MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdstr Structured version   Visualization version   GIF version

Theorem dvdstr 16264
Description: The divides relation is transitive. Theorem 1.1(b) in [ApostolNT] p. 14 (transitive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdstr ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝑀𝑁) → 𝐾𝑁))

Proof of Theorem dvdstr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpa 1148 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ))
2 3simpc 1150 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
3 3simpb 1149 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
4 zmulcl 12582 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
54adantl 481 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ)
6 oveq2 7395 . . . . 5 ((𝑥 · 𝐾) = 𝑀 → (𝑦 · (𝑥 · 𝐾)) = (𝑦 · 𝑀))
76adantr 480 . . . 4 (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝑀) = 𝑁) → (𝑦 · (𝑥 · 𝐾)) = (𝑦 · 𝑀))
8 eqeq2 2741 . . . . 5 ((𝑦 · 𝑀) = 𝑁 → ((𝑦 · (𝑥 · 𝐾)) = (𝑦 · 𝑀) ↔ (𝑦 · (𝑥 · 𝐾)) = 𝑁))
98adantl 481 . . . 4 (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝑀) = 𝑁) → ((𝑦 · (𝑥 · 𝐾)) = (𝑦 · 𝑀) ↔ (𝑦 · (𝑥 · 𝐾)) = 𝑁))
107, 9mpbid 232 . . 3 (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝑀) = 𝑁) → (𝑦 · (𝑥 · 𝐾)) = 𝑁)
11 zcn 12534 . . . . . . . 8 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
12 zcn 12534 . . . . . . . 8 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
13 zcn 12534 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
14 mulass 11156 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑥 · 𝑦) · 𝐾) = (𝑥 · (𝑦 · 𝐾)))
15 mul12 11339 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑥 · (𝑦 · 𝐾)) = (𝑦 · (𝑥 · 𝐾)))
1614, 15eqtrd 2764 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑥 · 𝑦) · 𝐾) = (𝑦 · (𝑥 · 𝐾)))
1711, 12, 13, 16syl3an 1160 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑥 · 𝑦) · 𝐾) = (𝑦 · (𝑥 · 𝐾)))
18173comr 1125 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 · 𝑦) · 𝐾) = (𝑦 · (𝑥 · 𝐾)))
19183expb 1120 . . . . 5 ((𝐾 ∈ ℤ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 𝐾) = (𝑦 · (𝑥 · 𝐾)))
20193ad2antl1 1186 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 𝐾) = (𝑦 · (𝑥 · 𝐾)))
2120eqeq1d 2731 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝑦) · 𝐾) = 𝑁 ↔ (𝑦 · (𝑥 · 𝐾)) = 𝑁))
2210, 21imbitrrid 246 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝑀) = 𝑁) → ((𝑥 · 𝑦) · 𝐾) = 𝑁))
231, 2, 3, 5, 22dvds2lem 16238 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝑀𝑁) → 𝐾𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109   class class class wbr 5107  (class class class)co 7387  cc 11066   · cmul 11073  cz 12529  cdvds 16222
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-ltxr 11213  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-dvds 16223
This theorem is referenced by:  dvdstrd  16265  dvdsmultr1  16266  dvdsmultr2  16268  4dvdseven  16343  dvdsgcdb  16515  lcmgcdeq  16582  lcmdvdsb  16583  lcmftp  16606  lcmfdvdsb  16613  rpmulgcd2  16626  exprmfct  16674  rpexp  16692  pcpremul  16814  pcdvdsb  16840  pcprmpw2  16853  prmreclem3  16889  odmulg  19486  ablfac1b  20002  ablfac1eu  20005  wilth  26981  muval1  27043  dvdssqf  27048  sqff1o  27092  mpodvdsmulf1o  27104  dvdsmulf1o  27106  vmasum  27127  bposlem3  27197  lgsquad2lem1  27295  goldbachthlem2  47547
  Copyright terms: Public domain W3C validator