Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftpos5 Structured version   Visualization version   GIF version

Theorem dftpos5 48905
Description: Alternate definition of tpos. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
dftpos5 tpos 𝐹 = (𝐹 ∘ ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩}))
Distinct variable group:   𝑥,𝐹

Proof of Theorem dftpos5
StepHypRef Expression
1 df-tpos 8151 . 2 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
2 mptun 6622 . . . 4 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = ((𝑥dom 𝐹 {𝑥}) ∪ (𝑥 ∈ {∅} ↦ {𝑥}))
3 0ex 5240 . . . . . 6 ∅ ∈ V
4 sneq 4581 . . . . . . . . . 10 (𝑥 = ∅ → {𝑥} = {∅})
54cnveqd 5810 . . . . . . . . 9 (𝑥 = ∅ → {𝑥} = {∅})
65unieqd 4867 . . . . . . . 8 (𝑥 = ∅ → {𝑥} = {∅})
7 cnvsn0 6152 . . . . . . . . . 10 {∅} = ∅
87unieqi 4866 . . . . . . . . 9 {∅} =
9 uni0 4882 . . . . . . . . 9 ∅ = ∅
108, 9eqtri 2754 . . . . . . . 8 {∅} = ∅
116, 10eqtrdi 2782 . . . . . . 7 (𝑥 = ∅ → {𝑥} = ∅)
1211fmptsng 7097 . . . . . 6 ((∅ ∈ V ∧ ∅ ∈ V) → {⟨∅, ∅⟩} = (𝑥 ∈ {∅} ↦ {𝑥}))
133, 3, 12mp2an 692 . . . . 5 {⟨∅, ∅⟩} = (𝑥 ∈ {∅} ↦ {𝑥})
1413uneq2i 4110 . . . 4 ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩}) = ((𝑥dom 𝐹 {𝑥}) ∪ (𝑥 ∈ {∅} ↦ {𝑥}))
152, 14eqtr4i 2757 . . 3 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩})
1615coeq2i 5795 . 2 (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) = (𝐹 ∘ ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩}))
171, 16eqtri 2754 1 tpos 𝐹 = (𝐹 ∘ ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩}))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  Vcvv 3436  cun 3895  c0 4278  {csn 4571  cop 4577   cuni 4854  cmpt 5167  ccnv 5610  dom cdm 5611  ccom 5615  tpos ctpos 8150
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-tpos 8151
This theorem is referenced by:  dftpos6  48906
  Copyright terms: Public domain W3C validator