MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvds1lem Structured version   Visualization version   GIF version

Theorem dvds1lem 16175
Description: A lemma to assist theorems of with one antecedent. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
dvds1lem.1 (𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ))
dvds1lem.2 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
dvds1lem.3 ((𝜑𝑥 ∈ ℤ) → 𝑍 ∈ ℤ)
dvds1lem.4 ((𝜑𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → (𝑍 · 𝑀) = 𝑁))
Assertion
Ref Expression
dvds1lem (𝜑 → (𝐽𝐾𝑀𝑁))
Distinct variable groups:   𝑥,𝐽   𝑥,𝐾   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥
Allowed substitution hint:   𝑍(𝑥)

Proof of Theorem dvds1lem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dvds1lem.3 . . . 4 ((𝜑𝑥 ∈ ℤ) → 𝑍 ∈ ℤ)
2 dvds1lem.4 . . . 4 ((𝜑𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → (𝑍 · 𝑀) = 𝑁))
3 oveq1 7353 . . . . . 6 (𝑧 = 𝑍 → (𝑧 · 𝑀) = (𝑍 · 𝑀))
43eqeq1d 2733 . . . . 5 (𝑧 = 𝑍 → ((𝑧 · 𝑀) = 𝑁 ↔ (𝑍 · 𝑀) = 𝑁))
54rspcev 3577 . . . 4 ((𝑍 ∈ ℤ ∧ (𝑍 · 𝑀) = 𝑁) → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)
61, 2, 5syl6an 684 . . 3 ((𝜑𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
76rexlimdva 3133 . 2 (𝜑 → (∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾 → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
8 dvds1lem.1 . . 3 (𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ))
9 divides 16162 . . 3 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾))
108, 9syl 17 . 2 (𝜑 → (𝐽𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾))
11 dvds1lem.2 . . 3 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
12 divides 16162 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
1311, 12syl 17 . 2 (𝜑 → (𝑀𝑁 ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
147, 10, 133imtr4d 294 1 (𝜑 → (𝐽𝐾𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056   class class class wbr 5091  (class class class)co 7346   · cmul 11008  cz 12465  cdvds 16160
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-iota 6437  df-fv 6489  df-ov 7349  df-dvds 16161
This theorem is referenced by:  negdvdsb  16180  dvdsnegb  16181  muldvds1  16188  muldvds2  16189  dvdscmul  16190  dvdsmulc  16191  dvdscmulr  16192  dvdsmulcr  16193
  Copyright terms: Public domain W3C validator