| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmxrn | Structured version Visualization version GIF version | ||
| Description: Domain of the range product. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 22-Nov-2025.) |
| Ref | Expression |
|---|---|
| dmxrn | ⊢ dom (𝑅 ⋉ 𝑆) = (dom 𝑅 ∩ dom 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistrv 1955 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦) ↔ (∃𝑥 𝑧𝑅𝑥 ∧ ∃𝑦 𝑧𝑆𝑦)) | |
| 2 | 1 | abbii 2796 | . . 3 ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} = {𝑧 ∣ (∃𝑥 𝑧𝑅𝑥 ∧ ∃𝑦 𝑧𝑆𝑦)} |
| 3 | dfxrn2 38331 | . . . . 5 ⊢ (𝑅 ⋉ 𝑆) = ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} | |
| 4 | 3 | dmeqi 5858 | . . . 4 ⊢ dom (𝑅 ⋉ 𝑆) = dom ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} |
| 5 | df-rn 5642 | . . . 4 ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} = dom ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} | |
| 6 | rnoprab 7474 | . . . 4 ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} | |
| 7 | 4, 5, 6 | 3eqtr2i 2758 | . . 3 ⊢ dom (𝑅 ⋉ 𝑆) = {𝑧 ∣ ∃𝑥∃𝑦(𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} |
| 8 | inab 4268 | . . 3 ⊢ ({𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} ∩ {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦}) = {𝑧 ∣ (∃𝑥 𝑧𝑅𝑥 ∧ ∃𝑦 𝑧𝑆𝑦)} | |
| 9 | 2, 7, 8 | 3eqtr4i 2762 | . 2 ⊢ dom (𝑅 ⋉ 𝑆) = ({𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} ∩ {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦}) |
| 10 | df-dm 5641 | . . 3 ⊢ dom 𝑅 = {𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} | |
| 11 | df-dm 5641 | . . 3 ⊢ dom 𝑆 = {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦} | |
| 12 | 10, 11 | ineq12i 4177 | . 2 ⊢ (dom 𝑅 ∩ dom 𝑆) = ({𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} ∩ {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦}) |
| 13 | 9, 12 | eqtr4i 2755 | 1 ⊢ dom (𝑅 ⋉ 𝑆) = (dom 𝑅 ∩ dom 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 {cab 2707 ∩ cin 3910 class class class wbr 5102 ◡ccnv 5630 dom cdm 5631 ran crn 5632 {coprab 7370 ⋉ cxrn 38141 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-fo 6505 df-fv 6507 df-oprab 7373 df-1st 7947 df-2nd 7948 df-xrn 38326 |
| This theorem is referenced by: dmxrncnvep 38335 |
| Copyright terms: Public domain | W3C validator |