Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftpos6 Structured version   Visualization version   GIF version

Theorem dftpos6 48836
Description: Alternate definition of tpos. The second half of the right hand side could apply ressn 6246 and become (𝐹 ↾ {∅}) (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
dftpos6 tpos 𝐹 = ((𝐹 ∘ (𝑥dom 𝐹 {𝑥})) ∪ ({∅} × (𝐹 “ {∅})))
Distinct variable group:   𝑥,𝐹

Proof of Theorem dftpos6
StepHypRef Expression
1 dftpos5 48835 . 2 tpos 𝐹 = (𝐹 ∘ ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩}))
2 coundi 6208 . 2 (𝐹 ∘ ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩})) = ((𝐹 ∘ (𝑥dom 𝐹 {𝑥})) ∪ (𝐹 ∘ {⟨∅, ∅⟩}))
3 0ex 5257 . . . 4 ∅ ∈ V
43, 3cosni 48796 . . 3 (𝐹 ∘ {⟨∅, ∅⟩}) = ({∅} × (𝐹 “ {∅}))
54uneq2i 4124 . 2 ((𝐹 ∘ (𝑥dom 𝐹 {𝑥})) ∪ (𝐹 ∘ {⟨∅, ∅⟩})) = ((𝐹 ∘ (𝑥dom 𝐹 {𝑥})) ∪ ({∅} × (𝐹 “ {∅})))
61, 2, 53eqtri 2756 1 tpos 𝐹 = ((𝐹 ∘ (𝑥dom 𝐹 {𝑥})) ∪ ({∅} × (𝐹 “ {∅})))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3909  c0 4292  {csn 4585  cop 4591   cuni 4867  cmpt 5183   × cxp 5629  ccnv 5630  dom cdm 5631  cima 5634  ccom 5635  tpos ctpos 8181
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-tpos 8182
This theorem is referenced by:  tposres3  48842
  Copyright terms: Public domain W3C validator