| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dftpos5 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of tpos. (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| dftpos5 | ⊢ tpos 𝐹 = (𝐹 ∘ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-tpos 8165 | . 2 ⊢ tpos 𝐹 = (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) | |
| 2 | mptun 6635 | . . . 4 ⊢ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) = ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ (𝑥 ∈ {∅} ↦ ∪ ◡{𝑥})) | |
| 3 | 0ex 5249 | . . . . . 6 ⊢ ∅ ∈ V | |
| 4 | sneq 4587 | . . . . . . . . . 10 ⊢ (𝑥 = ∅ → {𝑥} = {∅}) | |
| 5 | 4 | cnveqd 5821 | . . . . . . . . 9 ⊢ (𝑥 = ∅ → ◡{𝑥} = ◡{∅}) |
| 6 | 5 | unieqd 4873 | . . . . . . . 8 ⊢ (𝑥 = ∅ → ∪ ◡{𝑥} = ∪ ◡{∅}) |
| 7 | cnvsn0 6165 | . . . . . . . . . 10 ⊢ ◡{∅} = ∅ | |
| 8 | 7 | unieqi 4872 | . . . . . . . . 9 ⊢ ∪ ◡{∅} = ∪ ∅ |
| 9 | uni0 4888 | . . . . . . . . 9 ⊢ ∪ ∅ = ∅ | |
| 10 | 8, 9 | eqtri 2756 | . . . . . . . 8 ⊢ ∪ ◡{∅} = ∅ |
| 11 | 6, 10 | eqtrdi 2784 | . . . . . . 7 ⊢ (𝑥 = ∅ → ∪ ◡{𝑥} = ∅) |
| 12 | 11 | fmptsng 7111 | . . . . . 6 ⊢ ((∅ ∈ V ∧ ∅ ∈ V) → {〈∅, ∅〉} = (𝑥 ∈ {∅} ↦ ∪ ◡{𝑥})) |
| 13 | 3, 3, 12 | mp2an 692 | . . . . 5 ⊢ {〈∅, ∅〉} = (𝑥 ∈ {∅} ↦ ∪ ◡{𝑥}) |
| 14 | 13 | uneq2i 4114 | . . . 4 ⊢ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉}) = ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ (𝑥 ∈ {∅} ↦ ∪ ◡{𝑥})) |
| 15 | 2, 14 | eqtr4i 2759 | . . 3 ⊢ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥}) = ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉}) |
| 16 | 15 | coeq2i 5806 | . 2 ⊢ (𝐹 ∘ (𝑥 ∈ (◡dom 𝐹 ∪ {∅}) ↦ ∪ ◡{𝑥})) = (𝐹 ∘ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉})) |
| 17 | 1, 16 | eqtri 2756 | 1 ⊢ tpos 𝐹 = (𝐹 ∘ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉})) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∪ cun 3896 ∅c0 4282 {csn 4577 〈cop 4583 ∪ cuni 4860 ↦ cmpt 5176 ◡ccnv 5620 dom cdm 5621 ∘ ccom 5625 tpos ctpos 8164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-tpos 8165 |
| This theorem is referenced by: dftpos6 49036 |
| Copyright terms: Public domain | W3C validator |