| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dftpos6 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of tpos. The second half of the right hand side could apply ressn 6303 and become (𝐹 ↾ {∅}) (Contributed by Zhi Wang, 6-Oct-2025.) |
| Ref | Expression |
|---|---|
| dftpos6 | ⊢ tpos 𝐹 = ((𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) ∪ ({∅} × (𝐹 “ {∅}))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dftpos5 48747 | . 2 ⊢ tpos 𝐹 = (𝐹 ∘ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉})) | |
| 2 | coundi 6265 | . 2 ⊢ (𝐹 ∘ ((𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥}) ∪ {〈∅, ∅〉})) = ((𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) ∪ (𝐹 ∘ {〈∅, ∅〉})) | |
| 3 | 0ex 5305 | . . . 4 ⊢ ∅ ∈ V | |
| 4 | 3, 3 | cosni 48719 | . . 3 ⊢ (𝐹 ∘ {〈∅, ∅〉}) = ({∅} × (𝐹 “ {∅})) |
| 5 | 4 | uneq2i 4164 | . 2 ⊢ ((𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) ∪ (𝐹 ∘ {〈∅, ∅〉})) = ((𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) ∪ ({∅} × (𝐹 “ {∅}))) |
| 6 | 1, 2, 5 | 3eqtri 2768 | 1 ⊢ tpos 𝐹 = ((𝐹 ∘ (𝑥 ∈ ◡dom 𝐹 ↦ ∪ ◡{𝑥})) ∪ ({∅} × (𝐹 “ {∅}))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ∪ cun 3948 ∅c0 4332 {csn 4624 〈cop 4630 ∪ cuni 4905 ↦ cmpt 5223 × cxp 5681 ◡ccnv 5682 dom cdm 5683 “ cima 5686 ∘ ccom 5687 tpos ctpos 8246 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5294 ax-nul 5304 ax-pr 5430 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-ral 3061 df-rex 3070 df-reu 3380 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4906 df-br 5142 df-opab 5204 df-mpt 5224 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-fun 6561 df-fn 6562 df-f 6563 df-f1 6564 df-fo 6565 df-f1o 6566 df-tpos 8247 |
| This theorem is referenced by: tposres3 48754 |
| Copyright terms: Public domain | W3C validator |