![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > dmdsl3 | Structured version Visualization version GIF version |
Description: Sublattice mapping for a dual-modular pair. Part of Theorem 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 26-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmdsl3 | ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵))) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmdi 32331 | . . . . . 6 ⊢ (((𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶)) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) | |
2 | 1 | exp32 420 | . . . . 5 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐵 𝑀ℋ* 𝐴 → (𝐴 ⊆ 𝐶 → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))))) |
3 | 2 | 3com12 1122 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐵 𝑀ℋ* 𝐴 → (𝐴 ⊆ 𝐶 → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))))) |
4 | 3 | imp32 418 | . . 3 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶)) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) |
5 | 4 | 3adantr3 1170 | . 2 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵))) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) |
6 | chjcom 31535 | . . . . . 6 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) | |
7 | 6 | ineq2d 4228 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) |
8 | 7 | 3adant3 1131 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) |
9 | dfss2 3981 | . . . . 5 ⊢ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ↔ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) = 𝐶) | |
10 | 9 | biimpi 216 | . . . 4 ⊢ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) → (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) = 𝐶) |
11 | 8, 10 | sylan9req 2796 | . . 3 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝐶 ∩ (𝐵 ∨ℋ 𝐴)) = 𝐶) |
12 | 11 | 3ad2antr3 1189 | . 2 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵))) → (𝐶 ∩ (𝐵 ∨ℋ 𝐴)) = 𝐶) |
13 | 5, 12 | eqtrd 2775 | 1 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵))) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ∩ cin 3962 ⊆ wss 3963 class class class wbr 5148 (class class class)co 7431 Cℋ cch 30958 ∨ℋ chj 30962 𝑀ℋ* cdmd 30996 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-hilex 31028 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-sh 31236 df-ch 31250 df-chj 31339 df-dmd 32310 |
This theorem is referenced by: mdslle1i 32346 mdslj1i 32348 mdslj2i 32349 mdslmd1lem1 32354 |
Copyright terms: Public domain | W3C validator |