| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dmxrncnvep | Structured version Visualization version GIF version | ||
| Description: Domain of the range product with converse epsilon relation. (Contributed by Peter Mazsa, 23-Nov-2025.) |
| Ref | Expression |
|---|---|
| dmxrncnvep | ⊢ dom (𝑅 ⋉ ◡ E ) = (dom 𝑅 ∖ {∅}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmxrn 38406 | . 2 ⊢ dom (𝑅 ⋉ ◡ E ) = (dom 𝑅 ∩ dom ◡ E ) | |
| 2 | dmcnvep 38407 | . . 3 ⊢ dom ◡ E = (V ∖ {∅}) | |
| 3 | 2 | ineq2i 4162 | . 2 ⊢ (dom 𝑅 ∩ dom ◡ E ) = (dom 𝑅 ∩ (V ∖ {∅})) |
| 4 | invdif 4224 | . 2 ⊢ (dom 𝑅 ∩ (V ∖ {∅})) = (dom 𝑅 ∖ {∅}) | |
| 5 | 1, 3, 4 | 3eqtri 2758 | 1 ⊢ dom (𝑅 ⋉ ◡ E ) = (dom 𝑅 ∖ {∅}) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Vcvv 3436 ∖ cdif 3894 ∩ cin 3896 ∅c0 4278 {csn 4571 E cep 5510 ◡ccnv 5610 dom cdm 5611 ⋉ cxrn 38214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-eprel 5511 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-fo 6482 df-fv 6484 df-oprab 7345 df-1st 7916 df-2nd 7917 df-xrn 38399 |
| This theorem is referenced by: dmxrncnvepres 38441 |
| Copyright terms: Public domain | W3C validator |