![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvds2sub | Structured version Visualization version GIF version |
Description: If an integer divides each of two other integers, it divides their difference. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvds2sub | โข ((๐พ โ โค โง ๐ โ โค โง ๐ โ โค) โ ((๐พ โฅ ๐ โง ๐พ โฅ ๐) โ ๐พ โฅ (๐ โ ๐))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simpa 1148 | . 2 โข ((๐พ โ โค โง ๐ โ โค โง ๐ โ โค) โ (๐พ โ โค โง ๐ โ โค)) | |
2 | 3simpb 1149 | . 2 โข ((๐พ โ โค โง ๐ โ โค โง ๐ โ โค) โ (๐พ โ โค โง ๐ โ โค)) | |
3 | zsubcl 12608 | . . . 4 โข ((๐ โ โค โง ๐ โ โค) โ (๐ โ ๐) โ โค) | |
4 | 3 | anim2i 617 | . . 3 โข ((๐พ โ โค โง (๐ โ โค โง ๐ โ โค)) โ (๐พ โ โค โง (๐ โ ๐) โ โค)) |
5 | 4 | 3impb 1115 | . 2 โข ((๐พ โ โค โง ๐ โ โค โง ๐ โ โค) โ (๐พ โ โค โง (๐ โ ๐) โ โค)) |
6 | zsubcl 12608 | . . 3 โข ((๐ฅ โ โค โง ๐ฆ โ โค) โ (๐ฅ โ ๐ฆ) โ โค) | |
7 | 6 | adantl 482 | . 2 โข (((๐พ โ โค โง ๐ โ โค โง ๐ โ โค) โง (๐ฅ โ โค โง ๐ฆ โ โค)) โ (๐ฅ โ ๐ฆ) โ โค) |
8 | zcn 12567 | . . . . . . . 8 โข (๐ฅ โ โค โ ๐ฅ โ โ) | |
9 | zcn 12567 | . . . . . . . 8 โข (๐ฆ โ โค โ ๐ฆ โ โ) | |
10 | zcn 12567 | . . . . . . . 8 โข (๐พ โ โค โ ๐พ โ โ) | |
11 | subdir 11652 | . . . . . . . 8 โข ((๐ฅ โ โ โง ๐ฆ โ โ โง ๐พ โ โ) โ ((๐ฅ โ ๐ฆ) ยท ๐พ) = ((๐ฅ ยท ๐พ) โ (๐ฆ ยท ๐พ))) | |
12 | 8, 9, 10, 11 | syl3an 1160 | . . . . . . 7 โข ((๐ฅ โ โค โง ๐ฆ โ โค โง ๐พ โ โค) โ ((๐ฅ โ ๐ฆ) ยท ๐พ) = ((๐ฅ ยท ๐พ) โ (๐ฆ ยท ๐พ))) |
13 | 12 | 3comr 1125 | . . . . . 6 โข ((๐พ โ โค โง ๐ฅ โ โค โง ๐ฆ โ โค) โ ((๐ฅ โ ๐ฆ) ยท ๐พ) = ((๐ฅ ยท ๐พ) โ (๐ฆ ยท ๐พ))) |
14 | 13 | 3expb 1120 | . . . . 5 โข ((๐พ โ โค โง (๐ฅ โ โค โง ๐ฆ โ โค)) โ ((๐ฅ โ ๐ฆ) ยท ๐พ) = ((๐ฅ ยท ๐พ) โ (๐ฆ ยท ๐พ))) |
15 | oveq12 7420 | . . . . 5 โข (((๐ฅ ยท ๐พ) = ๐ โง (๐ฆ ยท ๐พ) = ๐) โ ((๐ฅ ยท ๐พ) โ (๐ฆ ยท ๐พ)) = (๐ โ ๐)) | |
16 | 14, 15 | sylan9eq 2792 | . . . 4 โข (((๐พ โ โค โง (๐ฅ โ โค โง ๐ฆ โ โค)) โง ((๐ฅ ยท ๐พ) = ๐ โง (๐ฆ ยท ๐พ) = ๐)) โ ((๐ฅ โ ๐ฆ) ยท ๐พ) = (๐ โ ๐)) |
17 | 16 | ex 413 | . . 3 โข ((๐พ โ โค โง (๐ฅ โ โค โง ๐ฆ โ โค)) โ (((๐ฅ ยท ๐พ) = ๐ โง (๐ฆ ยท ๐พ) = ๐) โ ((๐ฅ โ ๐ฆ) ยท ๐พ) = (๐ โ ๐))) |
18 | 17 | 3ad2antl1 1185 | . 2 โข (((๐พ โ โค โง ๐ โ โค โง ๐ โ โค) โง (๐ฅ โ โค โง ๐ฆ โ โค)) โ (((๐ฅ ยท ๐พ) = ๐ โง (๐ฆ ยท ๐พ) = ๐) โ ((๐ฅ โ ๐ฆ) ยท ๐พ) = (๐ โ ๐))) |
19 | 1, 2, 5, 7, 18 | dvds2lem 16216 | 1 โข ((๐พ โ โค โง ๐ โ โค โง ๐ โ โค) โ ((๐พ โฅ ๐ โง ๐พ โฅ ๐) โ ๐พ โฅ (๐ โ ๐))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 396 โง w3a 1087 = wceq 1541 โ wcel 2106 class class class wbr 5148 (class class class)co 7411 โcc 11110 ยท cmul 11117 โ cmin 11448 โคcz 12562 โฅ cdvds 16201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-n0 12477 df-z 12563 df-dvds 16202 |
This theorem is referenced by: dvds2subd 16240 dvdssub2 16248 divalglem9 16348 difsqpwdvds 16824 poimirlem28 36819 fltaccoprm 41684 jm2.20nn 42038 dvdsn1add 44954 goldbachthlem2 46513 |
Copyright terms: Public domain | W3C validator |