Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dmxrn Structured version   Visualization version   GIF version

Theorem dmxrn 38346
Description: Domain of the range product. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 22-Nov-2025.)
Assertion
Ref Expression
dmxrn dom (𝑅𝑆) = (dom 𝑅 ∩ dom 𝑆)

Proof of Theorem dmxrn
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 exdistrv 1955 . . . 4 (∃𝑥𝑦(𝑧𝑅𝑥𝑧𝑆𝑦) ↔ (∃𝑥 𝑧𝑅𝑥 ∧ ∃𝑦 𝑧𝑆𝑦))
21abbii 2796 . . 3 {𝑧 ∣ ∃𝑥𝑦(𝑧𝑅𝑥𝑧𝑆𝑦)} = {𝑧 ∣ (∃𝑥 𝑧𝑅𝑥 ∧ ∃𝑦 𝑧𝑆𝑦)}
3 dfxrn2 38344 . . . . 5 (𝑅𝑆) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑧𝑅𝑥𝑧𝑆𝑦)}
43dmeqi 5847 . . . 4 dom (𝑅𝑆) = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑧𝑅𝑥𝑧𝑆𝑦)}
5 df-rn 5630 . . . 4 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑧𝑅𝑥𝑧𝑆𝑦)} = dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑧𝑅𝑥𝑧𝑆𝑦)}
6 rnoprab 7454 . . . 4 ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑧𝑅𝑥𝑧𝑆𝑦)} = {𝑧 ∣ ∃𝑥𝑦(𝑧𝑅𝑥𝑧𝑆𝑦)}
74, 5, 63eqtr2i 2758 . . 3 dom (𝑅𝑆) = {𝑧 ∣ ∃𝑥𝑦(𝑧𝑅𝑥𝑧𝑆𝑦)}
8 inab 4260 . . 3 ({𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} ∩ {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦}) = {𝑧 ∣ (∃𝑥 𝑧𝑅𝑥 ∧ ∃𝑦 𝑧𝑆𝑦)}
92, 7, 83eqtr4i 2762 . 2 dom (𝑅𝑆) = ({𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} ∩ {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦})
10 df-dm 5629 . . 3 dom 𝑅 = {𝑧 ∣ ∃𝑥 𝑧𝑅𝑥}
11 df-dm 5629 . . 3 dom 𝑆 = {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦}
1210, 11ineq12i 4169 . 2 (dom 𝑅 ∩ dom 𝑆) = ({𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} ∩ {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦})
139, 12eqtr4i 2755 1 dom (𝑅𝑆) = (dom 𝑅 ∩ dom 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wex 1779  {cab 2707  cin 3902   class class class wbr 5092  ccnv 5618  dom cdm 5619  ran crn 5620  {coprab 7350  cxrn 38154
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-fo 6488  df-fv 6490  df-oprab 7353  df-1st 7924  df-2nd 7925  df-xrn 38339
This theorem is referenced by:  dmxrncnvep  38348
  Copyright terms: Public domain W3C validator