| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dftpos6 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of tpos. The second half of the right hand side could apply ressn 6240 and become (𝐹 ↾ {∅}) (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| dftpos6 | ⊢ tpos 𝐹 = ((𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) ∪ ({∅} × (𝐹 “ {∅}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftpos5 49035 | . 2 ⊢ tpos 𝐹 = (𝐹 ∘ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉})) | |
| 2 | coundi 6202 | . 2 ⊢ (𝐹 ∘ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉})) = ((𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) ∪ (𝐹 ∘ {〈∅, ∅〉})) | |
| 3 | 0ex 5249 | . . . 4 ⊢ ∅ ∈ V | |
| 4 | 3, 3 | cosni 48996 | . . 3 ⊢ (𝐹 ∘ {〈∅, ∅〉}) = ({∅} × (𝐹 “ {∅})) |
| 5 | 4 | uneq2i 4114 | . 2 ⊢ ((𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) ∪ (𝐹 ∘ {〈∅, ∅〉})) = ((𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) ∪ ({∅} × (𝐹 “ {∅}))) |
| 6 | 1, 2, 5 | 3eqtri 2760 | 1 ⊢ tpos 𝐹 = ((𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) ∪ ({∅} × (𝐹 “ {∅}))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∪ cun 3896 ∅c0 4282 {csn 4577 〈cop 4583 ∪ cuni 4860 ↦ cmpt 5176 × cxp 5619 ◡ccnv 5620 dom cdm 5621 “ cima 5624 ∘ ccom 5625 tpos ctpos 8164 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-tpos 8165 |
| This theorem is referenced by: tposres3 49042 |
| Copyright terms: Public domain | W3C validator |