HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdsl3 Structured version   Visualization version   GIF version

Theorem dmdsl3 30578
Description: Sublattice mapping for a dual-modular pair. Part of Theorem 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 26-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
dmdsl3 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶𝐶 ⊆ (𝐴 𝐵))) → ((𝐶𝐵) ∨ 𝐴) = 𝐶)

Proof of Theorem dmdsl3
StepHypRef Expression
1 dmdi 30565 . . . . . 6 (((𝐵C𝐴C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶)) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
21exp32 420 . . . . 5 ((𝐵C𝐴C𝐶C ) → (𝐵 𝑀* 𝐴 → (𝐴𝐶 → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))))
323com12 1121 . . . 4 ((𝐴C𝐵C𝐶C ) → (𝐵 𝑀* 𝐴 → (𝐴𝐶 → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))))
43imp32 418 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶)) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
543adantr3 1169 . 2 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶𝐶 ⊆ (𝐴 𝐵))) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
6 chjcom 29769 . . . . . 6 ((𝐴C𝐵C ) → (𝐴 𝐵) = (𝐵 𝐴))
76ineq2d 4143 . . . . 5 ((𝐴C𝐵C ) → (𝐶 ∩ (𝐴 𝐵)) = (𝐶 ∩ (𝐵 𝐴)))
873adant3 1130 . . . 4 ((𝐴C𝐵C𝐶C ) → (𝐶 ∩ (𝐴 𝐵)) = (𝐶 ∩ (𝐵 𝐴)))
9 df-ss 3900 . . . . 5 (𝐶 ⊆ (𝐴 𝐵) ↔ (𝐶 ∩ (𝐴 𝐵)) = 𝐶)
109biimpi 215 . . . 4 (𝐶 ⊆ (𝐴 𝐵) → (𝐶 ∩ (𝐴 𝐵)) = 𝐶)
118, 10sylan9req 2800 . . 3 (((𝐴C𝐵C𝐶C ) ∧ 𝐶 ⊆ (𝐴 𝐵)) → (𝐶 ∩ (𝐵 𝐴)) = 𝐶)
12113ad2antr3 1188 . 2 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶𝐶 ⊆ (𝐴 𝐵))) → (𝐶 ∩ (𝐵 𝐴)) = 𝐶)
135, 12eqtrd 2778 1 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶𝐶 ⊆ (𝐴 𝐵))) → ((𝐶𝐵) ∨ 𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  cin 3882  wss 3883   class class class wbr 5070  (class class class)co 7255   C cch 29192   chj 29196   𝑀* cdmd 29230
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-hilex 29262
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-oprab 7259  df-mpo 7260  df-sh 29470  df-ch 29484  df-chj 29573  df-dmd 30544
This theorem is referenced by:  mdslle1i  30580  mdslj1i  30582  mdslj2i  30583  mdslmd1lem1  30588
  Copyright terms: Public domain W3C validator