Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1dg1rt Structured version   Visualization version   GIF version

Theorem ply1dg1rt 33550
Description: Express the root 𝐵 / 𝐴 of a polynomial 𝐴 · 𝑋 + 𝐵 of degree 1 over a field. (Contributed by Thierry Arnoux, 8-Jun-2025.)
Hypotheses
Ref Expression
ply1dg1rt.p 𝑃 = (Poly1𝑅)
ply1dg1rt.u 𝑈 = (Base‘𝑃)
ply1dg1rt.o 𝑂 = (eval1𝑅)
ply1dg1rt.d 𝐷 = (deg1𝑅)
ply1dg1rt.0 0 = (0g𝑅)
ply1dg1rt.r (𝜑𝑅 ∈ Field)
ply1dg1rt.g (𝜑𝐺𝑈)
ply1dg1rt.1 (𝜑 → (𝐷𝐺) = 1)
ply1dg1rt.x 𝑁 = (invg𝑅)
ply1dg1rt.m / = (/r𝑅)
ply1dg1rt.c 𝐶 = (coe1𝐺)
ply1dg1rt.a 𝐴 = (𝐶‘1)
ply1dg1rt.b 𝐵 = (𝐶‘0)
ply1dg1rt.z 𝑍 = ((𝑁𝐵) / 𝐴)
Assertion
Ref Expression
ply1dg1rt (𝜑 → ((𝑂𝐺) “ { 0 }) = {𝑍})

Proof of Theorem ply1dg1rt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ply1dg1rt.o . . . . 5 𝑂 = (eval1𝑅)
2 ply1dg1rt.p . . . . 5 𝑃 = (Poly1𝑅)
3 ply1dg1rt.u . . . . 5 𝑈 = (Base‘𝑃)
4 ply1dg1rt.r . . . . . 6 (𝜑𝑅 ∈ Field)
54fldcrngd 20663 . . . . 5 (𝜑𝑅 ∈ CRing)
6 eqid 2731 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
7 ply1dg1rt.g . . . . 5 (𝜑𝐺𝑈)
81, 2, 3, 5, 6, 7evl1fvf 33533 . . . 4 (𝜑 → (𝑂𝐺):(Base‘𝑅)⟶(Base‘𝑅))
98ffnd 6658 . . 3 (𝜑 → (𝑂𝐺) Fn (Base‘𝑅))
10 fniniseg2 7001 . . 3 ((𝑂𝐺) Fn (Base‘𝑅) → ((𝑂𝐺) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂𝐺)‘𝑥) = 0 })
119, 10syl 17 . 2 (𝜑 → ((𝑂𝐺) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂𝐺)‘𝑥) = 0 })
12 fveqeq2 6837 . . 3 (𝑥 = 𝑍 → (((𝑂𝐺)‘𝑥) = 0 ↔ ((𝑂𝐺)‘𝑍) = 0 ))
13 ply1dg1rt.z . . . 4 𝑍 = ((𝑁𝐵) / 𝐴)
145crngringd 20170 . . . . 5 (𝜑𝑅 ∈ Ring)
15 ply1dg1rt.x . . . . . 6 𝑁 = (invg𝑅)
165crnggrpd 20171 . . . . . 6 (𝜑𝑅 ∈ Grp)
17 ply1dg1rt.b . . . . . . 7 𝐵 = (𝐶‘0)
18 0nn0 12402 . . . . . . . 8 0 ∈ ℕ0
19 ply1dg1rt.c . . . . . . . . 9 𝐶 = (coe1𝐺)
2019, 3, 2, 6coe1fvalcl 22131 . . . . . . . 8 ((𝐺𝑈 ∧ 0 ∈ ℕ0) → (𝐶‘0) ∈ (Base‘𝑅))
217, 18, 20sylancl 586 . . . . . . 7 (𝜑 → (𝐶‘0) ∈ (Base‘𝑅))
2217, 21eqeltrid 2835 . . . . . 6 (𝜑𝐵 ∈ (Base‘𝑅))
236, 15, 16, 22grpinvcld 18907 . . . . 5 (𝜑 → (𝑁𝐵) ∈ (Base‘𝑅))
24 ply1dg1rt.a . . . . . 6 𝐴 = (𝐶‘1)
254flddrngd 20662 . . . . . . 7 (𝜑𝑅 ∈ DivRing)
26 1nn0 12403 . . . . . . . 8 1 ∈ ℕ0
2719, 3, 2, 6coe1fvalcl 22131 . . . . . . . 8 ((𝐺𝑈 ∧ 1 ∈ ℕ0) → (𝐶‘1) ∈ (Base‘𝑅))
287, 26, 27sylancl 586 . . . . . . 7 (𝜑 → (𝐶‘1) ∈ (Base‘𝑅))
29 ply1dg1rt.1 . . . . . . . . 9 (𝜑 → (𝐷𝐺) = 1)
3029fveq2d 6832 . . . . . . . 8 (𝜑 → (𝐶‘(𝐷𝐺)) = (𝐶‘1))
3129, 26eqeltrdi 2839 . . . . . . . . . 10 (𝜑 → (𝐷𝐺) ∈ ℕ0)
32 ply1dg1rt.d . . . . . . . . . . . 12 𝐷 = (deg1𝑅)
33 eqid 2731 . . . . . . . . . . . 12 (0g𝑃) = (0g𝑃)
3432, 2, 33, 3deg1nn0clb 26028 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐺𝑈) → (𝐺 ≠ (0g𝑃) ↔ (𝐷𝐺) ∈ ℕ0))
3534biimpar 477 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐺𝑈) ∧ (𝐷𝐺) ∈ ℕ0) → 𝐺 ≠ (0g𝑃))
3614, 7, 31, 35syl21anc 837 . . . . . . . . 9 (𝜑𝐺 ≠ (0g𝑃))
37 ply1dg1rt.0 . . . . . . . . . 10 0 = (0g𝑅)
3832, 2, 33, 3, 37, 19deg1ldg 26030 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐺𝑈𝐺 ≠ (0g𝑃)) → (𝐶‘(𝐷𝐺)) ≠ 0 )
3914, 7, 36, 38syl3anc 1373 . . . . . . . 8 (𝜑 → (𝐶‘(𝐷𝐺)) ≠ 0 )
4030, 39eqnetrrd 2996 . . . . . . 7 (𝜑 → (𝐶‘1) ≠ 0 )
41 eqid 2731 . . . . . . . . 9 (Unit‘𝑅) = (Unit‘𝑅)
426, 41, 37drngunit 20655 . . . . . . . 8 (𝑅 ∈ DivRing → ((𝐶‘1) ∈ (Unit‘𝑅) ↔ ((𝐶‘1) ∈ (Base‘𝑅) ∧ (𝐶‘1) ≠ 0 )))
4342biimpar 477 . . . . . . 7 ((𝑅 ∈ DivRing ∧ ((𝐶‘1) ∈ (Base‘𝑅) ∧ (𝐶‘1) ≠ 0 )) → (𝐶‘1) ∈ (Unit‘𝑅))
4425, 28, 40, 43syl12anc 836 . . . . . 6 (𝜑 → (𝐶‘1) ∈ (Unit‘𝑅))
4524, 44eqeltrid 2835 . . . . 5 (𝜑𝐴 ∈ (Unit‘𝑅))
46 ply1dg1rt.m . . . . . 6 / = (/r𝑅)
476, 41, 46dvrcl 20328 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁𝐵) ∈ (Base‘𝑅) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝑁𝐵) / 𝐴) ∈ (Base‘𝑅))
4814, 23, 45, 47syl3anc 1373 . . . 4 (𝜑 → ((𝑁𝐵) / 𝐴) ∈ (Base‘𝑅))
4913, 48eqeltrid 2835 . . 3 (𝜑𝑍 ∈ (Base‘𝑅))
50 eqidd 2732 . . . 4 (𝜑𝑍 = 𝑍)
51 eqeq1 2735 . . . . . 6 (𝑥 = 𝑍 → (𝑥 = 𝑍𝑍 = 𝑍))
5251imbi1d 341 . . . . 5 (𝑥 = 𝑍 → ((𝑥 = 𝑍 → ((𝑂𝐺)‘𝑍) = 0 ) ↔ (𝑍 = 𝑍 → ((𝑂𝐺)‘𝑍) = 0 )))
53 fveq2 6828 . . . . . . . . 9 (𝑥 = 𝑍 → ((𝑂𝐺)‘𝑥) = ((𝑂𝐺)‘𝑍))
5453adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑥 = 𝑍) → ((𝑂𝐺)‘𝑥) = ((𝑂𝐺)‘𝑍))
5516adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Grp)
56 eqid 2731 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
5714adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
5824, 28eqeltrid 2835 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ (Base‘𝑅))
5958adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐴 ∈ (Base‘𝑅))
60 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
616, 56, 57, 59, 60ringcld 20184 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐴(.r𝑅)𝑥) ∈ (Base‘𝑅))
6223adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑁𝐵) ∈ (Base‘𝑅))
6322adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐵 ∈ (Base‘𝑅))
64 eqid 2731 . . . . . . . . . . . . . 14 (+g𝑅) = (+g𝑅)
656, 64grprcan 18892 . . . . . . . . . . . . 13 ((𝑅 ∈ Grp ∧ ((𝐴(.r𝑅)𝑥) ∈ (Base‘𝑅) ∧ (𝑁𝐵) ∈ (Base‘𝑅) ∧ 𝐵 ∈ (Base‘𝑅))) → (((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = ((𝑁𝐵)(+g𝑅)𝐵) ↔ (𝐴(.r𝑅)𝑥) = (𝑁𝐵)))
6655, 61, 62, 63, 65syl13anc 1374 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = ((𝑁𝐵)(+g𝑅)𝐵) ↔ (𝐴(.r𝑅)𝑥) = (𝑁𝐵)))
675adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ CRing)
6848adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝑁𝐵) / 𝐴) ∈ (Base‘𝑅))
696, 56, 67, 68, 59crngcomd 20179 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝑁𝐵) / 𝐴)(.r𝑅)𝐴) = (𝐴(.r𝑅)((𝑁𝐵) / 𝐴)))
7045adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐴 ∈ (Unit‘𝑅))
716, 41, 46, 56dvrcan1 20333 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ (𝑁𝐵) ∈ (Base‘𝑅) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((𝑁𝐵) / 𝐴)(.r𝑅)𝐴) = (𝑁𝐵))
7257, 62, 70, 71syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝑁𝐵) / 𝐴)(.r𝑅)𝐴) = (𝑁𝐵))
7369, 72eqtr3d 2768 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐴(.r𝑅)((𝑁𝐵) / 𝐴)) = (𝑁𝐵))
7473eqeq2d 2742 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐴(.r𝑅)𝑥) = (𝐴(.r𝑅)((𝑁𝐵) / 𝐴)) ↔ (𝐴(.r𝑅)𝑥) = (𝑁𝐵)))
75 drngdomn 20670 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ DivRing → 𝑅 ∈ Domn)
7625, 75syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ Domn)
77 domnnzr 20627 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
7876, 77syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ NzRing)
7978adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ NzRing)
8041, 37, 79, 70unitnz 33213 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐴0 )
8159, 80eldifsnd 4738 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐴 ∈ ((Base‘𝑅) ∖ { 0 }))
8276adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Domn)
836, 37, 56, 81, 60, 68, 82domnlcanb 20641 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐴(.r𝑅)𝑥) = (𝐴(.r𝑅)((𝑁𝐵) / 𝐴)) ↔ 𝑥 = ((𝑁𝐵) / 𝐴)))
8466, 74, 833bitr2rd 308 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 = ((𝑁𝐵) / 𝐴) ↔ ((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = ((𝑁𝐵)(+g𝑅)𝐵)))
856, 64, 37, 15, 55, 63grplinvd 18913 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝑁𝐵)(+g𝑅)𝐵) = 0 )
8685eqeq2d 2742 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = ((𝑁𝐵)(+g𝑅)𝐵) ↔ ((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = 0 ))
8784, 86bitr2d 280 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = 0𝑥 = ((𝑁𝐵) / 𝐴)))
887adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐺𝑈)
8929adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐷𝐺) = 1)
902, 1, 6, 3, 56, 64, 19, 32, 24, 17, 67, 88, 89, 60evl1deg1 33546 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝑂𝐺)‘𝑥) = ((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵))
9190eqeq1d 2733 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝑂𝐺)‘𝑥) = 0 ↔ ((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = 0 ))
9213eqeq2i 2744 . . . . . . . . . . 11 (𝑥 = 𝑍𝑥 = ((𝑁𝐵) / 𝐴))
9392a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 = 𝑍𝑥 = ((𝑁𝐵) / 𝐴)))
9487, 91, 933bitr4d 311 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝑂𝐺)‘𝑥) = 0𝑥 = 𝑍))
9594biimpar 477 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑥 = 𝑍) → ((𝑂𝐺)‘𝑥) = 0 )
9654, 95eqtr3d 2768 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑥 = 𝑍) → ((𝑂𝐺)‘𝑍) = 0 )
9796ex 412 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 = 𝑍 → ((𝑂𝐺)‘𝑍) = 0 ))
9897ralrimiva 3124 . . . . 5 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)(𝑥 = 𝑍 → ((𝑂𝐺)‘𝑍) = 0 ))
9952, 98, 49rspcdva 3573 . . . 4 (𝜑 → (𝑍 = 𝑍 → ((𝑂𝐺)‘𝑍) = 0 ))
10050, 99mpd 15 . . 3 (𝜑 → ((𝑂𝐺)‘𝑍) = 0 )
10194biimpa 476 . . 3 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ ((𝑂𝐺)‘𝑥) = 0 ) → 𝑥 = 𝑍)
10212, 49, 100, 101rabeqsnd 4621 . 2 (𝜑 → {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂𝐺)‘𝑥) = 0 } = {𝑍})
10311, 102eqtrd 2766 1 (𝜑 → ((𝑂𝐺) “ { 0 }) = {𝑍})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  {crab 3395  {csn 4575  ccnv 5618  cima 5622   Fn wfn 6482  cfv 6487  (class class class)co 7352  0cc0 11012  1c1 11013  0cn0 12387  Basecbs 17126  +gcplusg 17167  .rcmulr 17168  0gc0g 17349  Grpcgrp 18852  invgcminusg 18853  Ringcrg 20157  CRingccrg 20158  Unitcui 20279  /rcdvr 20324  NzRingcnzr 20433  Domncdomn 20613  DivRingcdr 20650  Fieldcfield 20651  Poly1cpl1 22095  coe1cco1 22096  eval1ce1 22235  deg1cdg1 25992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089  ax-pre-sup 11090  ax-addf 11091
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-iin 4944  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-isom 6496  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-ofr 7617  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-er 8628  df-map 8758  df-pm 8759  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9252  df-sup 9332  df-oi 9402  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-7 12199  df-8 12200  df-9 12201  df-n0 12388  df-z 12475  df-dec 12595  df-uz 12739  df-fz 13414  df-fzo 13561  df-seq 13915  df-hash 14244  df-struct 17064  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-starv 17182  df-sca 17183  df-vsca 17184  df-ip 17185  df-tset 17186  df-ple 17187  df-ds 17189  df-unif 17190  df-hom 17191  df-cco 17192  df-0g 17351  df-gsum 17352  df-prds 17357  df-pws 17359  df-mre 17494  df-mrc 17495  df-acs 17497  df-mgm 18554  df-sgrp 18633  df-mnd 18649  df-mhm 18697  df-submnd 18698  df-grp 18855  df-minusg 18856  df-sbg 18857  df-mulg 18987  df-subg 19042  df-ghm 19131  df-cntz 19235  df-cmn 19700  df-abl 19701  df-mgp 20065  df-rng 20077  df-ur 20106  df-srg 20111  df-ring 20159  df-cring 20160  df-oppr 20261  df-dvdsr 20281  df-unit 20282  df-invr 20312  df-dvr 20325  df-rhm 20396  df-nzr 20434  df-subrng 20467  df-subrg 20491  df-rlreg 20615  df-domn 20616  df-drng 20652  df-field 20653  df-lmod 20801  df-lss 20871  df-lsp 20911  df-cnfld 21298  df-assa 21796  df-asp 21797  df-ascl 21798  df-psr 21852  df-mvr 21853  df-mpl 21854  df-opsr 21856  df-evls 22015  df-evl 22016  df-psr1 22098  df-vr1 22099  df-ply1 22100  df-coe1 22101  df-evls1 22236  df-evl1 22237  df-mdeg 25993  df-deg1 25994
This theorem is referenced by:  ply1dg1rtn0  33551
  Copyright terms: Public domain W3C validator