Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dftpos6 Structured version   Visualization version   GIF version

Theorem dftpos6 49036
Description: Alternate definition of tpos. The second half of the right hand side could apply ressn 6240 and become (𝐹 ↾ {∅}) (Contributed by Zhi Wang, 6-Oct-2025.)
Assertion
Ref Expression
dftpos6 tpos 𝐹 = ((𝐹 ∘ (𝑥dom 𝐹 {𝑥})) ∪ ({∅} × (𝐹 “ {∅})))
Distinct variable group:   𝑥,𝐹

Proof of Theorem dftpos6
StepHypRef Expression
1 dftpos5 49035 . 2 tpos 𝐹 = (𝐹 ∘ ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩}))
2 coundi 6202 . 2 (𝐹 ∘ ((𝑥dom 𝐹 {𝑥}) ∪ {⟨∅, ∅⟩})) = ((𝐹 ∘ (𝑥dom 𝐹 {𝑥})) ∪ (𝐹 ∘ {⟨∅, ∅⟩}))
3 0ex 5249 . . . 4 ∅ ∈ V
43, 3cosni 48996 . . 3 (𝐹 ∘ {⟨∅, ∅⟩}) = ({∅} × (𝐹 “ {∅}))
54uneq2i 4114 . 2 ((𝐹 ∘ (𝑥dom 𝐹 {𝑥})) ∪ (𝐹 ∘ {⟨∅, ∅⟩})) = ((𝐹 ∘ (𝑥dom 𝐹 {𝑥})) ∪ ({∅} × (𝐹 “ {∅})))
61, 2, 53eqtri 2760 1 tpos 𝐹 = ((𝐹 ∘ (𝑥dom 𝐹 {𝑥})) ∪ ({∅} × (𝐹 “ {∅})))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  cun 3896  c0 4282  {csn 4577  cop 4583   cuni 4860  cmpt 5176   × cxp 5619  ccnv 5620  dom cdm 5621  cima 5624  ccom 5625  tpos ctpos 8164
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-tpos 8165
This theorem is referenced by:  tposres3  49042
  Copyright terms: Public domain W3C validator