| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > dmdsl3 | Structured version Visualization version GIF version | ||
| Description: Sublattice mapping for a dual-modular pair. Part of Theorem 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 26-Apr-2006.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dmdsl3 | ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵))) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dmdi 32246 | . . . . . 6 ⊢ (((𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶)) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) | |
| 2 | 1 | exp32 420 | . . . . 5 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐵 𝑀ℋ* 𝐴 → (𝐴 ⊆ 𝐶 → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))))) |
| 3 | 2 | 3com12 1123 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐵 𝑀ℋ* 𝐴 → (𝐴 ⊆ 𝐶 → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))))) |
| 4 | 3 | imp32 418 | . . 3 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶)) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) |
| 5 | 4 | 3adantr3 1172 | . 2 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵))) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) |
| 6 | chjcom 31450 | . . . . . 6 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) | |
| 7 | 6 | ineq2d 4171 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) |
| 8 | 7 | 3adant3 1132 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) |
| 9 | dfss2 3921 | . . . . 5 ⊢ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ↔ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) = 𝐶) | |
| 10 | 9 | biimpi 216 | . . . 4 ⊢ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) → (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) = 𝐶) |
| 11 | 8, 10 | sylan9req 2785 | . . 3 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝐶 ∩ (𝐵 ∨ℋ 𝐴)) = 𝐶) |
| 12 | 11 | 3ad2antr3 1191 | . 2 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵))) → (𝐶 ∩ (𝐵 ∨ℋ 𝐴)) = 𝐶) |
| 13 | 5, 12 | eqtrd 2764 | 1 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵))) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∩ cin 3902 ⊆ wss 3903 class class class wbr 5092 (class class class)co 7349 Cℋ cch 30873 ∨ℋ chj 30877 𝑀ℋ* cdmd 30911 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-hilex 30943 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-sh 31151 df-ch 31165 df-chj 31254 df-dmd 32225 |
| This theorem is referenced by: mdslle1i 32261 mdslj1i 32263 mdslj2i 32264 mdslmd1lem1 32269 |
| Copyright terms: Public domain | W3C validator |