MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvds1lem Structured version   Visualization version   GIF version

Theorem dvds1lem 15977
Description: A lemma to assist theorems of with one antecedent. (Contributed by Paul Chapman, 21-Mar-2011.)
Hypotheses
Ref Expression
dvds1lem.1 (𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ))
dvds1lem.2 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
dvds1lem.3 ((𝜑𝑥 ∈ ℤ) → 𝑍 ∈ ℤ)
dvds1lem.4 ((𝜑𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → (𝑍 · 𝑀) = 𝑁))
Assertion
Ref Expression
dvds1lem (𝜑 → (𝐽𝐾𝑀𝑁))
Distinct variable groups:   𝑥,𝐽   𝑥,𝐾   𝑥,𝑀   𝑥,𝑁   𝜑,𝑥
Allowed substitution hint:   𝑍(𝑥)

Proof of Theorem dvds1lem
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 dvds1lem.3 . . . 4 ((𝜑𝑥 ∈ ℤ) → 𝑍 ∈ ℤ)
2 dvds1lem.4 . . . 4 ((𝜑𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → (𝑍 · 𝑀) = 𝑁))
3 oveq1 7282 . . . . . 6 (𝑧 = 𝑍 → (𝑧 · 𝑀) = (𝑍 · 𝑀))
43eqeq1d 2740 . . . . 5 (𝑧 = 𝑍 → ((𝑧 · 𝑀) = 𝑁 ↔ (𝑍 · 𝑀) = 𝑁))
54rspcev 3561 . . . 4 ((𝑍 ∈ ℤ ∧ (𝑍 · 𝑀) = 𝑁) → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁)
61, 2, 5syl6an 681 . . 3 ((𝜑𝑥 ∈ ℤ) → ((𝑥 · 𝐽) = 𝐾 → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
76rexlimdva 3213 . 2 (𝜑 → (∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾 → ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
8 dvds1lem.1 . . 3 (𝜑 → (𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ))
9 divides 15965 . . 3 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾))
108, 9syl 17 . 2 (𝜑 → (𝐽𝐾 ↔ ∃𝑥 ∈ ℤ (𝑥 · 𝐽) = 𝐾))
11 dvds1lem.2 . . 3 (𝜑 → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ))
12 divides 15965 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
1311, 12syl 17 . 2 (𝜑 → (𝑀𝑁 ↔ ∃𝑧 ∈ ℤ (𝑧 · 𝑀) = 𝑁))
147, 10, 133imtr4d 294 1 (𝜑 → (𝐽𝐾𝑀𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065   class class class wbr 5074  (class class class)co 7275   · cmul 10876  cz 12319  cdvds 15963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-iota 6391  df-fv 6441  df-ov 7278  df-dvds 15964
This theorem is referenced by:  negdvdsb  15982  dvdsnegb  15983  muldvds1  15990  muldvds2  15991  dvdscmul  15992  dvdsmulc  15993  dvdscmulr  15994  dvdsmulcr  15995
  Copyright terms: Public domain W3C validator