MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvds2ln Structured version   Visualization version   GIF version

Theorem dvds2ln 15637
Description: If an integer divides each of two other integers, it divides any linear combination of them. Theorem 1.1(c) in [ApostolNT] p. 14 (linearity property of the divides relation). (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvds2ln (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐾𝑀𝐾𝑁) → 𝐾 ∥ ((𝐼 · 𝑀) + (𝐽 · 𝑁))))

Proof of Theorem dvds2ln
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr1 1188 . . 3 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐾 ∈ ℤ)
2 simpr2 1189 . . 3 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑀 ∈ ℤ)
31, 2jca 512 . 2 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ))
4 simpr3 1190 . . 3 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝑁 ∈ ℤ)
51, 4jca 512 . 2 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ))
6 simpll 763 . . . . 5 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐼 ∈ ℤ)
76, 2zmulcld 12087 . . . 4 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐼 · 𝑀) ∈ ℤ)
8 simplr 765 . . . . 5 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐽 ∈ ℤ)
98, 4zmulcld 12087 . . . 4 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐽 · 𝑁) ∈ ℤ)
107, 9zaddcld 12085 . . 3 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐼 · 𝑀) + (𝐽 · 𝑁)) ∈ ℤ)
111, 10jca 512 . 2 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → (𝐾 ∈ ℤ ∧ ((𝐼 · 𝑀) + (𝐽 · 𝑁)) ∈ ℤ))
12 zmulcl 12025 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝐼 ∈ ℤ) → (𝑥 · 𝐼) ∈ ℤ)
13 zmulcl 12025 . . . . . . . 8 ((𝑦 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝑦 · 𝐽) ∈ ℤ)
1412, 13anim12i 612 . . . . . . 7 (((𝑥 ∈ ℤ ∧ 𝐼 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝐽 ∈ ℤ)) → ((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ))
1514an4s 656 . . . . . 6 (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ)) → ((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ))
1615expcom 414 . . . . 5 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ)))
1716adantr 481 . . . 4 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ)))
1817imp 407 . . 3 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ))
19 zaddcl 12016 . . 3 (((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ) → ((𝑥 · 𝐼) + (𝑦 · 𝐽)) ∈ ℤ)
2018, 19syl 17 . 2 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐼) + (𝑦 · 𝐽)) ∈ ℤ)
21 zcn 11980 . . . . . . . 8 ((𝑥 · 𝐼) ∈ ℤ → (𝑥 · 𝐼) ∈ ℂ)
22 zcn 11980 . . . . . . . 8 ((𝑦 · 𝐽) ∈ ℤ → (𝑦 · 𝐽) ∈ ℂ)
2321, 22anim12i 612 . . . . . . 7 (((𝑥 · 𝐼) ∈ ℤ ∧ (𝑦 · 𝐽) ∈ ℤ) → ((𝑥 · 𝐼) ∈ ℂ ∧ (𝑦 · 𝐽) ∈ ℂ))
2418, 23syl 17 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐼) ∈ ℂ ∧ (𝑦 · 𝐽) ∈ ℂ))
251zcnd 12082 . . . . . . 7 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐾 ∈ ℂ)
2625adantr 481 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐾 ∈ ℂ)
27 adddir 10626 . . . . . . 7 (((𝑥 · 𝐼) ∈ ℂ ∧ (𝑦 · 𝐽) ∈ ℂ ∧ 𝐾 ∈ ℂ) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = (((𝑥 · 𝐼) · 𝐾) + ((𝑦 · 𝐽) · 𝐾)))
28273expa 1112 . . . . . 6 ((((𝑥 · 𝐼) ∈ ℂ ∧ (𝑦 · 𝐽) ∈ ℂ) ∧ 𝐾 ∈ ℂ) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = (((𝑥 · 𝐼) · 𝐾) + ((𝑦 · 𝐽) · 𝐾)))
2924, 26, 28syl2anc 584 . . . . 5 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = (((𝑥 · 𝐼) · 𝐾) + ((𝑦 · 𝐽) · 𝐾)))
30 zcn 11980 . . . . . . . . 9 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
3130adantr 481 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℂ)
3231adantl 482 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℂ)
33 zcn 11980 . . . . . . . 8 (𝐼 ∈ ℤ → 𝐼 ∈ ℂ)
3433ad3antrrr 726 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐼 ∈ ℂ)
3532, 34, 26mul32d 10844 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐼) · 𝐾) = ((𝑥 · 𝐾) · 𝐼))
36 zcn 11980 . . . . . . . . 9 (𝑦 ∈ ℤ → 𝑦 ∈ ℂ)
3736adantl 482 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℂ)
3837adantl 482 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℂ)
398zcnd 12082 . . . . . . . 8 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → 𝐽 ∈ ℂ)
4039adantr 481 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐽 ∈ ℂ)
4138, 40, 26mul32d 10844 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑦 · 𝐽) · 𝐾) = ((𝑦 · 𝐾) · 𝐽))
4235, 41oveq12d 7168 . . . . 5 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) · 𝐾) + ((𝑦 · 𝐽) · 𝐾)) = (((𝑥 · 𝐾) · 𝐼) + ((𝑦 · 𝐾) · 𝐽)))
4332, 26mulcld 10655 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝐾) ∈ ℂ)
4443, 34mulcomd 10656 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝐾) · 𝐼) = (𝐼 · (𝑥 · 𝐾)))
4538, 26mulcld 10655 . . . . . . 7 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑦 · 𝐾) ∈ ℂ)
4645, 40mulcomd 10656 . . . . . 6 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑦 · 𝐾) · 𝐽) = (𝐽 · (𝑦 · 𝐾)))
4744, 46oveq12d 7168 . . . . 5 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐾) · 𝐼) + ((𝑦 · 𝐾) · 𝐽)) = ((𝐼 · (𝑥 · 𝐾)) + (𝐽 · (𝑦 · 𝐾))))
4829, 42, 473eqtrd 2865 . . . 4 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = ((𝐼 · (𝑥 · 𝐾)) + (𝐽 · (𝑦 · 𝐾))))
49 oveq2 7158 . . . . 5 ((𝑥 · 𝐾) = 𝑀 → (𝐼 · (𝑥 · 𝐾)) = (𝐼 · 𝑀))
50 oveq2 7158 . . . . 5 ((𝑦 · 𝐾) = 𝑁 → (𝐽 · (𝑦 · 𝐾)) = (𝐽 · 𝑁))
5149, 50oveqan12d 7169 . . . 4 (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝐾) = 𝑁) → ((𝐼 · (𝑥 · 𝐾)) + (𝐽 · (𝑦 · 𝐾))) = ((𝐼 · 𝑀) + (𝐽 · 𝑁)))
5248, 51sylan9eq 2881 . . 3 (((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) ∧ ((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝐾) = 𝑁)) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = ((𝐼 · 𝑀) + (𝐽 · 𝑁)))
5352ex 413 . 2 ((((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (((𝑥 · 𝐾) = 𝑀 ∧ (𝑦 · 𝐾) = 𝑁) → (((𝑥 · 𝐼) + (𝑦 · 𝐽)) · 𝐾) = ((𝐼 · 𝑀) + (𝐽 · 𝑁))))
543, 5, 11, 20, 53dvds2lem 15617 1 (((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐾𝑀𝐾𝑁) → 𝐾 ∥ ((𝐼 · 𝑀) + (𝐽 · 𝑁))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1081   = wceq 1530  wcel 2107   class class class wbr 5063  (class class class)co 7150  cc 10529   + caddc 10534   · cmul 10536  cz 11975  cdvds 15602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2798  ax-sep 5200  ax-nul 5207  ax-pow 5263  ax-pr 5326  ax-un 7455  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2620  df-eu 2652  df-clab 2805  df-cleq 2819  df-clel 2898  df-nfc 2968  df-ne 3022  df-nel 3129  df-ral 3148  df-rex 3149  df-reu 3150  df-rab 3152  df-v 3502  df-sbc 3777  df-csb 3888  df-dif 3943  df-un 3945  df-in 3947  df-ss 3956  df-pss 3958  df-nul 4296  df-if 4471  df-pw 4544  df-sn 4565  df-pr 4567  df-tp 4569  df-op 4571  df-uni 4838  df-iun 4919  df-br 5064  df-opab 5126  df-mpt 5144  df-tr 5170  df-id 5459  df-eprel 5464  df-po 5473  df-so 5474  df-fr 5513  df-we 5515  df-xp 5560  df-rel 5561  df-cnv 5562  df-co 5563  df-dm 5564  df-rn 5565  df-res 5566  df-ima 5567  df-pred 6147  df-ord 6193  df-on 6194  df-lim 6195  df-suc 6196  df-iota 6313  df-fun 6356  df-fn 6357  df-f 6358  df-f1 6359  df-fo 6360  df-f1o 6361  df-fv 6362  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7574  df-wrecs 7943  df-recs 8004  df-rdg 8042  df-er 8284  df-en 8504  df-dom 8505  df-sdom 8506  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-n0 11892  df-z 11976  df-dvds 15603
This theorem is referenced by:  gcdaddmlem  15867  dvdsgcd  15887
  Copyright terms: Public domain W3C validator