| Step | Hyp | Ref
| Expression |
| 1 | | eqcom 2738 |
. . 3
⊢ (𝑛 = suc 𝑚 ↔ suc 𝑚 = 𝑛) |
| 2 | 1 | opabbii 5156 |
. 2
⊢
{〈𝑚, 𝑛〉 ∣ 𝑛 = suc 𝑚} = {〈𝑚, 𝑛〉 ∣ suc 𝑚 = 𝑛} |
| 3 | | df-adjliftmap 38480 |
. . 3
⊢ ( I
AdjLiftMap V) = (𝑚 ∈
dom (( I ∪ ◡ E ) ↾ V) ↦
[𝑚](( I ∪ ◡ E ) ↾ V)) |
| 4 | | dmresv 6147 |
. . . . 5
⊢ dom (( I
∪ ◡ E ) ↾ V) = dom ( I ∪
◡ E ) |
| 5 | | dmun 5849 |
. . . . . 6
⊢ dom ( I
∪ ◡ E ) = (dom I ∪ dom ◡ E ) |
| 6 | | dmi 5860 |
. . . . . . 7
⊢ dom I =
V |
| 7 | | dmcnvep 38422 |
. . . . . . 7
⊢ dom ◡ E = (V ∖ {∅}) |
| 8 | 6, 7 | uneq12i 4113 |
. . . . . 6
⊢ (dom I
∪ dom ◡ E ) = (V ∪ (V ∖
{∅})) |
| 9 | | undifabs 4425 |
. . . . . 6
⊢ (V ∪
(V ∖ {∅})) = V |
| 10 | 5, 8, 9 | 3eqtri 2758 |
. . . . 5
⊢ dom ( I
∪ ◡ E ) = V |
| 11 | 4, 10 | eqtri 2754 |
. . . 4
⊢ dom (( I
∪ ◡ E ) ↾ V) =
V |
| 12 | | orcom 870 |
. . . . . . 7
⊢ ((𝑛 ∈ {𝑚} ∨ 𝑛 ∈ 𝑚) ↔ (𝑛 ∈ 𝑚 ∨ 𝑛 ∈ {𝑚})) |
| 13 | | elecALTV 38313 |
. . . . . . . . 9
⊢ ((𝑚 ∈ V ∧ 𝑛 ∈ V) → (𝑛 ∈ [𝑚]( I ∪ ◡ E ) ↔ 𝑚( I ∪ ◡ E )𝑛)) |
| 14 | 13 | el2v 3443 |
. . . . . . . 8
⊢ (𝑛 ∈ [𝑚]( I ∪ ◡ E ) ↔ 𝑚( I ∪ ◡ E )𝑛) |
| 15 | | brun 5140 |
. . . . . . . 8
⊢ (𝑚( I ∪ ◡ E )𝑛 ↔ (𝑚 I 𝑛 ∨ 𝑚◡ E
𝑛)) |
| 16 | | equcom 2019 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑛 ↔ 𝑛 = 𝑚) |
| 17 | | ideqg 5790 |
. . . . . . . . . . 11
⊢ (𝑛 ∈ V → (𝑚 I 𝑛 ↔ 𝑚 = 𝑛)) |
| 18 | 17 | elv 3441 |
. . . . . . . . . 10
⊢ (𝑚 I 𝑛 ↔ 𝑚 = 𝑛) |
| 19 | | velsn 4589 |
. . . . . . . . . 10
⊢ (𝑛 ∈ {𝑚} ↔ 𝑛 = 𝑚) |
| 20 | 16, 18, 19 | 3bitr4i 303 |
. . . . . . . . 9
⊢ (𝑚 I 𝑛 ↔ 𝑛 ∈ {𝑚}) |
| 21 | | brcnvep 38312 |
. . . . . . . . . 10
⊢ (𝑚 ∈ V → (𝑚◡ E 𝑛 ↔ 𝑛 ∈ 𝑚)) |
| 22 | 21 | elv 3441 |
. . . . . . . . 9
⊢ (𝑚◡ E 𝑛 ↔ 𝑛 ∈ 𝑚) |
| 23 | 20, 22 | orbi12i 914 |
. . . . . . . 8
⊢ ((𝑚 I 𝑛 ∨ 𝑚◡ E
𝑛) ↔ (𝑛 ∈ {𝑚} ∨ 𝑛 ∈ 𝑚)) |
| 24 | 14, 15, 23 | 3bitri 297 |
. . . . . . 7
⊢ (𝑛 ∈ [𝑚]( I ∪ ◡ E ) ↔ (𝑛 ∈ {𝑚} ∨ 𝑛 ∈ 𝑚)) |
| 25 | | elun 4100 |
. . . . . . 7
⊢ (𝑛 ∈ (𝑚 ∪ {𝑚}) ↔ (𝑛 ∈ 𝑚 ∨ 𝑛 ∈ {𝑚})) |
| 26 | 12, 24, 25 | 3bitr4i 303 |
. . . . . 6
⊢ (𝑛 ∈ [𝑚]( I ∪ ◡ E ) ↔ 𝑛 ∈ (𝑚 ∪ {𝑚})) |
| 27 | 26 | eqriv 2728 |
. . . . 5
⊢ [𝑚]( I ∪ ◡ E ) = (𝑚 ∪ {𝑚}) |
| 28 | | reli 5765 |
. . . . . . . 8
⊢ Rel
I |
| 29 | | relcnv 6052 |
. . . . . . . 8
⊢ Rel ◡ E |
| 30 | | relun 5750 |
. . . . . . . 8
⊢ (Rel ( I
∪ ◡ E ) ↔ (Rel I ∧ Rel
◡ E )) |
| 31 | 28, 29, 30 | mpbir2an 711 |
. . . . . . 7
⊢ Rel ( I
∪ ◡ E ) |
| 32 | | dfrel3 6145 |
. . . . . . 7
⊢ (Rel ( I
∪ ◡ E ) ↔ (( I ∪ ◡ E ) ↾ V) = ( I ∪ ◡ E )) |
| 33 | 31, 32 | mpbi 230 |
. . . . . 6
⊢ (( I
∪ ◡ E ) ↾ V) = ( I ∪
◡ E ) |
| 34 | 33 | eceq2i 8664 |
. . . . 5
⊢ [𝑚](( I ∪ ◡ E ) ↾ V) = [𝑚]( I ∪ ◡ E ) |
| 35 | | df-suc 6312 |
. . . . 5
⊢ suc 𝑚 = (𝑚 ∪ {𝑚}) |
| 36 | 27, 34, 35 | 3eqtr4i 2764 |
. . . 4
⊢ [𝑚](( I ∪ ◡ E ) ↾ V) = suc 𝑚 |
| 37 | 11, 36 | mpteq12i 5186 |
. . 3
⊢ (𝑚 ∈ dom (( I ∪ ◡ E ) ↾ V) ↦ [𝑚](( I ∪ ◡ E ) ↾ V)) = (𝑚 ∈ V ↦ suc 𝑚) |
| 38 | | mptv 5195 |
. . 3
⊢ (𝑚 ∈ V ↦ suc 𝑚) = {〈𝑚, 𝑛〉 ∣ 𝑛 = suc 𝑚} |
| 39 | 3, 37, 38 | 3eqtri 2758 |
. 2
⊢ ( I
AdjLiftMap V) = {〈𝑚,
𝑛〉 ∣ 𝑛 = suc 𝑚} |
| 40 | | df-sucmap 38485 |
. 2
⊢ SucMap =
{〈𝑚, 𝑛〉 ∣ suc 𝑚 = 𝑛} |
| 41 | 2, 39, 40 | 3eqtr4ri 2765 |
1
⊢ SucMap =
( I AdjLiftMap V) |