| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dftpos6 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of tpos. The second half of the right hand side could apply ressn 6271 and become (𝐹 ↾ {∅}) (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| dftpos6 | ⊢ tpos 𝐹 = ((𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) ∪ ({∅} × (𝐹 “ {∅}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftpos5 48729 | . 2 ⊢ tpos 𝐹 = (𝐹 ∘ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉})) | |
| 2 | coundi 6233 | . 2 ⊢ (𝐹 ∘ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉})) = ((𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) ∪ (𝐹 ∘ {〈∅, ∅〉})) | |
| 3 | 0ex 5274 | . . . 4 ⊢ ∅ ∈ V | |
| 4 | 3, 3 | cosni 48694 | . . 3 ⊢ (𝐹 ∘ {〈∅, ∅〉}) = ({∅} × (𝐹 “ {∅})) |
| 5 | 4 | uneq2i 4138 | . 2 ⊢ ((𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) ∪ (𝐹 ∘ {〈∅, ∅〉})) = ((𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) ∪ ({∅} × (𝐹 “ {∅}))) |
| 6 | 1, 2, 5 | 3eqtri 2761 | 1 ⊢ tpos 𝐹 = ((𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) ∪ ({∅} × (𝐹 “ {∅}))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1539 ∪ cun 3922 ∅c0 4306 {csn 4599 〈cop 4605 ∪ cuni 4880 ↦ cmpt 5198 × cxp 5649 ◡ccnv 5650 dom cdm 5651 “ cima 5654 ∘ ccom 5655 tpos ctpos 8218 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5263 ax-nul 5273 ax-pr 5399 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3358 df-rab 3414 df-v 3459 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4881 df-br 5117 df-opab 5179 df-mpt 5199 df-id 5545 df-xp 5657 df-rel 5658 df-cnv 5659 df-co 5660 df-dm 5661 df-rn 5662 df-res 5663 df-ima 5664 df-fun 6529 df-fn 6530 df-f 6531 df-f1 6532 df-fo 6533 df-f1o 6534 df-tpos 8219 |
| This theorem is referenced by: tposres3 48736 |
| Copyright terms: Public domain | W3C validator |