Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmxrn Structured version   Visualization version   GIF version

Theorem dmxrn 38406
Description: Domain of the range product. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 22-Nov-2025.)
Assertion
Ref Expression
dmxrn dom (𝑅𝑆) = (dom 𝑅 ∩ dom 𝑆)

Proof of Theorem dmxrn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exdistrv 1956 . . . 4 (∃𝑥𝑦(𝑧𝑅𝑥𝑧𝑆𝑦) ↔ (∃𝑥 𝑧𝑅𝑥 ∧ ∃𝑦 𝑧𝑆𝑦))
21abbii 2798 . . 3 {𝑧 ∣ ∃𝑥𝑦(𝑧𝑅𝑥𝑧𝑆𝑦)} = {𝑧 ∣ (∃𝑥 𝑧𝑅𝑥 ∧ ∃𝑦 𝑧𝑆𝑦)}
3 dfxrn2 38404 . . . . 5 (𝑅𝑆) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑧𝑅𝑥𝑧𝑆𝑦)}
43dmeqi 5839 . . . 4 dom (𝑅𝑆) = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑧𝑅𝑥𝑧𝑆𝑦)}
5 df-rn 5622 . . . 4 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑧𝑅𝑥𝑧𝑆𝑦)} = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑧𝑅𝑥𝑧𝑆𝑦)}
6 rnoprab 7446 . . . 4 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑧𝑅𝑥𝑧𝑆𝑦)} = {𝑧 ∣ ∃𝑥𝑦(𝑧𝑅𝑥𝑧𝑆𝑦)}
74, 5, 63eqtr2i 2760 . . 3 dom (𝑅𝑆) = {𝑧 ∣ ∃𝑥𝑦(𝑧𝑅𝑥𝑧𝑆𝑦)}
8 inab 4254 . . 3 ({𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} ∩ {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦}) = {𝑧 ∣ (∃𝑥 𝑧𝑅𝑥 ∧ ∃𝑦 𝑧𝑆𝑦)}
92, 7, 83eqtr4i 2764 . 2 dom (𝑅𝑆) = ({𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} ∩ {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦})
10 df-dm 5621 . . 3 dom 𝑅 = {𝑧 ∣ ∃𝑥 𝑧𝑅𝑥}
11 df-dm 5621 . . 3 dom 𝑆 = {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦}
1210, 11ineq12i 4163 . 2 (dom 𝑅 ∩ dom 𝑆) = ({𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} ∩ {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦})
139, 12eqtr4i 2757 1 dom (𝑅𝑆) = (dom 𝑅 ∩ dom 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  {cab 2709  cin 3896   class class class wbr 5086  ccnv 5610  dom cdm 5611  ran crn 5612  {coprab 7342  cxrn 38214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-fo 6482  df-fv 6484  df-oprab 7345  df-1st 7916  df-2nd 7917  df-xrn 38399
This theorem is referenced by:  dmxrncnvep  38408
  Copyright terms: Public domain W3C validator