Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftpos6 Structured version   Visualization version   GIF version

Theorem dftpos6 48748
Description: Alternate definition of tpos. The second half of the right hand side could apply ressn 6303 and become (𝐹 ↾ {∅}) (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
dftpos6 tpos 𝐹 = ((𝐹 ∘ (𝑥dom 𝐹 {𝑥})) ∪ ({∅} × (𝐹 “ {∅})))
Distinct variable group:   𝑥,𝐹

Proof of Theorem dftpos6
StepHypRef Expression
1 dftpos5 48747 . 2 tpos 𝐹 = (𝐹 ∘ ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩}))
2 coundi 6265 . 2 (𝐹 ∘ ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩})) = ((𝐹 ∘ (𝑥dom 𝐹 {𝑥})) ∪ (𝐹 ∘ {⟨∅, ∅⟩}))
3 0ex 5305 . . . 4 ∅ ∈ V
43, 3cosni 48719 . . 3 (𝐹 ∘ {⟨∅, ∅⟩}) = ({∅} × (𝐹 “ {∅}))
54uneq2i 4164 . 2 ((𝐹 ∘ (𝑥dom 𝐹 {𝑥})) ∪ (𝐹 ∘ {⟨∅, ∅⟩})) = ((𝐹 ∘ (𝑥dom 𝐹 {𝑥})) ∪ ({∅} × (𝐹 “ {∅})))
61, 2, 53eqtri 2768 1 tpos 𝐹 = ((𝐹 ∘ (𝑥dom 𝐹 {𝑥})) ∪ ({∅} × (𝐹 “ {∅})))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3948  c0 4332  {csn 4624  cop 4630   cuni 4905  cmpt 5223   × cxp 5681  ccnv 5682  dom cdm 5683  cima 5686  ccom 5687  tpos ctpos 8246
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5294  ax-nul 5304  ax-pr 5430
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4906  df-br 5142  df-opab 5204  df-mpt 5224  df-id 5576  df-xp 5689  df-rel 5690  df-cnv 5691  df-co 5692  df-dm 5693  df-rn 5694  df-res 5695  df-ima 5696  df-fun 6561  df-fn 6562  df-f 6563  df-f1 6564  df-fo 6565  df-f1o 6566  df-tpos 8247
This theorem is referenced by:  tposres3  48754
  Copyright terms: Public domain W3C validator