| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmxrn | Structured version Visualization version GIF version | ||
| Description: Domain of the range product. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 22-Nov-2025.) |
| Ref | Expression |
|---|---|
| dmxrn | ⊢ dom (𝑅 ⋉ 𝑆) = (dom 𝑅 ∩ dom 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistrv 1955 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦) ↔ (∃𝑥 𝑧𝑅𝑥 ∧ ∃𝑦 𝑧𝑆𝑦)) | |
| 2 | 1 | abbii 2797 | . . 3 ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} = {𝑧 ∣ (∃𝑥 𝑧𝑅𝑥 ∧ ∃𝑦 𝑧𝑆𝑦)} |
| 3 | dfxrn2 38353 | . . . . 5 ⊢ (𝑅 ⋉ 𝑆) = ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} | |
| 4 | 3 | dmeqi 5870 | . . . 4 ⊢ dom (𝑅 ⋉ 𝑆) = dom ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} |
| 5 | df-rn 5651 | . . . 4 ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} = dom ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} | |
| 6 | rnoprab 7496 | . . . 4 ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} | |
| 7 | 4, 5, 6 | 3eqtr2i 2759 | . . 3 ⊢ dom (𝑅 ⋉ 𝑆) = {𝑧 ∣ ∃𝑥∃𝑦(𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} |
| 8 | inab 4274 | . . 3 ⊢ ({𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} ∩ {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦}) = {𝑧 ∣ (∃𝑥 𝑧𝑅𝑥 ∧ ∃𝑦 𝑧𝑆𝑦)} | |
| 9 | 2, 7, 8 | 3eqtr4i 2763 | . 2 ⊢ dom (𝑅 ⋉ 𝑆) = ({𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} ∩ {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦}) |
| 10 | df-dm 5650 | . . 3 ⊢ dom 𝑅 = {𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} | |
| 11 | df-dm 5650 | . . 3 ⊢ dom 𝑆 = {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦} | |
| 12 | 10, 11 | ineq12i 4183 | . 2 ⊢ (dom 𝑅 ∩ dom 𝑆) = ({𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} ∩ {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦}) |
| 13 | 9, 12 | eqtr4i 2756 | 1 ⊢ dom (𝑅 ⋉ 𝑆) = (dom 𝑅 ∩ dom 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 {cab 2708 ∩ cin 3915 class class class wbr 5109 ◡ccnv 5639 dom cdm 5640 ran crn 5641 {coprab 7390 ⋉ cxrn 38163 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 ax-un 7713 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3756 df-dif 3919 df-un 3921 df-in 3923 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-uni 4874 df-br 5110 df-opab 5172 df-mpt 5191 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-res 5652 df-iota 6466 df-fun 6515 df-fn 6516 df-f 6517 df-fo 6519 df-fv 6521 df-oprab 7393 df-1st 7970 df-2nd 7971 df-xrn 38348 |
| This theorem is referenced by: dmxrncnvep 38357 |
| Copyright terms: Public domain | W3C validator |