| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmxrn | Structured version Visualization version GIF version | ||
| Description: Domain of the range product. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 22-Nov-2025.) |
| Ref | Expression |
|---|---|
| dmxrn | ⊢ dom (𝑅 ⋉ 𝑆) = (dom 𝑅 ∩ dom 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistrv 1956 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦) ↔ (∃𝑥 𝑧𝑅𝑥 ∧ ∃𝑦 𝑧𝑆𝑦)) | |
| 2 | 1 | abbii 2800 | . . 3 ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} = {𝑧 ∣ (∃𝑥 𝑧𝑅𝑥 ∧ ∃𝑦 𝑧𝑆𝑦)} |
| 3 | dfxrn2 38482 | . . . . 5 ⊢ (𝑅 ⋉ 𝑆) = ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} | |
| 4 | 3 | dmeqi 5850 | . . . 4 ⊢ dom (𝑅 ⋉ 𝑆) = dom ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} |
| 5 | df-rn 5632 | . . . 4 ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} = dom ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} | |
| 6 | rnoprab 7460 | . . . 4 ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} | |
| 7 | 4, 5, 6 | 3eqtr2i 2762 | . . 3 ⊢ dom (𝑅 ⋉ 𝑆) = {𝑧 ∣ ∃𝑥∃𝑦(𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} |
| 8 | inab 4258 | . . 3 ⊢ ({𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} ∩ {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦}) = {𝑧 ∣ (∃𝑥 𝑧𝑅𝑥 ∧ ∃𝑦 𝑧𝑆𝑦)} | |
| 9 | 2, 7, 8 | 3eqtr4i 2766 | . 2 ⊢ dom (𝑅 ⋉ 𝑆) = ({𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} ∩ {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦}) |
| 10 | df-dm 5631 | . . 3 ⊢ dom 𝑅 = {𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} | |
| 11 | df-dm 5631 | . . 3 ⊢ dom 𝑆 = {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦} | |
| 12 | 10, 11 | ineq12i 4167 | . 2 ⊢ (dom 𝑅 ∩ dom 𝑆) = ({𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} ∩ {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦}) |
| 13 | 9, 12 | eqtr4i 2759 | 1 ⊢ dom (𝑅 ⋉ 𝑆) = (dom 𝑅 ∩ dom 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 {cab 2711 ∩ cin 3897 class class class wbr 5095 ◡ccnv 5620 dom cdm 5621 ran crn 5622 {coprab 7356 ⋉ cxrn 38287 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-fo 6495 df-fv 6497 df-oprab 7359 df-1st 7930 df-2nd 7931 df-xrn 38477 |
| This theorem is referenced by: dmxrncnvep 38486 |
| Copyright terms: Public domain | W3C validator |