Step | Hyp | Ref
| Expression |
1 | | dvds2lem.1 |
. . . . . 6
⊢ (𝜑 → (𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ)) |
2 | | dvds2lem.2 |
. . . . . 6
⊢ (𝜑 → (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) |
3 | | divides 15893 |
. . . . . . 7
⊢ ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 ∥ 𝐽 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐼) = 𝐽)) |
4 | | divides 15893 |
. . . . . . 7
⊢ ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐾 ∥ 𝐿 ↔ ∃𝑦 ∈ ℤ (𝑦 · 𝐾) = 𝐿)) |
5 | 3, 4 | bi2anan9 635 |
. . . . . 6
⊢ (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐼 ∥ 𝐽 ∧ 𝐾 ∥ 𝐿) ↔ (∃𝑥 ∈ ℤ (𝑥 · 𝐼) = 𝐽 ∧ ∃𝑦 ∈ ℤ (𝑦 · 𝐾) = 𝐿))) |
6 | 1, 2, 5 | syl2anc 583 |
. . . . 5
⊢ (𝜑 → ((𝐼 ∥ 𝐽 ∧ 𝐾 ∥ 𝐿) ↔ (∃𝑥 ∈ ℤ (𝑥 · 𝐼) = 𝐽 ∧ ∃𝑦 ∈ ℤ (𝑦 · 𝐾) = 𝐿))) |
7 | 6 | biimpd 228 |
. . . 4
⊢ (𝜑 → ((𝐼 ∥ 𝐽 ∧ 𝐾 ∥ 𝐿) → (∃𝑥 ∈ ℤ (𝑥 · 𝐼) = 𝐽 ∧ ∃𝑦 ∈ ℤ (𝑦 · 𝐾) = 𝐿))) |
8 | | reeanv 3292 |
. . . 4
⊢
(∃𝑥 ∈
ℤ ∃𝑦 ∈
ℤ ((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿) ↔ (∃𝑥 ∈ ℤ (𝑥 · 𝐼) = 𝐽 ∧ ∃𝑦 ∈ ℤ (𝑦 · 𝐾) = 𝐿)) |
9 | 7, 8 | syl6ibr 251 |
. . 3
⊢ (𝜑 → ((𝐼 ∥ 𝐽 ∧ 𝐾 ∥ 𝐿) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿))) |
10 | | dvds2lem.4 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑍 ∈ ℤ) |
11 | | dvds2lem.5 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿) → (𝑍 · 𝑀) = 𝑁)) |
12 | | oveq1 7262 |
. . . . . . 7
⊢ (𝑧 = 𝑍 → (𝑧 · 𝑀) = (𝑍 · 𝑀)) |
13 | 12 | eqeq1d 2740 |
. . . . . 6
⊢ (𝑧 = 𝑍 → ((𝑧 · 𝑀) = 𝑁 ↔ (𝑍 · 𝑀) = 𝑁)) |
14 | 13 | rspcev 3552 |
. . . . 5
⊢ ((𝑍 ∈ ℤ ∧ (𝑍 · 𝑀) = 𝑁) → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁) |
15 | 10, 11, 14 | syl6an 680 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿) → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)) |
16 | 15 | rexlimdvva 3222 |
. . 3
⊢ (𝜑 → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ ((𝑥 · 𝐼) = 𝐽 ∧ (𝑦 · 𝐾) = 𝐿) → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)) |
17 | 9, 16 | syld 47 |
. 2
⊢ (𝜑 → ((𝐼 ∥ 𝐽 ∧ 𝐾 ∥ 𝐿) → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)) |
18 | | dvds2lem.3 |
. . 3
⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
19 | | divides 15893 |
. . 3
⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)) |
20 | 18, 19 | syl 17 |
. 2
⊢ (𝜑 → (𝑀 ∥ 𝑁 ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)) |
21 | 17, 20 | sylibrd 258 |
1
⊢ (𝜑 → ((𝐼 ∥ 𝐽 ∧ 𝐾 ∥ 𝐿) → 𝑀 ∥ 𝑁)) |