MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ecelqsw Structured version   Visualization version   GIF version

Theorem ecelqsw 8696
Description: Membership of an equivalence class in a quotient set. More restrictive antecedent; kept for backward compatibility; for new work, prefer ecelqs 8695. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 9-Jul-2014.) (Proof shortened by AV, 25-Nov-2025.)
Assertion
Ref Expression
ecelqsw ((𝑅𝑉𝐵𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅))

Proof of Theorem ecelqsw
StepHypRef Expression
1 resexg 5978 . 2 (𝑅𝑉 → (𝑅𝐴) ∈ V)
2 ecelqs 8695 . 2 (((𝑅𝐴) ∈ V ∧ 𝐵𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅))
31, 2sylan 580 1 ((𝑅𝑉𝐵𝐴) → [𝐵]𝑅 ∈ (𝐴 / 𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  Vcvv 3436  cres 5621  [cec 8623   / cqs 8624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371  ax-un 7671
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-xp 5625  df-rel 5626  df-cnv 5627  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-ec 8627  df-qs 8631
This theorem is referenced by:  ecelqsi  8697  qliftlem  8725  erov  8741  eroprf  8742  sylow2a  19498  sylow2blem1  19499  sylow2blem2  19500  cldsubg  23996  tgjustr  28419
  Copyright terms: Public domain W3C validator