| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmxrn | Structured version Visualization version GIF version | ||
| Description: Domain of the range product. (Contributed by Peter Mazsa, 19-Apr-2020.) (Revised by Peter Mazsa, 22-Nov-2025.) |
| Ref | Expression |
|---|---|
| dmxrn | ⊢ dom (𝑅 ⋉ 𝑆) = (dom 𝑅 ∩ dom 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | exdistrv 1956 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦) ↔ (∃𝑥 𝑧𝑅𝑥 ∧ ∃𝑦 𝑧𝑆𝑦)) | |
| 2 | 1 | abbii 2798 | . . 3 ⊢ {𝑧 ∣ ∃𝑥∃𝑦(𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} = {𝑧 ∣ (∃𝑥 𝑧𝑅𝑥 ∧ ∃𝑦 𝑧𝑆𝑦)} |
| 3 | dfxrn2 38404 | . . . . 5 ⊢ (𝑅 ⋉ 𝑆) = ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} | |
| 4 | 3 | dmeqi 5839 | . . . 4 ⊢ dom (𝑅 ⋉ 𝑆) = dom ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} |
| 5 | df-rn 5622 | . . . 4 ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} = dom ◡{〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} | |
| 6 | rnoprab 7446 | . . . 4 ⊢ ran {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} = {𝑧 ∣ ∃𝑥∃𝑦(𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} | |
| 7 | 4, 5, 6 | 3eqtr2i 2760 | . . 3 ⊢ dom (𝑅 ⋉ 𝑆) = {𝑧 ∣ ∃𝑥∃𝑦(𝑧𝑅𝑥 ∧ 𝑧𝑆𝑦)} |
| 8 | inab 4254 | . . 3 ⊢ ({𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} ∩ {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦}) = {𝑧 ∣ (∃𝑥 𝑧𝑅𝑥 ∧ ∃𝑦 𝑧𝑆𝑦)} | |
| 9 | 2, 7, 8 | 3eqtr4i 2764 | . 2 ⊢ dom (𝑅 ⋉ 𝑆) = ({𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} ∩ {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦}) |
| 10 | df-dm 5621 | . . 3 ⊢ dom 𝑅 = {𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} | |
| 11 | df-dm 5621 | . . 3 ⊢ dom 𝑆 = {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦} | |
| 12 | 10, 11 | ineq12i 4163 | . 2 ⊢ (dom 𝑅 ∩ dom 𝑆) = ({𝑧 ∣ ∃𝑥 𝑧𝑅𝑥} ∩ {𝑧 ∣ ∃𝑦 𝑧𝑆𝑦}) |
| 13 | 9, 12 | eqtr4i 2757 | 1 ⊢ dom (𝑅 ⋉ 𝑆) = (dom 𝑅 ∩ dom 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 {cab 2709 ∩ cin 3896 class class class wbr 5086 ◡ccnv 5610 dom cdm 5611 ran crn 5612 {coprab 7342 ⋉ cxrn 38214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fo 6482 df-fv 6484 df-oprab 7345 df-1st 7916 df-2nd 7917 df-xrn 38399 |
| This theorem is referenced by: dmxrncnvep 38408 |
| Copyright terms: Public domain | W3C validator |