MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvdstr Structured version   Visualization version   GIF version

Theorem dvdstr 16327
Description: The divides relation is transitive. Theorem 1.1(b) in [ApostolNT] p. 14 (transitive property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdstr ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝑀𝑁) → 𝐾𝑁))

Proof of Theorem dvdstr
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpa 1147 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ))
2 3simpc 1149 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
3 3simpb 1148 . 2 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
4 zmulcl 12663 . . 3 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → (𝑥 · 𝑦) ∈ ℤ)
54adantl 481 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑦) ∈ ℤ)
6 oveq2 7438 . . . . 5 ((𝑥 · 𝐾) = 𝑀 → (𝑦 · (𝑥 · 𝐾)) = (𝑦 · 𝑀))
76adantr 480 . . . 4 (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝑀) = 𝑁) → (𝑦 · (𝑥 · 𝐾)) = (𝑦 · 𝑀))
8 eqeq2 2746 . . . . 5 ((𝑦 · 𝑀) = 𝑁 → ((𝑦 · (𝑥 · 𝐾)) = (𝑦 · 𝑀) ↔ (𝑦 · (𝑥 · 𝐾)) = 𝑁))
98adantl 481 . . . 4 (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝑀) = 𝑁) → ((𝑦 · (𝑥 · 𝐾)) = (𝑦 · 𝑀) ↔ (𝑦 · (𝑥 · 𝐾)) = 𝑁))
107, 9mpbid 232 . . 3 (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝑀) = 𝑁) → (𝑦 · (𝑥 · 𝐾)) = 𝑁)
11 zcn 12615 . . . . . . . 8 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
12 zcn 12615 . . . . . . . 8 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
13 zcn 12615 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℂ)
14 mulass 11240 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑥 · 𝑦) · 𝐾) = (𝑥 · (𝑦 · 𝐾)))
15 mul12 11423 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝐾 ∈ ℂ) → (𝑥 · (𝑦 · 𝐾)) = (𝑦 · (𝑥 · 𝐾)))
1614, 15eqtrd 2774 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝐾 ∈ ℂ) → ((𝑥 · 𝑦) · 𝐾) = (𝑦 · (𝑥 · 𝐾)))
1711, 12, 13, 16syl3an 1159 . . . . . . 7 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ ∧ 𝐾 ∈ ℤ) → ((𝑥 · 𝑦) · 𝐾) = (𝑦 · (𝑥 · 𝐾)))
18173comr 1124 . . . . . 6 ((𝐾 ∈ ℤ ∧ 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 · 𝑦) · 𝐾) = (𝑦 · (𝑥 · 𝐾)))
19183expb 1119 . . . . 5 ((𝐾 ∈ ℤ ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 𝐾) = (𝑦 · (𝑥 · 𝐾)))
20193ad2antl1 1184 . . . 4 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑦) · 𝐾) = (𝑦 · (𝑥 · 𝐾)))
2120eqeq1d 2736 . . 3 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝑦) · 𝐾) = 𝑁 ↔ (𝑦 · (𝑥 · 𝐾)) = 𝑁))
2210, 21imbitrrid 246 . 2 (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝑀) = 𝑁) → ((𝑥 · 𝑦) · 𝐾) = 𝑁))
231, 2, 3, 5, 22dvds2lem 16302 1 ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾𝑀𝑀𝑁) → 𝐾𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105   class class class wbr 5147  (class class class)co 7430  cc 11150   · cmul 11157  cz 12610  cdvds 16286
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4912  df-iun 4997  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-om 7887  df-2nd 8013  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-er 8743  df-en 8984  df-dom 8985  df-sdom 8986  df-pnf 11294  df-mnf 11295  df-ltxr 11297  df-sub 11491  df-neg 11492  df-nn 12264  df-n0 12524  df-z 12611  df-dvds 16287
This theorem is referenced by:  dvdstrd  16328  dvdsmultr1  16329  dvdsmultr2  16331  4dvdseven  16406  dvdsgcdb  16578  lcmgcdeq  16645  lcmdvdsb  16646  lcmftp  16669  lcmfdvdsb  16676  rpmulgcd2  16689  exprmfct  16737  rpexp  16755  pcpremul  16876  pcdvdsb  16902  pcprmpw2  16915  prmreclem3  16951  odmulg  19588  ablfac1b  20104  ablfac1eu  20107  wilth  27128  muval1  27190  dvdssqf  27195  sqff1o  27239  mpodvdsmulf1o  27251  dvdsmulf1o  27253  vmasum  27274  bposlem3  27344  lgsquad2lem1  27442  goldbachthlem2  47470
  Copyright terms: Public domain W3C validator