| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dftpos6 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of tpos. The second half of the right hand side could apply ressn 6246 and become (𝐹 ↾ {∅}) (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| dftpos6 | ⊢ tpos 𝐹 = ((𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) ∪ ({∅} × (𝐹 “ {∅}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftpos5 48835 | . 2 ⊢ tpos 𝐹 = (𝐹 ∘ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉})) | |
| 2 | coundi 6208 | . 2 ⊢ (𝐹 ∘ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉})) = ((𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) ∪ (𝐹 ∘ {〈∅, ∅〉})) | |
| 3 | 0ex 5257 | . . . 4 ⊢ ∅ ∈ V | |
| 4 | 3, 3 | cosni 48796 | . . 3 ⊢ (𝐹 ∘ {〈∅, ∅〉}) = ({∅} × (𝐹 “ {∅})) |
| 5 | 4 | uneq2i 4124 | . 2 ⊢ ((𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) ∪ (𝐹 ∘ {〈∅, ∅〉})) = ((𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) ∪ ({∅} × (𝐹 “ {∅}))) |
| 6 | 1, 2, 5 | 3eqtri 2756 | 1 ⊢ tpos 𝐹 = ((𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) ∪ ({∅} × (𝐹 “ {∅}))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3909 ∅c0 4292 {csn 4585 〈cop 4591 ∪ cuni 4867 ↦ cmpt 5183 × cxp 5629 ◡ccnv 5630 dom cdm 5631 “ cima 5634 ∘ ccom 5635 tpos ctpos 8181 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-tpos 8182 |
| This theorem is referenced by: tposres3 48842 |
| Copyright terms: Public domain | W3C validator |