Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmxrn Structured version   Visualization version   GIF version

Theorem dmxrn 38355
Description: Domain of the range product. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 22-Nov-2025.)
Assertion
Ref Expression
dmxrn dom (𝑅𝑆) = (dom 𝑅 ∩ dom 𝑆)

Proof of Theorem dmxrn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exdistrv 1955 . . . 4 (∃𝑥𝑦(𝑧𝑅𝑥𝑧𝑆𝑦) ↔ (∃𝑥 𝑧𝑅𝑥 ∧ ∃𝑦 𝑧𝑆𝑦))
21abbii 2797 . . 3 {𝑧 ∣ ∃𝑥𝑦(𝑧𝑅𝑥𝑧𝑆𝑦)} = {𝑧 ∣ (∃𝑥 𝑧𝑅𝑥 ∧ ∃𝑦 𝑧𝑆𝑦)}
3 dfxrn2 38353 . . . . 5 (𝑅𝑆) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑧𝑅𝑥𝑧𝑆𝑦)}
43dmeqi 5870 . . . 4 dom (𝑅𝑆) = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑧𝑅𝑥𝑧𝑆𝑦)}
5 df-rn 5651 . . . 4 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑧𝑅𝑥𝑧𝑆𝑦)} = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑧𝑅𝑥𝑧𝑆𝑦)}
6 rnoprab 7496 . . . 4 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑧𝑅𝑥𝑧𝑆𝑦)} = {𝑧 ∣ ∃𝑥𝑦(𝑧𝑅𝑥𝑧𝑆𝑦)}
74, 5, 63eqtr2i 2759 . . 3 dom (𝑅𝑆) = {𝑧 ∣ ∃𝑥𝑦(𝑧𝑅𝑥𝑧𝑆𝑦)}
8 inab 4274 . . 3 ({𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} ∩ {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦}) = {𝑧 ∣ (∃𝑥 𝑧𝑅𝑥 ∧ ∃𝑦 𝑧𝑆𝑦)}
92, 7, 83eqtr4i 2763 . 2 dom (𝑅𝑆) = ({𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} ∩ {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦})
10 df-dm 5650 . . 3 dom 𝑅 = {𝑧 ∣ ∃𝑥 𝑧𝑅𝑥}
11 df-dm 5650 . . 3 dom 𝑆 = {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦}
1210, 11ineq12i 4183 . 2 (dom 𝑅 ∩ dom 𝑆) = ({𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} ∩ {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦})
139, 12eqtr4i 2756 1 dom (𝑅𝑆) = (dom 𝑅 ∩ dom 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  {cab 2708  cin 3915   class class class wbr 5109  ccnv 5639  dom cdm 5640  ran crn 5641  {coprab 7390  cxrn 38163
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5253  ax-nul 5263  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3756  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-fo 6519  df-fv 6521  df-oprab 7393  df-1st 7970  df-2nd 7971  df-xrn 38348
This theorem is referenced by:  dmxrncnvep  38357
  Copyright terms: Public domain W3C validator