HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdsl3 Structured version   Visualization version   GIF version

Theorem dmdsl3 30092
Description: Sublattice mapping for a dual-modular pair. Part of Theorem 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 26-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
dmdsl3 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶𝐶 ⊆ (𝐴 𝐵))) → ((𝐶𝐵) ∨ 𝐴) = 𝐶)

Proof of Theorem dmdsl3
StepHypRef Expression
1 dmdi 30079 . . . . . 6 (((𝐵C𝐴C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶)) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
21exp32 423 . . . . 5 ((𝐵C𝐴C𝐶C ) → (𝐵 𝑀* 𝐴 → (𝐴𝐶 → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))))
323com12 1119 . . . 4 ((𝐴C𝐵C𝐶C ) → (𝐵 𝑀* 𝐴 → (𝐴𝐶 → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))))
43imp32 421 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶)) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
543adantr3 1167 . 2 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶𝐶 ⊆ (𝐴 𝐵))) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
6 chjcom 29283 . . . . . 6 ((𝐴C𝐵C ) → (𝐴 𝐵) = (𝐵 𝐴))
76ineq2d 4189 . . . . 5 ((𝐴C𝐵C ) → (𝐶 ∩ (𝐴 𝐵)) = (𝐶 ∩ (𝐵 𝐴)))
873adant3 1128 . . . 4 ((𝐴C𝐵C𝐶C ) → (𝐶 ∩ (𝐴 𝐵)) = (𝐶 ∩ (𝐵 𝐴)))
9 df-ss 3952 . . . . 5 (𝐶 ⊆ (𝐴 𝐵) ↔ (𝐶 ∩ (𝐴 𝐵)) = 𝐶)
109biimpi 218 . . . 4 (𝐶 ⊆ (𝐴 𝐵) → (𝐶 ∩ (𝐴 𝐵)) = 𝐶)
118, 10sylan9req 2877 . . 3 (((𝐴C𝐵C𝐶C ) ∧ 𝐶 ⊆ (𝐴 𝐵)) → (𝐶 ∩ (𝐵 𝐴)) = 𝐶)
12113ad2antr3 1186 . 2 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶𝐶 ⊆ (𝐴 𝐵))) → (𝐶 ∩ (𝐵 𝐴)) = 𝐶)
135, 12eqtrd 2856 1 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶𝐶 ⊆ (𝐴 𝐵))) → ((𝐶𝐵) ∨ 𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  cin 3935  wss 3936   class class class wbr 5066  (class class class)co 7156   C cch 28706   chj 28710   𝑀* cdmd 28744
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-sep 5203  ax-nul 5210  ax-pr 5330  ax-hilex 28776
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ral 3143  df-rex 3144  df-rab 3147  df-v 3496  df-sbc 3773  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4839  df-br 5067  df-opab 5129  df-id 5460  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-iota 6314  df-fun 6357  df-fv 6363  df-ov 7159  df-oprab 7160  df-mpo 7161  df-sh 28984  df-ch 28998  df-chj 29087  df-dmd 30058
This theorem is referenced by:  mdslle1i  30094  mdslj1i  30096  mdslj2i  30097  mdslmd1lem1  30102
  Copyright terms: Public domain W3C validator