| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dftpos5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of tpos. (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| dftpos5 | ⊢ tpos 𝐹 = (𝐹 ∘ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tpos 8151 | . 2 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
| 2 | mptun 6622 | . . . 4 ⊢ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) = ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ (𝑥 ∈ {∅} ↦ ∪ ◡{𝑥})) | |
| 3 | 0ex 5240 | . . . . . 6 ⊢ ∅ ∈ V | |
| 4 | sneq 4581 | . . . . . . . . . 10 ⊢ (𝑥 = ∅ → {𝑥} = {∅}) | |
| 5 | 4 | cnveqd 5810 | . . . . . . . . 9 ⊢ (𝑥 = ∅ → ◡{𝑥} = ◡{∅}) |
| 6 | 5 | unieqd 4867 | . . . . . . . 8 ⊢ (𝑥 = ∅ → ∪ ◡{𝑥} = ∪ ◡{∅}) |
| 7 | cnvsn0 6152 | . . . . . . . . . 10 ⊢ ◡{∅} = ∅ | |
| 8 | 7 | unieqi 4866 | . . . . . . . . 9 ⊢ ∪ ◡{∅} = ∪ ∅ |
| 9 | uni0 4882 | . . . . . . . . 9 ⊢ ∪ ∅ = ∅ | |
| 10 | 8, 9 | eqtri 2754 | . . . . . . . 8 ⊢ ∪ ◡{∅} = ∅ |
| 11 | 6, 10 | eqtrdi 2782 | . . . . . . 7 ⊢ (𝑥 = ∅ → ∪ ◡{𝑥} = ∅) |
| 12 | 11 | fmptsng 7097 | . . . . . 6 ⊢ ((∅ ∈ V ∧ ∅ ∈ V) → {〈∅, ∅〉} = (𝑥 ∈ {∅} ↦ ∪ ◡{𝑥})) |
| 13 | 3, 3, 12 | mp2an 692 | . . . . 5 ⊢ {〈∅, ∅〉} = (𝑥 ∈ {∅} ↦ ∪ ◡{𝑥}) |
| 14 | 13 | uneq2i 4110 | . . . 4 ⊢ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉}) = ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ (𝑥 ∈ {∅} ↦ ∪ ◡{𝑥})) |
| 15 | 2, 14 | eqtr4i 2757 | . . 3 ⊢ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) = ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉}) |
| 16 | 15 | coeq2i 5795 | . 2 ⊢ (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) = (𝐹 ∘ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉})) |
| 17 | 1, 16 | eqtri 2754 | 1 ⊢ tpos 𝐹 = (𝐹 ∘ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉})) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 ∅c0 4278 {csn 4571 〈cop 4577 ∪ cuni 4854 ↦ cmpt 5167 ◡ccnv 5610 dom cdm 5611 ∘ ccom 5615 tpos ctpos 8150 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-tpos 8151 |
| This theorem is referenced by: dftpos6 48906 |
| Copyright terms: Public domain | W3C validator |