| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dftpos5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of tpos. (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| dftpos5 | ⊢ tpos 𝐹 = (𝐹 ∘ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tpos 8207 | . 2 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
| 2 | mptun 6666 | . . . 4 ⊢ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) = ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ (𝑥 ∈ {∅} ↦ ∪ ◡{𝑥})) | |
| 3 | 0ex 5264 | . . . . . 6 ⊢ ∅ ∈ V | |
| 4 | sneq 4601 | . . . . . . . . . 10 ⊢ (𝑥 = ∅ → {𝑥} = {∅}) | |
| 5 | 4 | cnveqd 5841 | . . . . . . . . 9 ⊢ (𝑥 = ∅ → ◡{𝑥} = ◡{∅}) |
| 6 | 5 | unieqd 4886 | . . . . . . . 8 ⊢ (𝑥 = ∅ → ∪ ◡{𝑥} = ∪ ◡{∅}) |
| 7 | cnvsn0 6185 | . . . . . . . . . 10 ⊢ ◡{∅} = ∅ | |
| 8 | 7 | unieqi 4885 | . . . . . . . . 9 ⊢ ∪ ◡{∅} = ∪ ∅ |
| 9 | uni0 4901 | . . . . . . . . 9 ⊢ ∪ ∅ = ∅ | |
| 10 | 8, 9 | eqtri 2753 | . . . . . . . 8 ⊢ ∪ ◡{∅} = ∅ |
| 11 | 6, 10 | eqtrdi 2781 | . . . . . . 7 ⊢ (𝑥 = ∅ → ∪ ◡{𝑥} = ∅) |
| 12 | 11 | fmptsng 7144 | . . . . . 6 ⊢ ((∅ ∈ V ∧ ∅ ∈ V) → {〈∅, ∅〉} = (𝑥 ∈ {∅} ↦ ∪ ◡{𝑥})) |
| 13 | 3, 3, 12 | mp2an 692 | . . . . 5 ⊢ {〈∅, ∅〉} = (𝑥 ∈ {∅} ↦ ∪ ◡{𝑥}) |
| 14 | 13 | uneq2i 4130 | . . . 4 ⊢ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉}) = ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ (𝑥 ∈ {∅} ↦ ∪ ◡{𝑥})) |
| 15 | 2, 14 | eqtr4i 2756 | . . 3 ⊢ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) = ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉}) |
| 16 | 15 | coeq2i 5826 | . 2 ⊢ (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) = (𝐹 ∘ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉})) |
| 17 | 1, 16 | eqtri 2753 | 1 ⊢ tpos 𝐹 = (𝐹 ∘ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉})) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2109 Vcvv 3450 ∪ cun 3914 ∅c0 4298 {csn 4591 〈cop 4597 ∪ cuni 4873 ↦ cmpt 5190 ◡ccnv 5639 dom cdm 5640 ∘ ccom 5644 tpos ctpos 8206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-tpos 8207 |
| This theorem is referenced by: dftpos6 48851 |
| Copyright terms: Public domain | W3C validator |