![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > dmdsl3 | Structured version Visualization version GIF version |
Description: Sublattice mapping for a dual-modular pair. Part of Theorem 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 26-Apr-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
dmdsl3 | ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵))) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dmdi 32105 | . . . . . 6 ⊢ (((𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶)) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) | |
2 | 1 | exp32 420 | . . . . 5 ⊢ ((𝐵 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐵 𝑀ℋ* 𝐴 → (𝐴 ⊆ 𝐶 → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))))) |
3 | 2 | 3com12 1121 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐵 𝑀ℋ* 𝐴 → (𝐴 ⊆ 𝐶 → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))))) |
4 | 3 | imp32 418 | . . 3 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶)) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) |
5 | 4 | 3adantr3 1169 | . 2 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵))) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) |
6 | chjcom 31309 | . . . . . 6 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ∨ℋ 𝐵) = (𝐵 ∨ℋ 𝐴)) | |
7 | 6 | ineq2d 4208 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) |
8 | 7 | 3adant3 1130 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) → (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) = (𝐶 ∩ (𝐵 ∨ℋ 𝐴))) |
9 | df-ss 3962 | . . . . 5 ⊢ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) ↔ (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) = 𝐶) | |
10 | 9 | biimpi 215 | . . . 4 ⊢ (𝐶 ⊆ (𝐴 ∨ℋ 𝐵) → (𝐶 ∩ (𝐴 ∨ℋ 𝐵)) = 𝐶) |
11 | 8, 10 | sylan9req 2789 | . . 3 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵)) → (𝐶 ∩ (𝐵 ∨ℋ 𝐴)) = 𝐶) |
12 | 11 | 3ad2antr3 1188 | . 2 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵))) → (𝐶 ∩ (𝐵 ∨ℋ 𝐴)) = 𝐶) |
13 | 5, 12 | eqtrd 2768 | 1 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐶 ∈ Cℋ ) ∧ (𝐵 𝑀ℋ* 𝐴 ∧ 𝐴 ⊆ 𝐶 ∧ 𝐶 ⊆ (𝐴 ∨ℋ 𝐵))) → ((𝐶 ∩ 𝐵) ∨ℋ 𝐴) = 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 ∩ cin 3944 ⊆ wss 3945 class class class wbr 5142 (class class class)co 7414 Cℋ cch 30732 ∨ℋ chj 30736 𝑀ℋ* cdmd 30770 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-hilex 30802 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-ral 3058 df-rex 3067 df-rab 3429 df-v 3472 df-sbc 3776 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-ov 7417 df-oprab 7418 df-mpo 7419 df-sh 31010 df-ch 31024 df-chj 31113 df-dmd 32084 |
This theorem is referenced by: mdslle1i 32120 mdslj1i 32122 mdslj2i 32123 mdslmd1lem1 32128 |
Copyright terms: Public domain | W3C validator |