Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfsucmap3 Structured version   Visualization version   GIF version

Theorem dfsucmap3 38486
Description: Alternate definition of the successor map. (Contributed by Peter Mazsa, 28-Jan-2026.)
Assertion
Ref Expression
dfsucmap3 SucMap = ( I AdjLiftMap V)

Proof of Theorem dfsucmap3
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqcom 2738 . . 3 (𝑛 = suc 𝑚 ↔ suc 𝑚 = 𝑛)
21opabbii 5156 . 2 {⟨𝑚, 𝑛⟩ ∣ 𝑛 = suc 𝑚} = {⟨𝑚, 𝑛⟩ ∣ suc 𝑚 = 𝑛}
3 df-adjliftmap 38480 . . 3 ( I AdjLiftMap V) = (𝑚 ∈ dom (( I ∪ E ) ↾ V) ↦ [𝑚](( I ∪ E ) ↾ V))
4 dmresv 6147 . . . . 5 dom (( I ∪ E ) ↾ V) = dom ( I ∪ E )
5 dmun 5849 . . . . . 6 dom ( I ∪ E ) = (dom I ∪ dom E )
6 dmi 5860 . . . . . . 7 dom I = V
7 dmcnvep 38422 . . . . . . 7 dom E = (V ∖ {∅})
86, 7uneq12i 4113 . . . . . 6 (dom I ∪ dom E ) = (V ∪ (V ∖ {∅}))
9 undifabs 4425 . . . . . 6 (V ∪ (V ∖ {∅})) = V
105, 8, 93eqtri 2758 . . . . 5 dom ( I ∪ E ) = V
114, 10eqtri 2754 . . . 4 dom (( I ∪ E ) ↾ V) = V
12 orcom 870 . . . . . . 7 ((𝑛 ∈ {𝑚} ∨ 𝑛𝑚) ↔ (𝑛𝑚𝑛 ∈ {𝑚}))
13 elecALTV 38313 . . . . . . . . 9 ((𝑚 ∈ V ∧ 𝑛 ∈ V) → (𝑛 ∈ [𝑚]( I ∪ E ) ↔ 𝑚( I ∪ E )𝑛))
1413el2v 3443 . . . . . . . 8 (𝑛 ∈ [𝑚]( I ∪ E ) ↔ 𝑚( I ∪ E )𝑛)
15 brun 5140 . . . . . . . 8 (𝑚( I ∪ E )𝑛 ↔ (𝑚 I 𝑛𝑚 E 𝑛))
16 equcom 2019 . . . . . . . . . 10 (𝑚 = 𝑛𝑛 = 𝑚)
17 ideqg 5790 . . . . . . . . . . 11 (𝑛 ∈ V → (𝑚 I 𝑛𝑚 = 𝑛))
1817elv 3441 . . . . . . . . . 10 (𝑚 I 𝑛𝑚 = 𝑛)
19 velsn 4589 . . . . . . . . . 10 (𝑛 ∈ {𝑚} ↔ 𝑛 = 𝑚)
2016, 18, 193bitr4i 303 . . . . . . . . 9 (𝑚 I 𝑛𝑛 ∈ {𝑚})
21 brcnvep 38312 . . . . . . . . . 10 (𝑚 ∈ V → (𝑚 E 𝑛𝑛𝑚))
2221elv 3441 . . . . . . . . 9 (𝑚 E 𝑛𝑛𝑚)
2320, 22orbi12i 914 . . . . . . . 8 ((𝑚 I 𝑛𝑚 E 𝑛) ↔ (𝑛 ∈ {𝑚} ∨ 𝑛𝑚))
2414, 15, 233bitri 297 . . . . . . 7 (𝑛 ∈ [𝑚]( I ∪ E ) ↔ (𝑛 ∈ {𝑚} ∨ 𝑛𝑚))
25 elun 4100 . . . . . . 7 (𝑛 ∈ (𝑚 ∪ {𝑚}) ↔ (𝑛𝑚𝑛 ∈ {𝑚}))
2612, 24, 253bitr4i 303 . . . . . 6 (𝑛 ∈ [𝑚]( I ∪ E ) ↔ 𝑛 ∈ (𝑚 ∪ {𝑚}))
2726eqriv 2728 . . . . 5 [𝑚]( I ∪ E ) = (𝑚 ∪ {𝑚})
28 reli 5765 . . . . . . . 8 Rel I
29 relcnv 6052 . . . . . . . 8 Rel E
30 relun 5750 . . . . . . . 8 (Rel ( I ∪ E ) ↔ (Rel I ∧ Rel E ))
3128, 29, 30mpbir2an 711 . . . . . . 7 Rel ( I ∪ E )
32 dfrel3 6145 . . . . . . 7 (Rel ( I ∪ E ) ↔ (( I ∪ E ) ↾ V) = ( I ∪ E ))
3331, 32mpbi 230 . . . . . 6 (( I ∪ E ) ↾ V) = ( I ∪ E )
3433eceq2i 8664 . . . . 5 [𝑚](( I ∪ E ) ↾ V) = [𝑚]( I ∪ E )
35 df-suc 6312 . . . . 5 suc 𝑚 = (𝑚 ∪ {𝑚})
3627, 34, 353eqtr4i 2764 . . . 4 [𝑚](( I ∪ E ) ↾ V) = suc 𝑚
3711, 36mpteq12i 5186 . . 3 (𝑚 ∈ dom (( I ∪ E ) ↾ V) ↦ [𝑚](( I ∪ E ) ↾ V)) = (𝑚 ∈ V ↦ suc 𝑚)
38 mptv 5195 . . 3 (𝑚 ∈ V ↦ suc 𝑚) = {⟨𝑚, 𝑛⟩ ∣ 𝑛 = suc 𝑚}
393, 37, 383eqtri 2758 . 2 ( I AdjLiftMap V) = {⟨𝑚, 𝑛⟩ ∣ 𝑛 = suc 𝑚}
40 df-sucmap 38485 . 2 SucMap = {⟨𝑚, 𝑛⟩ ∣ suc 𝑚 = 𝑛}
412, 39, 403eqtr4ri 2765 1 SucMap = ( I AdjLiftMap V)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wo 847   = wceq 1541  wcel 2111  Vcvv 3436  cdif 3894  cun 3895  c0 4280  {csn 4573   class class class wbr 5089  {copab 5151  cmpt 5170   I cid 5508   E cep 5513  ccnv 5613  dom cdm 5614  cres 5616  Rel wrel 5619  suc csuc 6308  [cec 8620   AdjLiftMap cadjliftmap 38225   SucMap csucmap 38227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-eprel 5514  df-xp 5620  df-rel 5621  df-cnv 5622  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-suc 6312  df-ec 8624  df-adjliftmap 38480  df-sucmap 38485
This theorem is referenced by:  dfsucmap2  38487
  Copyright terms: Public domain W3C validator