MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvds2ln Structured version   Visualization version   GIF version

Theorem dvds2ln 16323
Description: If an integer divides each of two other integers, it divides any linear combination of them. Theorem 1.1(c) in [ApostolNT] p. 14 (linearity property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds2ln (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐾𝑀𝐾𝑁) → 𝐾 ∥ ((𝐼 · 𝑀) + (𝐽 · 𝑁))))

Proof of Theorem dvds2ln
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr1 1193 . . 3 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐾 ∈ ℤ)
2 simpr2 1194 . . 3 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℤ)
31, 2jca 511 . 2 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ))
4 simpr3 1195 . . 3 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
51, 4jca 511 . 2 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
6 simpll 767 . . . . 5 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐼 ∈ ℤ)
76, 2zmulcld 12726 . . . 4 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐼 · 𝑀) ∈ ℤ)
8 simplr 769 . . . . 5 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐽 ∈ ℤ)
98, 4zmulcld 12726 . . . 4 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐽 · 𝑁) ∈ ℤ)
107, 9zaddcld 12724 . . 3 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐼 · 𝑀) + (𝐽 · 𝑁)) ∈ ℤ)
111, 10jca 511 . 2 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ ((𝐼 · 𝑀) + (𝐽 · 𝑁)) ∈ ℤ))
12 zmulcl 12664 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑥 · 𝐼) ∈ ℤ)
13 zmulcl 12664 . . . . . . . 8 ((𝑦 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑦 · 𝐽) ∈ ℤ)
1412, 13anim12i 613 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝐽 ∈ ℤ)) → ((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ))
1514an4s 660 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ)) → ((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ))
1615expcom 413 . . . . 5 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ)))
1716adantr 480 . . . 4 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ)))
1817imp 406 . . 3 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ))
19 zaddcl 12655 . . 3 (((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ) → ((𝑥 · 𝐼) + (𝑦 · 𝐽)) ∈ ℤ)
2018, 19syl 17 . 2 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐼) + (𝑦 · 𝐽)) ∈ ℤ)
21 zcn 12616 . . . . . . . 8 ((𝑥 · 𝐼) ∈ ℤ → (𝑥 · 𝐼) ∈ ℂ)
22 zcn 12616 . . . . . . . 8 ((𝑦 · 𝐽) ∈ ℤ → (𝑦 · 𝐽) ∈ ℂ)
2321, 22anim12i 613 . . . . . . 7 (((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ) → ((𝑥 · 𝐼) ∈ ℂ ∧ (𝑦 · 𝐽) ∈ ℂ))
2418, 23syl 17 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐼) ∈ ℂ ∧ (𝑦 · 𝐽) ∈ ℂ))
251zcnd 12721 . . . . . . 7 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐾 ∈ ℂ)
2625adantr 480 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐾 ∈ ℂ)
27 adddir 11250 . . . . . . 7 (((𝑥 · 𝐼) ∈ ℂ ∧ (𝑦 · 𝐽) ∈ ℂ ∧ 𝐾 ∈ ℂ) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = (((𝑥 · 𝐼) · 𝐾) + ((𝑦 · 𝐽) · 𝐾)))
28273expa 1117 . . . . . 6 ((((𝑥 · 𝐼) ∈ ℂ ∧ (𝑦 · 𝐽) ∈ ℂ) ∧ 𝐾 ∈ ℂ) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = (((𝑥 · 𝐼) · 𝐾) + ((𝑦 · 𝐽) · 𝐾)))
2924, 26, 28syl2anc 584 . . . . 5 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = (((𝑥 · 𝐼) · 𝐾) + ((𝑦 · 𝐽) · 𝐾)))
30 zcn 12616 . . . . . . . . 9 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
3130adantr 480 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℂ)
3231adantl 481 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℂ)
33 zcn 12616 . . . . . . . 8 (𝐼 ∈ ℤ → 𝐼 ∈ ℂ)
3433ad3antrrr 730 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐼 ∈ ℂ)
3532, 34, 26mul32d 11469 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐼) · 𝐾) = ((𝑥 · 𝐾) · 𝐼))
36 zcn 12616 . . . . . . . . 9 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
3736adantl 481 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℂ)
3837adantl 481 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℂ)
398zcnd 12721 . . . . . . . 8 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐽 ∈ ℂ)
4039adantr 480 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐽 ∈ ℂ)
4138, 40, 26mul32d 11469 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑦 · 𝐽) · 𝐾) = ((𝑦 · 𝐾) · 𝐽))
4235, 41oveq12d 7449 . . . . 5 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) · 𝐾) + ((𝑦 · 𝐽) · 𝐾)) = (((𝑥 · 𝐾) · 𝐼) + ((𝑦 · 𝐾) · 𝐽)))
4332, 26mulcld 11279 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝐾) ∈ ℂ)
4443, 34mulcomd 11280 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐾) · 𝐼) = (𝐼 · (𝑥 · 𝐾)))
4538, 26mulcld 11279 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑦 · 𝐾) ∈ ℂ)
4645, 40mulcomd 11280 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑦 · 𝐾) · 𝐽) = (𝐽 · (𝑦 · 𝐾)))
4744, 46oveq12d 7449 . . . . 5 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐾) · 𝐼) + ((𝑦 · 𝐾) · 𝐽)) = ((𝐼 · (𝑥 · 𝐾)) + (𝐽 · (𝑦 · 𝐾))))
4829, 42, 473eqtrd 2779 . . . 4 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = ((𝐼 · (𝑥 · 𝐾)) + (𝐽 · (𝑦 · 𝐾))))
49 oveq2 7439 . . . . 5 ((𝑥 · 𝐾) = 𝑀 → (𝐼 · (𝑥 · 𝐾)) = (𝐼 · 𝑀))
50 oveq2 7439 . . . . 5 ((𝑦 · 𝐾) = 𝑁 → (𝐽 · (𝑦 · 𝐾)) = (𝐽 · 𝑁))
5149, 50oveqan12d 7450 . . . 4 (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝐾) = 𝑁) → ((𝐼 · (𝑥 · 𝐾)) + (𝐽 · (𝑦 · 𝐾))) = ((𝐼 · 𝑀) + (𝐽 · 𝑁)))
5248, 51sylan9eq 2795 . . 3 (((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝐾) = 𝑁)) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = ((𝐼 · 𝑀) + (𝐽 · 𝑁)))
5352ex 412 . 2 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝐾) = 𝑁) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = ((𝐼 · 𝑀) + (𝐽 · 𝑁))))
543, 5, 11, 20, 53dvds2lem 16303 1 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐾𝑀𝐾𝑁) → 𝐾 ∥ ((𝐼 · 𝑀) + (𝐽 · 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106   class class class wbr 5148  (class class class)co 7431  cc 11151   + caddc 11156   · cmul 11158  cz 12611  cdvds 16287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-n0 12525  df-z 12612  df-dvds 16288
This theorem is referenced by:  gcdaddmlem  16558  dvdsgcd  16578
  Copyright terms: Public domain W3C validator