Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftpos5 Structured version   Visualization version   GIF version

Theorem dftpos5 48850
Description: Alternate definition of tpos. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
dftpos5 tpos 𝐹 = (𝐹 ∘ ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩}))
Distinct variable group:   𝑥,𝐹

Proof of Theorem dftpos5
StepHypRef Expression
1 df-tpos 8207 . 2 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
2 mptun 6666 . . . 4 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = ((𝑥dom 𝐹 {𝑥}) ∪ (𝑥 ∈ {∅} ↦ {𝑥}))
3 0ex 5264 . . . . . 6 ∅ ∈ V
4 sneq 4601 . . . . . . . . . 10 (𝑥 = ∅ → {𝑥} = {∅})
54cnveqd 5841 . . . . . . . . 9 (𝑥 = ∅ → {𝑥} = {∅})
65unieqd 4886 . . . . . . . 8 (𝑥 = ∅ → {𝑥} = {∅})
7 cnvsn0 6185 . . . . . . . . . 10 {∅} = ∅
87unieqi 4885 . . . . . . . . 9 {∅} =
9 uni0 4901 . . . . . . . . 9 ∅ = ∅
108, 9eqtri 2753 . . . . . . . 8 {∅} = ∅
116, 10eqtrdi 2781 . . . . . . 7 (𝑥 = ∅ → {𝑥} = ∅)
1211fmptsng 7144 . . . . . 6 ((∅ ∈ V ∧ ∅ ∈ V) → {⟨∅, ∅⟩} = (𝑥 ∈ {∅} ↦ {𝑥}))
133, 3, 12mp2an 692 . . . . 5 {⟨∅, ∅⟩} = (𝑥 ∈ {∅} ↦ {𝑥})
1413uneq2i 4130 . . . 4 ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩}) = ((𝑥dom 𝐹 {𝑥}) ∪ (𝑥 ∈ {∅} ↦ {𝑥}))
152, 14eqtr4i 2756 . . 3 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩})
1615coeq2i 5826 . 2 (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) = (𝐹 ∘ ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩}))
171, 16eqtri 2753 1 tpos 𝐹 = (𝐹 ∘ ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩}))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2109  Vcvv 3450  cun 3914  c0 4298  {csn 4591  cop 4597   cuni 4873  cmpt 5190  ccnv 5639  dom cdm 5640  ccom 5644  tpos ctpos 8206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3919  df-un 3921  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-tpos 8207
This theorem is referenced by:  dftpos6  48851
  Copyright terms: Public domain W3C validator