Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmxrn Structured version   Visualization version   GIF version

Theorem dmxrn 38484
Description: Domain of the range product. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 22-Nov-2025.)
Assertion
Ref Expression
dmxrn dom (𝑅𝑆) = (dom 𝑅 ∩ dom 𝑆)

Proof of Theorem dmxrn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exdistrv 1956 . . . 4 (∃𝑥𝑦(𝑧𝑅𝑥𝑧𝑆𝑦) ↔ (∃𝑥 𝑧𝑅𝑥 ∧ ∃𝑦 𝑧𝑆𝑦))
21abbii 2800 . . 3 {𝑧 ∣ ∃𝑥𝑦(𝑧𝑅𝑥𝑧𝑆𝑦)} = {𝑧 ∣ (∃𝑥 𝑧𝑅𝑥 ∧ ∃𝑦 𝑧𝑆𝑦)}
3 dfxrn2 38482 . . . . 5 (𝑅𝑆) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑧𝑅𝑥𝑧𝑆𝑦)}
43dmeqi 5850 . . . 4 dom (𝑅𝑆) = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑧𝑅𝑥𝑧𝑆𝑦)}
5 df-rn 5632 . . . 4 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑧𝑅𝑥𝑧𝑆𝑦)} = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑧𝑅𝑥𝑧𝑆𝑦)}
6 rnoprab 7460 . . . 4 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑧𝑅𝑥𝑧𝑆𝑦)} = {𝑧 ∣ ∃𝑥𝑦(𝑧𝑅𝑥𝑧𝑆𝑦)}
74, 5, 63eqtr2i 2762 . . 3 dom (𝑅𝑆) = {𝑧 ∣ ∃𝑥𝑦(𝑧𝑅𝑥𝑧𝑆𝑦)}
8 inab 4258 . . 3 ({𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} ∩ {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦}) = {𝑧 ∣ (∃𝑥 𝑧𝑅𝑥 ∧ ∃𝑦 𝑧𝑆𝑦)}
92, 7, 83eqtr4i 2766 . 2 dom (𝑅𝑆) = ({𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} ∩ {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦})
10 df-dm 5631 . . 3 dom 𝑅 = {𝑧 ∣ ∃𝑥 𝑧𝑅𝑥}
11 df-dm 5631 . . 3 dom 𝑆 = {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦}
1210, 11ineq12i 4167 . 2 (dom 𝑅 ∩ dom 𝑆) = ({𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} ∩ {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦})
139, 12eqtr4i 2759 1 dom (𝑅𝑆) = (dom 𝑅 ∩ dom 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wex 1780  {cab 2711  cin 3897   class class class wbr 5095  ccnv 5620  dom cdm 5621  ran crn 5622  {coprab 7356  cxrn 38287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-fo 6495  df-fv 6497  df-oprab 7359  df-1st 7930  df-2nd 7931  df-xrn 38477
This theorem is referenced by:  dmxrncnvep  38486
  Copyright terms: Public domain W3C validator