Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftpos5 Structured version   Visualization version   GIF version

Theorem dftpos5 48729
Description: Alternate definition of tpos. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
dftpos5 tpos 𝐹 = (𝐹 ∘ ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩}))
Distinct variable group:   𝑥,𝐹

Proof of Theorem dftpos5
StepHypRef Expression
1 df-tpos 8219 . 2 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
2 mptun 6680 . . . 4 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = ((𝑥dom 𝐹 {𝑥}) ∪ (𝑥 ∈ {∅} ↦ {𝑥}))
3 0ex 5274 . . . . . 6 ∅ ∈ V
4 sneq 4609 . . . . . . . . . 10 (𝑥 = ∅ → {𝑥} = {∅})
54cnveqd 5852 . . . . . . . . 9 (𝑥 = ∅ → {𝑥} = {∅})
65unieqd 4893 . . . . . . . 8 (𝑥 = ∅ → {𝑥} = {∅})
7 cnvsn0 6196 . . . . . . . . . 10 {∅} = ∅
87unieqi 4892 . . . . . . . . 9 {∅} =
9 uni0 4908 . . . . . . . . 9 ∅ = ∅
108, 9eqtri 2757 . . . . . . . 8 {∅} = ∅
116, 10eqtrdi 2785 . . . . . . 7 (𝑥 = ∅ → {𝑥} = ∅)
1211fmptsng 7156 . . . . . 6 ((∅ ∈ V ∧ ∅ ∈ V) → {⟨∅, ∅⟩} = (𝑥 ∈ {∅} ↦ {𝑥}))
133, 3, 12mp2an 692 . . . . 5 {⟨∅, ∅⟩} = (𝑥 ∈ {∅} ↦ {𝑥})
1413uneq2i 4138 . . . 4 ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩}) = ((𝑥dom 𝐹 {𝑥}) ∪ (𝑥 ∈ {∅} ↦ {𝑥}))
152, 14eqtr4i 2760 . . 3 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩})
1615coeq2i 5837 . 2 (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) = (𝐹 ∘ ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩}))
171, 16eqtri 2757 1 tpos 𝐹 = (𝐹 ∘ ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩}))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1539  wcel 2107  Vcvv 3457  cun 3922  c0 4306  {csn 4599  cop 4605   cuni 4880  cmpt 5198  ccnv 5650  dom cdm 5651  ccom 5655  tpos ctpos 8218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5263  ax-nul 5273  ax-pr 5399
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-uni 4881  df-br 5117  df-opab 5179  df-mpt 5199  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-tpos 8219
This theorem is referenced by:  dftpos6  48730
  Copyright terms: Public domain W3C validator