Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftpos5 Structured version   Visualization version   GIF version

Theorem dftpos5 48747
Description: Alternate definition of tpos. (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
dftpos5 tpos 𝐹 = (𝐹 ∘ ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩}))
Distinct variable group:   𝑥,𝐹

Proof of Theorem dftpos5
StepHypRef Expression
1 df-tpos 8247 . 2 tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}))
2 mptun 6712 . . . 4 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = ((𝑥dom 𝐹 {𝑥}) ∪ (𝑥 ∈ {∅} ↦ {𝑥}))
3 0ex 5305 . . . . . 6 ∅ ∈ V
4 sneq 4634 . . . . . . . . . 10 (𝑥 = ∅ → {𝑥} = {∅})
54cnveqd 5884 . . . . . . . . 9 (𝑥 = ∅ → {𝑥} = {∅})
65unieqd 4918 . . . . . . . 8 (𝑥 = ∅ → {𝑥} = {∅})
7 cnvsn0 6228 . . . . . . . . . 10 {∅} = ∅
87unieqi 4917 . . . . . . . . 9 {∅} =
9 uni0 4933 . . . . . . . . 9 ∅ = ∅
108, 9eqtri 2764 . . . . . . . 8 {∅} = ∅
116, 10eqtrdi 2792 . . . . . . 7 (𝑥 = ∅ → {𝑥} = ∅)
1211fmptsng 7186 . . . . . 6 ((∅ ∈ V ∧ ∅ ∈ V) → {⟨∅, ∅⟩} = (𝑥 ∈ {∅} ↦ {𝑥}))
133, 3, 12mp2an 692 . . . . 5 {⟨∅, ∅⟩} = (𝑥 ∈ {∅} ↦ {𝑥})
1413uneq2i 4164 . . . 4 ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩}) = ((𝑥dom 𝐹 {𝑥}) ∪ (𝑥 ∈ {∅} ↦ {𝑥}))
152, 14eqtr4i 2767 . . 3 (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥}) = ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩})
1615coeq2i 5869 . 2 (𝐹 ∘ (𝑥 ∈ (dom 𝐹 ∪ {∅}) ↦ {𝑥})) = (𝐹 ∘ ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩}))
171, 16eqtri 2764 1 tpos 𝐹 = (𝐹 ∘ ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩}))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  wcel 2108  Vcvv 3479  cun 3948  c0 4332  {csn 4624  cop 4630   cuni 4905  cmpt 5223  ccnv 5682  dom cdm 5683  ccom 5687  tpos ctpos 8246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5294  ax-nul 5304  ax-pr 5430
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-clab 2714  df-cleq 2728  df-clel 2815  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-br 5142  df-opab 5204  df-mpt 5224  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-tpos 8247
This theorem is referenced by:  dftpos6  48748
  Copyright terms: Public domain W3C validator