| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dftpos5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of tpos. (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| dftpos5 | ⊢ tpos 𝐹 = (𝐹 ∘ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tpos 8247 | . 2 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
| 2 | mptun 6712 | . . . 4 ⊢ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) = ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ (𝑥 ∈ {∅} ↦ ∪ ◡{𝑥})) | |
| 3 | 0ex 5305 | . . . . . 6 ⊢ ∅ ∈ V | |
| 4 | sneq 4634 | . . . . . . . . . 10 ⊢ (𝑥 = ∅ → {𝑥} = {∅}) | |
| 5 | 4 | cnveqd 5884 | . . . . . . . . 9 ⊢ (𝑥 = ∅ → ◡{𝑥} = ◡{∅}) |
| 6 | 5 | unieqd 4918 | . . . . . . . 8 ⊢ (𝑥 = ∅ → ∪ ◡{𝑥} = ∪ ◡{∅}) |
| 7 | cnvsn0 6228 | . . . . . . . . . 10 ⊢ ◡{∅} = ∅ | |
| 8 | 7 | unieqi 4917 | . . . . . . . . 9 ⊢ ∪ ◡{∅} = ∪ ∅ |
| 9 | uni0 4933 | . . . . . . . . 9 ⊢ ∪ ∅ = ∅ | |
| 10 | 8, 9 | eqtri 2764 | . . . . . . . 8 ⊢ ∪ ◡{∅} = ∅ |
| 11 | 6, 10 | eqtrdi 2792 | . . . . . . 7 ⊢ (𝑥 = ∅ → ∪ ◡{𝑥} = ∅) |
| 12 | 11 | fmptsng 7186 | . . . . . 6 ⊢ ((∅ ∈ V ∧ ∅ ∈ V) → {〈∅, ∅〉} = (𝑥 ∈ {∅} ↦ ∪ ◡{𝑥})) |
| 13 | 3, 3, 12 | mp2an 692 | . . . . 5 ⊢ {〈∅, ∅〉} = (𝑥 ∈ {∅} ↦ ∪ ◡{𝑥}) |
| 14 | 13 | uneq2i 4164 | . . . 4 ⊢ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉}) = ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ (𝑥 ∈ {∅} ↦ ∪ ◡{𝑥})) |
| 15 | 2, 14 | eqtr4i 2767 | . . 3 ⊢ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) = ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉}) |
| 16 | 15 | coeq2i 5869 | . 2 ⊢ (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) = (𝐹 ∘ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉})) |
| 17 | 1, 16 | eqtri 2764 | 1 ⊢ tpos 𝐹 = (𝐹 ∘ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉})) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∈ wcel 2108 Vcvv 3479 ∪ cun 3948 ∅c0 4332 {csn 4624 〈cop 4630 ∪ cuni 4905 ↦ cmpt 5223 ◡ccnv 5682 dom cdm 5683 ∘ ccom 5687 tpos ctpos 8246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pr 5430 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-br 5142 df-opab 5204 df-mpt 5224 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-tpos 8247 |
| This theorem is referenced by: dftpos6 48748 |
| Copyright terms: Public domain | W3C validator |