Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftpos6 Structured version   Visualization version   GIF version

Theorem dftpos6 48879
Description: Alternate definition of tpos. The second half of the right hand side could apply ressn 6237 and become (𝐹 ↾ {∅}) (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
dftpos6 tpos 𝐹 = ((𝐹 ∘ (𝑥dom 𝐹 {𝑥})) ∪ ({∅} × (𝐹 “ {∅})))
Distinct variable group:   𝑥,𝐹

Proof of Theorem dftpos6
StepHypRef Expression
1 dftpos5 48878 . 2 tpos 𝐹 = (𝐹 ∘ ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩}))
2 coundi 6200 . 2 (𝐹 ∘ ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩})) = ((𝐹 ∘ (𝑥dom 𝐹 {𝑥})) ∪ (𝐹 ∘ {⟨∅, ∅⟩}))
3 0ex 5249 . . . 4 ∅ ∈ V
43, 3cosni 48839 . . 3 (𝐹 ∘ {⟨∅, ∅⟩}) = ({∅} × (𝐹 “ {∅}))
54uneq2i 4118 . 2 ((𝐹 ∘ (𝑥dom 𝐹 {𝑥})) ∪ (𝐹 ∘ {⟨∅, ∅⟩})) = ((𝐹 ∘ (𝑥dom 𝐹 {𝑥})) ∪ ({∅} × (𝐹 “ {∅})))
61, 2, 53eqtri 2756 1 tpos 𝐹 = ((𝐹 ∘ (𝑥dom 𝐹 {𝑥})) ∪ ({∅} × (𝐹 “ {∅})))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  cun 3903  c0 4286  {csn 4579  cop 4585   cuni 4861  cmpt 5176   × cxp 5621  ccnv 5622  dom cdm 5623  cima 5626  ccom 5627  tpos ctpos 8165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-tpos 8166
This theorem is referenced by:  tposres3  48885
  Copyright terms: Public domain W3C validator