HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  dmdsl3 Structured version   Visualization version   GIF version

Theorem dmdsl3 32259
Description: Sublattice mapping for a dual-modular pair. Part of Theorem 1.3 of [MaedaMaeda] p. 2. (Contributed by NM, 26-Apr-2006.) (New usage is discouraged.)
Assertion
Ref Expression
dmdsl3 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶𝐶 ⊆ (𝐴 𝐵))) → ((𝐶𝐵) ∨ 𝐴) = 𝐶)

Proof of Theorem dmdsl3
StepHypRef Expression
1 dmdi 32246 . . . . . 6 (((𝐵C𝐴C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶)) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
21exp32 420 . . . . 5 ((𝐵C𝐴C𝐶C ) → (𝐵 𝑀* 𝐴 → (𝐴𝐶 → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))))
323com12 1123 . . . 4 ((𝐴C𝐵C𝐶C ) → (𝐵 𝑀* 𝐴 → (𝐴𝐶 → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))))
43imp32 418 . . 3 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶)) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
543adantr3 1172 . 2 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶𝐶 ⊆ (𝐴 𝐵))) → ((𝐶𝐵) ∨ 𝐴) = (𝐶 ∩ (𝐵 𝐴)))
6 chjcom 31450 . . . . . 6 ((𝐴C𝐵C ) → (𝐴 𝐵) = (𝐵 𝐴))
76ineq2d 4171 . . . . 5 ((𝐴C𝐵C ) → (𝐶 ∩ (𝐴 𝐵)) = (𝐶 ∩ (𝐵 𝐴)))
873adant3 1132 . . . 4 ((𝐴C𝐵C𝐶C ) → (𝐶 ∩ (𝐴 𝐵)) = (𝐶 ∩ (𝐵 𝐴)))
9 dfss2 3921 . . . . 5 (𝐶 ⊆ (𝐴 𝐵) ↔ (𝐶 ∩ (𝐴 𝐵)) = 𝐶)
109biimpi 216 . . . 4 (𝐶 ⊆ (𝐴 𝐵) → (𝐶 ∩ (𝐴 𝐵)) = 𝐶)
118, 10sylan9req 2785 . . 3 (((𝐴C𝐵C𝐶C ) ∧ 𝐶 ⊆ (𝐴 𝐵)) → (𝐶 ∩ (𝐵 𝐴)) = 𝐶)
12113ad2antr3 1191 . 2 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶𝐶 ⊆ (𝐴 𝐵))) → (𝐶 ∩ (𝐵 𝐴)) = 𝐶)
135, 12eqtrd 2764 1 (((𝐴C𝐵C𝐶C ) ∧ (𝐵 𝑀* 𝐴𝐴𝐶𝐶 ⊆ (𝐴 𝐵))) → ((𝐶𝐵) ∨ 𝐴) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cin 3902  wss 3903   class class class wbr 5092  (class class class)co 7349   C cch 30873   chj 30877   𝑀* cdmd 30911
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-hilex 30943
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fv 6490  df-ov 7352  df-oprab 7353  df-mpo 7354  df-sh 31151  df-ch 31165  df-chj 31254  df-dmd 32225
This theorem is referenced by:  mdslle1i  32261  mdslj1i  32263  mdslj2i  32264  mdslmd1lem1  32269
  Copyright terms: Public domain W3C validator