Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indthinc Structured version   Visualization version   GIF version

Theorem indthinc 47384
Description: An indiscrete category in which all hom-sets have exactly one morphism is a thin category. Constructed here is an indiscrete category where all morphisms are . This is a special case of prsthinc 47386, where = (𝐵 × 𝐵). This theorem also implies a functor from the category of sets to the category of small categories. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof shortened by Zhi Wang, 19-Sep-2024.)
Hypotheses
Ref Expression
indthinc.b (𝜑𝐵 = (Base‘𝐶))
indthinc.h (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶))
indthinc.o (𝜑 → ∅ = (comp‘𝐶))
indthinc.c (𝜑𝐶𝑉)
Assertion
Ref Expression
indthinc (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦𝐵 ↦ ∅)))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐶   𝜑,𝑦
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem indthinc
Dummy variables 𝑓 𝑔 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 indthinc.b . 2 (𝜑𝐵 = (Base‘𝐶))
2 indthinc.h . 2 (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶))
3 eqidd 2733 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐵 × 𝐵) × {1o}) = ((𝐵 × 𝐵) × {1o}))
43f1omo 47239 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (((𝐵 × 𝐵) × {1o})‘⟨𝑥, 𝑦⟩))
5 df-ov 7397 . . . . 5 (𝑥((𝐵 × 𝐵) × {1o})𝑦) = (((𝐵 × 𝐵) × {1o})‘⟨𝑥, 𝑦⟩)
65eleq2i 2825 . . . 4 (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ↔ 𝑓 ∈ (((𝐵 × 𝐵) × {1o})‘⟨𝑥, 𝑦⟩))
76mobii 2542 . . 3 (∃*𝑓 𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ↔ ∃*𝑓 𝑓 ∈ (((𝐵 × 𝐵) × {1o})‘⟨𝑥, 𝑦⟩))
84, 7sylibr 233 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦))
9 indthinc.o . 2 (𝜑 → ∅ = (comp‘𝐶))
10 indthinc.c . 2 (𝜑𝐶𝑉)
11 biid 260 . 2 (((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧))) ↔ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧))))
12 id 22 . . . . 5 (𝑦𝐵𝑦𝐵)
1312ancli 549 . . . 4 (𝑦𝐵 → (𝑦𝐵𝑦𝐵))
14 1oex 8460 . . . . 5 1o ∈ V
1514ovconst2 7571 . . . 4 ((𝑦𝐵𝑦𝐵) → (𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o)
16 0lt1o 8488 . . . . 5 ∅ ∈ 1o
17 eleq2 2822 . . . . 5 ((𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o → (∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦) ↔ ∅ ∈ 1o))
1816, 17mpbiri 257 . . . 4 ((𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦))
1913, 15, 183syl 18 . . 3 (𝑦𝐵 → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦))
2019adantl 482 . 2 ((𝜑𝑦𝐵) → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦))
2116a1i 11 . . . 4 ((𝑥𝐵𝑦𝐵𝑧𝐵) → ∅ ∈ 1o)
22 0ov 7431 . . . . . . 7 (⟨𝑥, 𝑦⟩∅𝑧) = ∅
2322oveqi 7407 . . . . . 6 (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) = (𝑔𝑓)
24 0ov 7431 . . . . . 6 (𝑔𝑓) = ∅
2523, 24eqtri 2760 . . . . 5 (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) = ∅
2625a1i 11 . . . 4 ((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) = ∅)
2714ovconst2 7571 . . . . 5 ((𝑥𝐵𝑧𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑧) = 1o)
28273adant2 1131 . . . 4 ((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑧) = 1o)
2921, 26, 283eltr4d 2848 . . 3 ((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑧))
3029ad2antrl 726 . 2 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧)))) → (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑧))
311, 2, 8, 9, 10, 11, 20, 30isthincd2 47370 1 (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦𝐵 ↦ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  ∃*wmo 2532  c0 4319  {csn 4623  cop 4629  cmpt 5225   × cxp 5668  cfv 6533  (class class class)co 7394  1oc1o 8443  Basecbs 17128  Hom chom 17192  compcco 17193  Idccid 17593  ThinCatcthinc 47351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pr 5421
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4320  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-id 5568  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7350  df-ov 7397  df-1o 8450  df-cat 17596  df-cid 17597  df-thinc 47352
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator