| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > resuppsinopn | Structured version Visualization version GIF version | ||
| Description: The support of sin (df-supp 8149) restricted to the reals is an open set. (Contributed by SN, 7-Oct-2025.) |
| Ref | Expression |
|---|---|
| readvcot.d | ⊢ 𝐷 = {𝑦 ∈ ℝ ∣ (sin‘𝑦) ≠ 0} |
| Ref | Expression |
|---|---|
| resuppsinopn | ⊢ 𝐷 ∈ (topGen‘ran (,)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sincn 26361 | . . . . 5 ⊢ sin ∈ (ℂ–cn→ℂ) | |
| 2 | eqid 2730 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 3 | 2 | cncfcn1 24810 | . . . . 5 ⊢ (ℂ–cn→ℂ) = ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) |
| 4 | 1, 3 | eleqtri 2827 | . . . 4 ⊢ sin ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) |
| 5 | ax-resscn 11143 | . . . 4 ⊢ ℝ ⊆ ℂ | |
| 6 | unicntop 24679 | . . . . 5 ⊢ ℂ = ∪ (TopOpen‘ℂfld) | |
| 7 | 6 | cnrest 23178 | . . . 4 ⊢ ((sin ∈ ((TopOpen‘ℂfld) Cn (TopOpen‘ℂfld)) ∧ ℝ ⊆ ℂ) → (sin ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld))) |
| 8 | 4, 5, 7 | mp2an 692 | . . 3 ⊢ (sin ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld)) |
| 9 | cnn0opn 24681 | . . 3 ⊢ (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld) | |
| 10 | cnima 23158 | . . 3 ⊢ (((sin ↾ ℝ) ∈ (((TopOpen‘ℂfld) ↾t ℝ) Cn (TopOpen‘ℂfld)) ∧ (ℂ ∖ {0}) ∈ (TopOpen‘ℂfld)) → (◡(sin ↾ ℝ) “ (ℂ ∖ {0})) ∈ ((TopOpen‘ℂfld) ↾t ℝ)) | |
| 11 | 8, 9, 10 | mp2an 692 | . 2 ⊢ (◡(sin ↾ ℝ) “ (ℂ ∖ {0})) ∈ ((TopOpen‘ℂfld) ↾t ℝ) |
| 12 | resincl 16115 | . . . . . . . 8 ⊢ (𝑦 ∈ ℝ → (sin‘𝑦) ∈ ℝ) | |
| 13 | 12 | recnd 11220 | . . . . . . 7 ⊢ (𝑦 ∈ ℝ → (sin‘𝑦) ∈ ℂ) |
| 14 | 13 | adantr 480 | . . . . . 6 ⊢ ((𝑦 ∈ ℝ ∧ (sin‘𝑦) ≠ 0) → (sin‘𝑦) ∈ ℂ) |
| 15 | simpr 484 | . . . . . 6 ⊢ ((𝑦 ∈ ℝ ∧ (sin‘𝑦) ≠ 0) → (sin‘𝑦) ≠ 0) | |
| 16 | 14, 15 | eldifsnd 4759 | . . . . 5 ⊢ ((𝑦 ∈ ℝ ∧ (sin‘𝑦) ≠ 0) → (sin‘𝑦) ∈ (ℂ ∖ {0})) |
| 17 | eldifsni 4762 | . . . . . 6 ⊢ ((sin‘𝑦) ∈ (ℂ ∖ {0}) → (sin‘𝑦) ≠ 0) | |
| 18 | 17 | adantl 481 | . . . . 5 ⊢ ((𝑦 ∈ ℝ ∧ (sin‘𝑦) ∈ (ℂ ∖ {0})) → (sin‘𝑦) ≠ 0) |
| 19 | 16, 18 | impbida 800 | . . . 4 ⊢ (𝑦 ∈ ℝ → ((sin‘𝑦) ≠ 0 ↔ (sin‘𝑦) ∈ (ℂ ∖ {0}))) |
| 20 | 19 | rabbiia 3415 | . . 3 ⊢ {𝑦 ∈ ℝ ∣ (sin‘𝑦) ≠ 0} = {𝑦 ∈ ℝ ∣ (sin‘𝑦) ∈ (ℂ ∖ {0})} |
| 21 | readvcot.d | . . 3 ⊢ 𝐷 = {𝑦 ∈ ℝ ∣ (sin‘𝑦) ≠ 0} | |
| 22 | sinf 16099 | . . . . . . 7 ⊢ sin:ℂ⟶ℂ | |
| 23 | 22 | a1i 11 | . . . . . 6 ⊢ (⊤ → sin:ℂ⟶ℂ) |
| 24 | 5 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℝ ⊆ ℂ) |
| 25 | 23, 24 | feqresmpt 6937 | . . . . 5 ⊢ (⊤ → (sin ↾ ℝ) = (𝑦 ∈ ℝ ↦ (sin‘𝑦))) |
| 26 | 25 | mptru 1547 | . . . 4 ⊢ (sin ↾ ℝ) = (𝑦 ∈ ℝ ↦ (sin‘𝑦)) |
| 27 | 26 | mptpreima 6219 | . . 3 ⊢ (◡(sin ↾ ℝ) “ (ℂ ∖ {0})) = {𝑦 ∈ ℝ ∣ (sin‘𝑦) ∈ (ℂ ∖ {0})} |
| 28 | 20, 21, 27 | 3eqtr4i 2763 | . 2 ⊢ 𝐷 = (◡(sin ↾ ℝ) “ (ℂ ∖ {0})) |
| 29 | tgioo4 24699 | . 2 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 30 | 11, 28, 29 | 3eltr4i 2842 | 1 ⊢ 𝐷 ∈ (topGen‘ran (,)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2927 {crab 3411 ∖ cdif 3919 ⊆ wss 3922 {csn 4597 ↦ cmpt 5196 ◡ccnv 5645 ran crn 5647 ↾ cres 5648 “ cima 5649 ⟶wf 6515 ‘cfv 6519 (class class class)co 7394 ℂcc 11084 ℝcr 11085 0cc0 11086 (,)cioo 13319 sincsin 16036 ↾t crest 17389 TopOpenctopn 17390 topGenctg 17406 ℂfldccnfld 21270 Cn ccn 23117 –cn→ccncf 24775 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-inf2 9612 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 ax-addf 11165 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-of 7660 df-om 7851 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-er 8682 df-map 8805 df-pm 8806 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9331 df-fi 9380 df-sup 9411 df-inf 9412 df-oi 9481 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-uz 12810 df-q 12922 df-rp 12966 df-xneg 13085 df-xadd 13086 df-xmul 13087 df-ioo 13323 df-ico 13325 df-icc 13326 df-fz 13482 df-fzo 13629 df-fl 13766 df-seq 13977 df-exp 14037 df-fac 14249 df-bc 14278 df-hash 14306 df-shft 15043 df-cj 15075 df-re 15076 df-im 15077 df-sqrt 15211 df-abs 15212 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 df-sin 16042 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-rest 17391 df-topn 17392 df-0g 17410 df-gsum 17411 df-topgen 17412 df-pt 17413 df-prds 17416 df-xrs 17471 df-qtop 17476 df-imas 17477 df-xps 17479 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-mulg 19006 df-cntz 19255 df-cmn 19718 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-fbas 21267 df-fg 21268 df-cnfld 21271 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-cld 22912 df-ntr 22913 df-cls 22914 df-nei 22991 df-lp 23029 df-perf 23030 df-cn 23120 df-cnp 23121 df-t1 23207 df-haus 23208 df-tx 23455 df-hmeo 23648 df-fil 23739 df-fm 23831 df-flim 23832 df-flf 23833 df-xms 24214 df-ms 24215 df-tms 24216 df-cncf 24777 df-limc 25774 df-dv 25775 |
| This theorem is referenced by: readvcot 42344 |
| Copyright terms: Public domain | W3C validator |