Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftpos5 Structured version   Visualization version   GIF version

Theorem dftpos5 48878
Description: Alternate definition of tpos. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
dftpos5 tpos 𝐹 = (𝐹 ∘ ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩}))
Distinct variable group:   𝑥,𝐹

Proof of Theorem dftpos5
StepHypRef Expression
1 df-tpos 8166 . 2 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
2 mptun 6632 . . . 4 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = ((𝑥dom 𝐹 {𝑥}) ∪ (𝑥 ∈ {∅} ↦ {𝑥}))
3 0ex 5249 . . . . . 6 ∅ ∈ V
4 sneq 4589 . . . . . . . . . 10 (𝑥 = ∅ → {𝑥} = {∅})
54cnveqd 5822 . . . . . . . . 9 (𝑥 = ∅ → {𝑥} = {∅})
65unieqd 4874 . . . . . . . 8 (𝑥 = ∅ → {𝑥} = {∅})
7 cnvsn0 6163 . . . . . . . . . 10 {∅} = ∅
87unieqi 4873 . . . . . . . . 9 {∅} =
9 uni0 4889 . . . . . . . . 9 ∅ = ∅
108, 9eqtri 2752 . . . . . . . 8 {∅} = ∅
116, 10eqtrdi 2780 . . . . . . 7 (𝑥 = ∅ → {𝑥} = ∅)
1211fmptsng 7108 . . . . . 6 ((∅ ∈ V ∧ ∅ ∈ V) → {⟨∅, ∅⟩} = (𝑥 ∈ {∅} ↦ {𝑥}))
133, 3, 12mp2an 692 . . . . 5 {⟨∅, ∅⟩} = (𝑥 ∈ {∅} ↦ {𝑥})
1413uneq2i 4118 . . . 4 ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩}) = ((𝑥dom 𝐹 {𝑥}) ∪ (𝑥 ∈ {∅} ↦ {𝑥}))
152, 14eqtr4i 2755 . . 3 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩})
1615coeq2i 5807 . 2 (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) = (𝐹 ∘ ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩}))
171, 16eqtri 2752 1 tpos 𝐹 = (𝐹 ∘ ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩}))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3438  cun 3903  c0 4286  {csn 4579  cop 4585   cuni 4861  cmpt 5176  ccnv 5622  dom cdm 5623  ccom 5627  tpos ctpos 8165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-tpos 8166
This theorem is referenced by:  dftpos6  48879
  Copyright terms: Public domain W3C validator