Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffunsALTV5 Structured version   Visualization version   GIF version

Theorem dffunsALTV5 36901
Description: Alternate definition of the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.)
Assertion
Ref Expression
dffunsALTV5 FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑥 ∈ ran 𝑓𝑦 ∈ ran 𝑓(𝑥 = 𝑦 ∨ ([𝑥]𝑓 ∩ [𝑦]𝑓) = ∅)}
Distinct variable group:   𝑥,𝑓,𝑦

Proof of Theorem dffunsALTV5
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 dffunsALTV4 36900 . 2 FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑢∃*𝑥 𝑢𝑓𝑥}
2 ineccnvmo2 36573 . . 3 (∀𝑥 ∈ ran 𝑓𝑦 ∈ ran 𝑓(𝑥 = 𝑦 ∨ ([𝑥]𝑓 ∩ [𝑦]𝑓) = ∅) ↔ ∀𝑢∃*𝑥 𝑢𝑓𝑥)
32rabbii 3415 . 2 {𝑓 ∈ Rels ∣ ∀𝑥 ∈ ran 𝑓𝑦 ∈ ran 𝑓(𝑥 = 𝑦 ∨ ([𝑥]𝑓 ∩ [𝑦]𝑓) = ∅)} = {𝑓 ∈ Rels ∣ ∀𝑢∃*𝑥 𝑢𝑓𝑥}
41, 3eqtr4i 2767 1 FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑥 ∈ ran 𝑓𝑦 ∈ ran 𝑓(𝑥 = 𝑦 ∨ ([𝑥]𝑓 ∩ [𝑦]𝑓) = ∅)}
Colors of variables: wff setvar class
Syntax hints:  wo 845  wal 1537   = wceq 1539  ∃*wmo 2536  wral 3062  {crab 3303  cin 3891  c0 4262   class class class wbr 5081  ccnv 5599  ran crn 5601  [cec 8527   Rels crels 36383   FunsALTV cfunsALTV 36411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ral 3063  df-rex 3072  df-rmo 3304  df-rab 3306  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-opab 5144  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-ec 8531  df-coss 36625  df-rels 36699  df-ssr 36712  df-cnvrefs 36739  df-cnvrefrels 36740  df-funss 36894  df-funsALTV 36895
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator