Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1dg1rt Structured version   Visualization version   GIF version

Theorem ply1dg1rt 33604
Description: Express the root 𝐵 / 𝐴 of a polynomial 𝐴 · 𝑋 + 𝐵 of degree 1 over a field. (Contributed by Thierry Arnoux, 8-Jun-2025.)
Hypotheses
Ref Expression
ply1dg1rt.p 𝑃 = (Poly1𝑅)
ply1dg1rt.u 𝑈 = (Base‘𝑃)
ply1dg1rt.o 𝑂 = (eval1𝑅)
ply1dg1rt.d 𝐷 = (deg1𝑅)
ply1dg1rt.0 0 = (0g𝑅)
ply1dg1rt.r (𝜑𝑅 ∈ Field)
ply1dg1rt.g (𝜑𝐺𝑈)
ply1dg1rt.1 (𝜑 → (𝐷𝐺) = 1)
ply1dg1rt.x 𝑁 = (invg𝑅)
ply1dg1rt.m / = (/r𝑅)
ply1dg1rt.c 𝐶 = (coe1𝐺)
ply1dg1rt.a 𝐴 = (𝐶‘1)
ply1dg1rt.b 𝐵 = (𝐶‘0)
ply1dg1rt.z 𝑍 = ((𝑁𝐵) / 𝐴)
Assertion
Ref Expression
ply1dg1rt (𝜑 → ((𝑂𝐺) “ { 0 }) = {𝑍})

Proof of Theorem ply1dg1rt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ply1dg1rt.o . . . . 5 𝑂 = (eval1𝑅)
2 ply1dg1rt.p . . . . 5 𝑃 = (Poly1𝑅)
3 ply1dg1rt.u . . . . 5 𝑈 = (Base‘𝑃)
4 ply1dg1rt.r . . . . . 6 (𝜑𝑅 ∈ Field)
54fldcrngd 20742 . . . . 5 (𝜑𝑅 ∈ CRing)
6 eqid 2737 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
7 ply1dg1rt.g . . . . 5 (𝜑𝐺𝑈)
81, 2, 3, 5, 6, 7evl1fvf 33589 . . . 4 (𝜑 → (𝑂𝐺):(Base‘𝑅)⟶(Base‘𝑅))
98ffnd 6737 . . 3 (𝜑 → (𝑂𝐺) Fn (Base‘𝑅))
10 fniniseg2 7082 . . 3 ((𝑂𝐺) Fn (Base‘𝑅) → ((𝑂𝐺) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂𝐺)‘𝑥) = 0 })
119, 10syl 17 . 2 (𝜑 → ((𝑂𝐺) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂𝐺)‘𝑥) = 0 })
12 fveqeq2 6915 . . 3 (𝑥 = 𝑍 → (((𝑂𝐺)‘𝑥) = 0 ↔ ((𝑂𝐺)‘𝑍) = 0 ))
13 ply1dg1rt.z . . . 4 𝑍 = ((𝑁𝐵) / 𝐴)
145crngringd 20243 . . . . 5 (𝜑𝑅 ∈ Ring)
15 ply1dg1rt.x . . . . . 6 𝑁 = (invg𝑅)
165crnggrpd 20244 . . . . . 6 (𝜑𝑅 ∈ Grp)
17 ply1dg1rt.b . . . . . . 7 𝐵 = (𝐶‘0)
18 0nn0 12541 . . . . . . . 8 0 ∈ ℕ0
19 ply1dg1rt.c . . . . . . . . 9 𝐶 = (coe1𝐺)
2019, 3, 2, 6coe1fvalcl 22214 . . . . . . . 8 ((𝐺𝑈 ∧ 0 ∈ ℕ0) → (𝐶‘0) ∈ (Base‘𝑅))
217, 18, 20sylancl 586 . . . . . . 7 (𝜑 → (𝐶‘0) ∈ (Base‘𝑅))
2217, 21eqeltrid 2845 . . . . . 6 (𝜑𝐵 ∈ (Base‘𝑅))
236, 15, 16, 22grpinvcld 19006 . . . . 5 (𝜑 → (𝑁𝐵) ∈ (Base‘𝑅))
24 ply1dg1rt.a . . . . . 6 𝐴 = (𝐶‘1)
254flddrngd 20741 . . . . . . 7 (𝜑𝑅 ∈ DivRing)
26 1nn0 12542 . . . . . . . 8 1 ∈ ℕ0
2719, 3, 2, 6coe1fvalcl 22214 . . . . . . . 8 ((𝐺𝑈 ∧ 1 ∈ ℕ0) → (𝐶‘1) ∈ (Base‘𝑅))
287, 26, 27sylancl 586 . . . . . . 7 (𝜑 → (𝐶‘1) ∈ (Base‘𝑅))
29 ply1dg1rt.1 . . . . . . . . 9 (𝜑 → (𝐷𝐺) = 1)
3029fveq2d 6910 . . . . . . . 8 (𝜑 → (𝐶‘(𝐷𝐺)) = (𝐶‘1))
3129, 26eqeltrdi 2849 . . . . . . . . . 10 (𝜑 → (𝐷𝐺) ∈ ℕ0)
32 ply1dg1rt.d . . . . . . . . . . . 12 𝐷 = (deg1𝑅)
33 eqid 2737 . . . . . . . . . . . 12 (0g𝑃) = (0g𝑃)
3432, 2, 33, 3deg1nn0clb 26129 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐺𝑈) → (𝐺 ≠ (0g𝑃) ↔ (𝐷𝐺) ∈ ℕ0))
3534biimpar 477 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐺𝑈) ∧ (𝐷𝐺) ∈ ℕ0) → 𝐺 ≠ (0g𝑃))
3614, 7, 31, 35syl21anc 838 . . . . . . . . 9 (𝜑𝐺 ≠ (0g𝑃))
37 ply1dg1rt.0 . . . . . . . . . 10 0 = (0g𝑅)
3832, 2, 33, 3, 37, 19deg1ldg 26131 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐺𝑈𝐺 ≠ (0g𝑃)) → (𝐶‘(𝐷𝐺)) ≠ 0 )
3914, 7, 36, 38syl3anc 1373 . . . . . . . 8 (𝜑 → (𝐶‘(𝐷𝐺)) ≠ 0 )
4030, 39eqnetrrd 3009 . . . . . . 7 (𝜑 → (𝐶‘1) ≠ 0 )
41 eqid 2737 . . . . . . . . 9 (Unit‘𝑅) = (Unit‘𝑅)
426, 41, 37drngunit 20734 . . . . . . . 8 (𝑅 ∈ DivRing → ((𝐶‘1) ∈ (Unit‘𝑅) ↔ ((𝐶‘1) ∈ (Base‘𝑅) ∧ (𝐶‘1) ≠ 0 )))
4342biimpar 477 . . . . . . 7 ((𝑅 ∈ DivRing ∧ ((𝐶‘1) ∈ (Base‘𝑅) ∧ (𝐶‘1) ≠ 0 )) → (𝐶‘1) ∈ (Unit‘𝑅))
4425, 28, 40, 43syl12anc 837 . . . . . 6 (𝜑 → (𝐶‘1) ∈ (Unit‘𝑅))
4524, 44eqeltrid 2845 . . . . 5 (𝜑𝐴 ∈ (Unit‘𝑅))
46 ply1dg1rt.m . . . . . 6 / = (/r𝑅)
476, 41, 46dvrcl 20404 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁𝐵) ∈ (Base‘𝑅) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝑁𝐵) / 𝐴) ∈ (Base‘𝑅))
4814, 23, 45, 47syl3anc 1373 . . . 4 (𝜑 → ((𝑁𝐵) / 𝐴) ∈ (Base‘𝑅))
4913, 48eqeltrid 2845 . . 3 (𝜑𝑍 ∈ (Base‘𝑅))
50 eqidd 2738 . . . 4 (𝜑𝑍 = 𝑍)
51 eqeq1 2741 . . . . . 6 (𝑥 = 𝑍 → (𝑥 = 𝑍𝑍 = 𝑍))
5251imbi1d 341 . . . . 5 (𝑥 = 𝑍 → ((𝑥 = 𝑍 → ((𝑂𝐺)‘𝑍) = 0 ) ↔ (𝑍 = 𝑍 → ((𝑂𝐺)‘𝑍) = 0 )))
53 fveq2 6906 . . . . . . . . 9 (𝑥 = 𝑍 → ((𝑂𝐺)‘𝑥) = ((𝑂𝐺)‘𝑍))
5453adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑥 = 𝑍) → ((𝑂𝐺)‘𝑥) = ((𝑂𝐺)‘𝑍))
5516adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Grp)
56 eqid 2737 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
5714adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
5824, 28eqeltrid 2845 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ (Base‘𝑅))
5958adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐴 ∈ (Base‘𝑅))
60 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
616, 56, 57, 59, 60ringcld 20257 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐴(.r𝑅)𝑥) ∈ (Base‘𝑅))
6223adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑁𝐵) ∈ (Base‘𝑅))
6322adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐵 ∈ (Base‘𝑅))
64 eqid 2737 . . . . . . . . . . . . . 14 (+g𝑅) = (+g𝑅)
656, 64grprcan 18991 . . . . . . . . . . . . 13 ((𝑅 ∈ Grp ∧ ((𝐴(.r𝑅)𝑥) ∈ (Base‘𝑅) ∧ (𝑁𝐵) ∈ (Base‘𝑅) ∧ 𝐵 ∈ (Base‘𝑅))) → (((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = ((𝑁𝐵)(+g𝑅)𝐵) ↔ (𝐴(.r𝑅)𝑥) = (𝑁𝐵)))
6655, 61, 62, 63, 65syl13anc 1374 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = ((𝑁𝐵)(+g𝑅)𝐵) ↔ (𝐴(.r𝑅)𝑥) = (𝑁𝐵)))
675adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ CRing)
6848adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝑁𝐵) / 𝐴) ∈ (Base‘𝑅))
696, 56, 67, 68, 59crngcomd 20252 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝑁𝐵) / 𝐴)(.r𝑅)𝐴) = (𝐴(.r𝑅)((𝑁𝐵) / 𝐴)))
7045adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐴 ∈ (Unit‘𝑅))
716, 41, 46, 56dvrcan1 20409 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ (𝑁𝐵) ∈ (Base‘𝑅) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((𝑁𝐵) / 𝐴)(.r𝑅)𝐴) = (𝑁𝐵))
7257, 62, 70, 71syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝑁𝐵) / 𝐴)(.r𝑅)𝐴) = (𝑁𝐵))
7369, 72eqtr3d 2779 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐴(.r𝑅)((𝑁𝐵) / 𝐴)) = (𝑁𝐵))
7473eqeq2d 2748 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐴(.r𝑅)𝑥) = (𝐴(.r𝑅)((𝑁𝐵) / 𝐴)) ↔ (𝐴(.r𝑅)𝑥) = (𝑁𝐵)))
75 drngdomn 20749 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ DivRing → 𝑅 ∈ Domn)
7625, 75syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ Domn)
77 domnnzr 20706 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
7876, 77syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ NzRing)
7978adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ NzRing)
8041, 37, 79, 70unitnz 33243 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐴0 )
8159, 80eldifsnd 4787 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐴 ∈ ((Base‘𝑅) ∖ { 0 }))
8276adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Domn)
836, 37, 56, 81, 60, 68, 82domnlcanb 20720 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐴(.r𝑅)𝑥) = (𝐴(.r𝑅)((𝑁𝐵) / 𝐴)) ↔ 𝑥 = ((𝑁𝐵) / 𝐴)))
8466, 74, 833bitr2rd 308 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 = ((𝑁𝐵) / 𝐴) ↔ ((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = ((𝑁𝐵)(+g𝑅)𝐵)))
856, 64, 37, 15, 55, 63grplinvd 19012 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝑁𝐵)(+g𝑅)𝐵) = 0 )
8685eqeq2d 2748 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = ((𝑁𝐵)(+g𝑅)𝐵) ↔ ((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = 0 ))
8784, 86bitr2d 280 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = 0𝑥 = ((𝑁𝐵) / 𝐴)))
887adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐺𝑈)
8929adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐷𝐺) = 1)
902, 1, 6, 3, 56, 64, 19, 32, 24, 17, 67, 88, 89, 60evl1deg1 33601 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝑂𝐺)‘𝑥) = ((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵))
9190eqeq1d 2739 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝑂𝐺)‘𝑥) = 0 ↔ ((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = 0 ))
9213eqeq2i 2750 . . . . . . . . . . 11 (𝑥 = 𝑍𝑥 = ((𝑁𝐵) / 𝐴))
9392a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 = 𝑍𝑥 = ((𝑁𝐵) / 𝐴)))
9487, 91, 933bitr4d 311 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝑂𝐺)‘𝑥) = 0𝑥 = 𝑍))
9594biimpar 477 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑥 = 𝑍) → ((𝑂𝐺)‘𝑥) = 0 )
9654, 95eqtr3d 2779 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑥 = 𝑍) → ((𝑂𝐺)‘𝑍) = 0 )
9796ex 412 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 = 𝑍 → ((𝑂𝐺)‘𝑍) = 0 ))
9897ralrimiva 3146 . . . . 5 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)(𝑥 = 𝑍 → ((𝑂𝐺)‘𝑍) = 0 ))
9952, 98, 49rspcdva 3623 . . . 4 (𝜑 → (𝑍 = 𝑍 → ((𝑂𝐺)‘𝑍) = 0 ))
10050, 99mpd 15 . . 3 (𝜑 → ((𝑂𝐺)‘𝑍) = 0 )
10194biimpa 476 . . 3 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ ((𝑂𝐺)‘𝑥) = 0 ) → 𝑥 = 𝑍)
10212, 49, 100, 101rabeqsnd 4669 . 2 (𝜑 → {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂𝐺)‘𝑥) = 0 } = {𝑍})
10311, 102eqtrd 2777 1 (𝜑 → ((𝑂𝐺) “ { 0 }) = {𝑍})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2940  {crab 3436  {csn 4626  ccnv 5684  cima 5688   Fn wfn 6556  cfv 6561  (class class class)co 7431  0cc0 11155  1c1 11156  0cn0 12526  Basecbs 17247  +gcplusg 17297  .rcmulr 17298  0gc0g 17484  Grpcgrp 18951  invgcminusg 18952  Ringcrg 20230  CRingccrg 20231  Unitcui 20355  /rcdvr 20400  NzRingcnzr 20512  Domncdomn 20692  DivRingcdr 20729  Fieldcfield 20730  Poly1cpl1 22178  coe1cco1 22179  eval1ce1 22318  deg1cdg1 26093
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-srg 20184  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-dvr 20401  df-rhm 20472  df-nzr 20513  df-subrng 20546  df-subrg 20570  df-rlreg 20694  df-domn 20695  df-drng 20731  df-field 20732  df-lmod 20860  df-lss 20930  df-lsp 20970  df-cnfld 21365  df-assa 21873  df-asp 21874  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-evls 22098  df-evl 22099  df-psr1 22181  df-vr1 22182  df-ply1 22183  df-coe1 22184  df-evls1 22319  df-evl1 22320  df-mdeg 26094  df-deg1 26095
This theorem is referenced by:  ply1dg1rtn0  33605
  Copyright terms: Public domain W3C validator