed by Peter Mazsa, 8-Feb-2018.)
Assertion
Ref Expression
dffunALTV2 ( FunALTV 𝐹 ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹))

Proof of Theorem dffunALTV2
StepHypRef Expression
1 df-funALTV 38728 . 2 ( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹))
2 cnvrefrelcoss2 38582 . . 3 ( CnvRefRel ≀ 𝐹 ↔ ≀ 𝐹 ⊆ I )
32anbi1i 624 . 2 (( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹) ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹))
41, 3bitri 275 1 ( FunALTV 𝐹 ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wss 3897   I cid 5508  Rel wrel 5619  ccoss 38223   CnvRefRel wcnvrefrel 38232   FunALTV wfunALTV 38254
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-coss 38456  df-cnvrefrel 38572  df-funALTV 38728
This theorem is referenced by:  dffunALTV3  38735  dffunALTV4  38736  dffunALTV5  38737  funALTVss  38745
  Copyright terms: Public domain W3C validator