Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dffunsALTV5 Structured version   Visualization version   GIF version

Theorem dffunsALTV5 38665
Description: Alternate definition of the class of functions. (Contributed by Peter Mazsa, 31-Aug-2021.)
Assertion
Ref Expression
dffunsALTV5 FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑥 ∈ ran 𝑓𝑦 ∈ ran 𝑓(𝑥 = 𝑦 ∨ ([𝑥]𝑓 ∩ [𝑦]𝑓) = ∅)}
Distinct variable group:   𝑥,𝑓,𝑦

Proof of Theorem dffunsALTV5
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 dffunsALTV4 38664 . 2 FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑢∃*𝑥 𝑢𝑓𝑥}
2 ineccnvmo2 38328 . . 3 (∀𝑥 ∈ ran 𝑓𝑦 ∈ ran 𝑓(𝑥 = 𝑦 ∨ ([𝑥]𝑓 ∩ [𝑦]𝑓) = ∅) ↔ ∀𝑢∃*𝑥 𝑢𝑓𝑥)
32rabbii 3400 . 2 {𝑓 ∈ Rels ∣ ∀𝑥 ∈ ran 𝑓𝑦 ∈ ran 𝑓(𝑥 = 𝑦 ∨ ([𝑥]𝑓 ∩ [𝑦]𝑓) = ∅)} = {𝑓 ∈ Rels ∣ ∀𝑢∃*𝑥 𝑢𝑓𝑥}
41, 3eqtr4i 2755 1 FunsALTV = {𝑓 ∈ Rels ∣ ∀𝑥 ∈ ran 𝑓𝑦 ∈ ran 𝑓(𝑥 = 𝑦 ∨ ([𝑥]𝑓 ∩ [𝑦]𝑓) = ∅)}
Colors of variables: wff setvar class
Syntax hints:  wo 847  wal 1538   = wceq 1540  ∃*wmo 2531  wral 3044  {crab 3394  cin 3902  c0 4284   class class class wbr 5092  ccnv 5618  ran crn 5620  [cec 8623   Rels crels 38157   FunsALTV cfunsALTV 38185
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rmo 3343  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ec 8627  df-coss 38388  df-rels 38462  df-ssr 38475  df-cnvrefs 38502  df-cnvrefrels 38503  df-funss 38658  df-funsALTV 38659
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator