![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dvds1lem | Structured version Visualization version GIF version |
Description: A lemma to assist theorems of ∥ with one antecedent. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvds1lem.1 | ⊢ (𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) |
dvds1lem.2 | ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
dvds1lem.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝑍 ∈ ℤ) |
dvds1lem.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → (𝑍 · 𝑀) = 𝑁)) |
Ref | Expression |
---|---|
dvds1lem | ⊢ (𝜑 → (𝐽 ∥ 𝐾 → 𝑀 ∥ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvds1lem.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝑍 ∈ ℤ) | |
2 | dvds1lem.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → (𝑍 · 𝑀) = 𝑁)) | |
3 | oveq1 7438 | . . . . . 6 ⊢ (𝑧 = 𝑍 → (𝑧 · 𝑀) = (𝑍 · 𝑀)) | |
4 | 3 | eqeq1d 2737 | . . . . 5 ⊢ (𝑧 = 𝑍 → ((𝑧 · 𝑀) = 𝑁 ↔ (𝑍 · 𝑀) = 𝑁)) |
5 | 4 | rspcev 3622 | . . . 4 ⊢ ((𝑍 ∈ ℤ ∧ (𝑍 · 𝑀) = 𝑁) → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁) |
6 | 1, 2, 5 | syl6an 684 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)) |
7 | 6 | rexlimdva 3153 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾 → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)) |
8 | dvds1lem.1 | . . 3 ⊢ (𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) | |
9 | divides 16289 | . . 3 ⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 ∥ 𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾)) | |
10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → (𝐽 ∥ 𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾)) |
11 | dvds1lem.2 | . . 3 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
12 | divides 16289 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)) | |
13 | 11, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝑀 ∥ 𝑁 ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)) |
14 | 7, 10, 13 | 3imtr4d 294 | 1 ⊢ (𝜑 → (𝐽 ∥ 𝐾 → 𝑀 ∥ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∃wrex 3068 class class class wbr 5148 (class class class)co 7431 · cmul 11158 ℤcz 12611 ∥ cdvds 16287 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-iota 6516 df-fv 6571 df-ov 7434 df-dvds 16288 |
This theorem is referenced by: negdvdsb 16307 dvdsnegb 16308 muldvds1 16315 muldvds2 16316 dvdscmul 16317 dvdsmulc 16318 dvdscmulr 16319 dvdsmulcr 16320 |
Copyright terms: Public domain | W3C validator |