| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > dmdsl3 | Structured version Visualization version GIF version | ||
| Description: Sublattice mapping for a dual-modular pair. Part of Theorem 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 26-Apr-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dmdsl3 | ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵))) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmdi 32288 | . . . . . 6 ⊢ (((𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶)) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) | |
| 2 | 1 | exp32 420 | . . . . 5 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐵 𝑀ℋ* 𝐴 → (𝐴 ⊆ 𝐶 → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))))) |
| 3 | 2 | 3com12 1123 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐵 𝑀ℋ* 𝐴 → (𝐴 ⊆ 𝐶 → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))))) |
| 4 | 3 | imp32 418 | . . 3 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶)) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) |
| 5 | 4 | 3adantr3 1172 | . 2 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵))) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) |
| 6 | chjcom 31492 | . . . . . 6 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) | |
| 7 | 6 | ineq2d 4200 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) |
| 8 | 7 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) |
| 9 | dfss2 3949 | . . . . 5 ⊢ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ↔ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) = 𝐶) | |
| 10 | 9 | biimpi 216 | . . . 4 ⊢ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) → (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) = 𝐶) |
| 11 | 8, 10 | sylan9req 2792 | . . 3 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝐶 ∩ (𝐵 ∨ℋ 𝐴)) = 𝐶) |
| 12 | 11 | 3ad2antr3 1191 | . 2 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵))) → (𝐶 ∩ (𝐵 ∨ℋ 𝐴)) = 𝐶) |
| 13 | 5, 12 | eqtrd 2771 | 1 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵))) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3930 ⊆ wss 3931 class class class wbr 5124 (class class class)co 7410 Cℋ cch 30915 ∨ℋ chj 30919 𝑀ℋ* cdmd 30953 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 ax-hilex 30985 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-br 5125 df-opab 5187 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-iota 6489 df-fun 6538 df-fv 6544 df-ov 7413 df-oprab 7414 df-mpo 7415 df-sh 31193 df-ch 31207 df-chj 31296 df-dmd 32267 |
| This theorem is referenced by: mdslle1i 32303 mdslj1i 32305 mdslj2i 32306 mdslmd1lem1 32311 |
| Copyright terms: Public domain | W3C validator |