Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffunALTV2 Structured version   Visualization version   GIF version

Theorem dffunALTV2 38666
Description: Alternate definition of the function relation predicate, cf. dfdisjALTV2 38692. (Contributed by Peter Mazsa, 8-Feb-2018.)
Assertion
Ref Expression
dffunALTV2 ( FunALTV 𝐹 ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹))

Proof of Theorem dffunALTV2
StepHypRef Expression
1 df-funALTV 38660 . 2 ( FunALTV 𝐹 ↔ ( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹))
2 cnvrefrelcoss2 38514 . . 3 ( CnvRefRel ≀ 𝐹 ↔ ≀ 𝐹 ⊆ I )
32anbi1i 624 . 2 (( CnvRefRel ≀ 𝐹 ∧ Rel 𝐹) ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹))
41, 3bitri 275 1 ( FunALTV 𝐹 ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wss 3903   I cid 5513  Rel wrel 5624  ccoss 38155   CnvRefRel wcnvrefrel 38164   FunALTV wfunALTV 38186
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-11 2158  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-coss 38388  df-cnvrefrel 38504  df-funALTV 38660
This theorem is referenced by:  dffunALTV3  38667  dffunALTV4  38668  dffunALTV5  38669  funALTVss  38677
  Copyright terms: Public domain W3C validator