Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvds1lem | Structured version Visualization version GIF version |
Description: A lemma to assist theorems of ∥ with one antecedent. (Contributed by Paul Chapman, 21-Mar-2011.) |
Ref | Expression |
---|---|
dvds1lem.1 | ⊢ (𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) |
dvds1lem.2 | ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) |
dvds1lem.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝑍 ∈ ℤ) |
dvds1lem.4 | ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → (𝑍 · 𝑀) = 𝑁)) |
Ref | Expression |
---|---|
dvds1lem | ⊢ (𝜑 → (𝐽 ∥ 𝐾 → 𝑀 ∥ 𝑁)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dvds1lem.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → 𝑍 ∈ ℤ) | |
2 | dvds1lem.4 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → (𝑍 · 𝑀) = 𝑁)) | |
3 | oveq1 7282 | . . . . . 6 ⊢ (𝑧 = 𝑍 → (𝑧 · 𝑀) = (𝑍 · 𝑀)) | |
4 | 3 | eqeq1d 2740 | . . . . 5 ⊢ (𝑧 = 𝑍 → ((𝑧 · 𝑀) = 𝑁 ↔ (𝑍 · 𝑀) = 𝑁)) |
5 | 4 | rspcev 3561 | . . . 4 ⊢ ((𝑍 ∈ ℤ ∧ (𝑍 · 𝑀) = 𝑁) → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁) |
6 | 1, 2, 5 | syl6an 681 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)) |
7 | 6 | rexlimdva 3213 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾 → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)) |
8 | dvds1lem.1 | . . 3 ⊢ (𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ)) | |
9 | divides 15965 | . . 3 ⊢ ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 ∥ 𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾)) | |
10 | 8, 9 | syl 17 | . 2 ⊢ (𝜑 → (𝐽 ∥ 𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾)) |
11 | dvds1lem.2 | . . 3 ⊢ (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) | |
12 | divides 15965 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ 𝑁 ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)) | |
13 | 11, 12 | syl 17 | . 2 ⊢ (𝜑 → (𝑀 ∥ 𝑁 ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)) |
14 | 7, 10, 13 | 3imtr4d 294 | 1 ⊢ (𝜑 → (𝐽 ∥ 𝐾 → 𝑀 ∥ 𝑁)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∃wrex 3065 class class class wbr 5074 (class class class)co 7275 · cmul 10876 ℤcz 12319 ∥ cdvds 15963 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-iota 6391 df-fv 6441 df-ov 7278 df-dvds 15964 |
This theorem is referenced by: negdvdsb 15982 dvdsnegb 15983 muldvds1 15990 muldvds2 15991 dvdscmul 15992 dvdsmulc 15993 dvdscmulr 15994 dvdsmulcr 15995 |
Copyright terms: Public domain | W3C validator |