Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indthinc Structured version   Visualization version   GIF version

Theorem indthinc 45844
Description: An indiscrete category in which all hom-sets have exactly one morphism is a thin category. Constructed here is an indiscrete category where all morphisms are . This is a special case of prsthinc 45846, where = (𝐵 × 𝐵). This theorem also implies a functor from the category of sets to the category of small categories. (Contributed by Zhi Wang, 17-Sep-2024.) (Proof shortened by Zhi Wang, 19-Sep-2024.)
Hypotheses
Ref Expression
indthinc.b (𝜑𝐵 = (Base‘𝐶))
indthinc.h (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶))
indthinc.o (𝜑 → ∅ = (comp‘𝐶))
indthinc.c (𝜑𝐶𝑉)
Assertion
Ref Expression
indthinc (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦𝐵 ↦ ∅)))
Distinct variable groups:   𝑦,𝐵   𝑦,𝐶   𝜑,𝑦
Allowed substitution hint:   𝑉(𝑦)

Proof of Theorem indthinc
Dummy variables 𝑓 𝑔 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 indthinc.b . 2 (𝜑𝐵 = (Base‘𝐶))
2 indthinc.h . 2 (𝜑 → ((𝐵 × 𝐵) × {1o}) = (Hom ‘𝐶))
3 eqidd 2740 . . . 4 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ((𝐵 × 𝐵) × {1o}) = ((𝐵 × 𝐵) × {1o}))
43f1omo 45758 . . 3 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (((𝐵 × 𝐵) × {1o})‘⟨𝑥, 𝑦⟩))
5 df-ov 7185 . . . . 5 (𝑥((𝐵 × 𝐵) × {1o})𝑦) = (((𝐵 × 𝐵) × {1o})‘⟨𝑥, 𝑦⟩)
65eleq2i 2825 . . . 4 (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ↔ 𝑓 ∈ (((𝐵 × 𝐵) × {1o})‘⟨𝑥, 𝑦⟩))
76mobii 2549 . . 3 (∃*𝑓 𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ↔ ∃*𝑓 𝑓 ∈ (((𝐵 × 𝐵) × {1o})‘⟨𝑥, 𝑦⟩))
84, 7sylibr 237 . 2 ((𝜑 ∧ (𝑥𝐵𝑦𝐵)) → ∃*𝑓 𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦))
9 indthinc.o . 2 (𝜑 → ∅ = (comp‘𝐶))
10 indthinc.c . 2 (𝜑𝐶𝑉)
11 biid 264 . 2 (((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧))) ↔ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧))))
12 id 22 . . . . 5 (𝑦𝐵𝑦𝐵)
1312ancli 552 . . . 4 (𝑦𝐵 → (𝑦𝐵𝑦𝐵))
14 1oex 8156 . . . . 5 1o ∈ V
1514ovconst2 7356 . . . 4 ((𝑦𝐵𝑦𝐵) → (𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o)
16 0lt1o 8172 . . . . 5 ∅ ∈ 1o
17 eleq2 2822 . . . . 5 ((𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o → (∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦) ↔ ∅ ∈ 1o))
1816, 17mpbiri 261 . . . 4 ((𝑦((𝐵 × 𝐵) × {1o})𝑦) = 1o → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦))
1913, 15, 183syl 18 . . 3 (𝑦𝐵 → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦))
2019adantl 485 . 2 ((𝜑𝑦𝐵) → ∅ ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑦))
2116a1i 11 . . . 4 ((𝑥𝐵𝑦𝐵𝑧𝐵) → ∅ ∈ 1o)
22 0ov 7219 . . . . . . 7 (⟨𝑥, 𝑦⟩∅𝑧) = ∅
2322oveqi 7195 . . . . . 6 (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) = (𝑔𝑓)
24 0ov 7219 . . . . . 6 (𝑔𝑓) = ∅
2523, 24eqtri 2762 . . . . 5 (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) = ∅
2625a1i 11 . . . 4 ((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) = ∅)
2714ovconst2 7356 . . . . 5 ((𝑥𝐵𝑧𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑧) = 1o)
28273adant2 1132 . . . 4 ((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑥((𝐵 × 𝐵) × {1o})𝑧) = 1o)
2921, 26, 283eltr4d 2849 . . 3 ((𝑥𝐵𝑦𝐵𝑧𝐵) → (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑧))
3029ad2antrl 728 . 2 ((𝜑 ∧ ((𝑥𝐵𝑦𝐵𝑧𝐵) ∧ (𝑓 ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑦) ∧ 𝑔 ∈ (𝑦((𝐵 × 𝐵) × {1o})𝑧)))) → (𝑔(⟨𝑥, 𝑦⟩∅𝑧)𝑓) ∈ (𝑥((𝐵 × 𝐵) × {1o})𝑧))
311, 2, 8, 9, 10, 11, 20, 30isthincd2 45839 1 (𝜑 → (𝐶 ∈ ThinCat ∧ (Id‘𝐶) = (𝑦𝐵 ↦ ∅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1088   = wceq 1542  wcel 2114  ∃*wmo 2539  c0 4221  {csn 4526  cop 4532  cmpt 5120   × cxp 5533  cfv 6349  (class class class)co 7182  1oc1o 8136  Basecbs 16598  Hom chom 16691  compcco 16692  Idccid 17051  ThinCatcthinc 45826
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2711  ax-rep 5164  ax-sep 5177  ax-nul 5184  ax-pr 5306
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2075  df-mo 2541  df-eu 2571  df-clab 2718  df-cleq 2731  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3402  df-sbc 3686  df-csb 3801  df-dif 3856  df-un 3858  df-in 3860  df-ss 3870  df-nul 4222  df-if 4425  df-sn 4527  df-pr 4529  df-op 4533  df-uni 4807  df-iun 4893  df-br 5041  df-opab 5103  df-mpt 5121  df-id 5439  df-xp 5541  df-rel 5542  df-cnv 5543  df-co 5544  df-dm 5545  df-rn 5546  df-res 5547  df-ima 5548  df-suc 6188  df-iota 6307  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7139  df-ov 7185  df-1o 8143  df-cat 17054  df-cid 17055  df-thinc 45827
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator