MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvds1lem Structured version   Visualization version   GIF version

Theorem dvds1lem 15613
Description: A lemma to assist theorems of with one antecedent. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
dvds1lem.1 (𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ))
dvds1lem.2 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
dvds1lem.3 ((𝜑𝑥 ∈ ℤ) → 𝑍 ∈ ℤ)
dvds1lem.4 ((𝜑𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → (𝑍 · 𝑀) = 𝑁))
Assertion
Ref Expression
dvds1lem (𝜑 → (𝐽𝐾𝑀𝑁))
Distinct variable groups:   𝑥,𝐽   𝑥,𝐾   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥
Allowed substitution hint:   𝑍(𝑥)

Proof of Theorem dvds1lem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dvds1lem.3 . . . 4 ((𝜑𝑥 ∈ ℤ) → 𝑍 ∈ ℤ)
2 dvds1lem.4 . . . 4 ((𝜑𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → (𝑍 · 𝑀) = 𝑁))
3 oveq1 7142 . . . . . 6 (𝑧 = 𝑍 → (𝑧 · 𝑀) = (𝑍 · 𝑀))
43eqeq1d 2800 . . . . 5 (𝑧 = 𝑍 → ((𝑧 · 𝑀) = 𝑁 ↔ (𝑍 · 𝑀) = 𝑁))
54rspcev 3571 . . . 4 ((𝑍 ∈ ℤ ∧ (𝑍 · 𝑀) = 𝑁) → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)
61, 2, 5syl6an 683 . . 3 ((𝜑𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
76rexlimdva 3243 . 2 (𝜑 → (∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾 → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
8 dvds1lem.1 . . 3 (𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ))
9 divides 15601 . . 3 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾))
108, 9syl 17 . 2 (𝜑 → (𝐽𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾))
11 dvds1lem.2 . . 3 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
12 divides 15601 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
1311, 12syl 17 . 2 (𝜑 → (𝑀𝑁 ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
147, 10, 133imtr4d 297 1 (𝜑 → (𝐽𝐾𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wrex 3107   class class class wbr 5030  (class class class)co 7135   · cmul 10531  cz 11969  cdvds 15599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-iota 6283  df-fv 6332  df-ov 7138  df-dvds 15600
This theorem is referenced by:  negdvdsb  15618  dvdsnegb  15619  muldvds1  15626  muldvds2  15627  dvdscmul  15628  dvdsmulc  15629  dvdscmulr  15630  dvdsmulcr  15631
  Copyright terms: Public domain W3C validator