Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffunsALTV5 Structured version   Visualization version   GIF version

Theorem dffunsALTV5 36777
Description: Alternate definition of the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.)
Assertion
Ref Expression
dffunsALTV5 FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑥 ∈ ran 𝑓𝑦 ∈ ran 𝑓(𝑥 = 𝑦 ∨ ([𝑥]𝑓 ∩ [𝑦]𝑓) = ∅)}
Distinct variable group:   𝑥,𝑓,𝑦

Proof of Theorem dffunsALTV5
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 dffunsALTV4 36776 . 2 FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑢∃*𝑥 𝑢𝑓𝑥}
2 ineccnvmo2 36471 . . 3 (∀𝑥 ∈ ran 𝑓𝑦 ∈ ran 𝑓(𝑥 = 𝑦 ∨ ([𝑥]𝑓 ∩ [𝑦]𝑓) = ∅) ↔ ∀𝑢∃*𝑥 𝑢𝑓𝑥)
32rabbii 3405 . 2 {𝑓 ∈ Rels ∣ ∀𝑥 ∈ ran 𝑓𝑦 ∈ ran 𝑓(𝑥 = 𝑦 ∨ ([𝑥]𝑓 ∩ [𝑦]𝑓) = ∅)} = {𝑓 ∈ Rels ∣ ∀𝑢∃*𝑥 𝑢𝑓𝑥}
41, 3eqtr4i 2770 1 FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑥 ∈ ran 𝑓𝑦 ∈ ran 𝑓(𝑥 = 𝑦 ∨ ([𝑥]𝑓 ∩ [𝑦]𝑓) = ∅)}
Colors of variables: wff setvar class
Syntax hints:  wo 843  wal 1539   = wceq 1541  ∃*wmo 2539  wral 3065  {crab 3069  cin 3890  c0 4261   class class class wbr 5078  ccnv 5587  ran crn 5589  [cec 8470   Rels crels 36314   FunsALTV cfunsALTV 36342
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rmo 3073  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-opab 5141  df-id 5488  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-ec 8474  df-coss 36516  df-rels 36582  df-ssr 36595  df-cnvrefs 36620  df-cnvrefrels 36621  df-funss 36770  df-funsALTV 36771
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator