Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1dg1rt Structured version   Visualization version   GIF version

Theorem ply1dg1rt 33538
Description: Express the root 𝐵 / 𝐴 of a polynomial 𝐴 · 𝑋 + 𝐵 of degree 1 over a field. (Contributed by Thierry Arnoux, 8-Jun-2025.)
Hypotheses
Ref Expression
ply1dg1rt.p 𝑃 = (Poly1𝑅)
ply1dg1rt.u 𝑈 = (Base‘𝑃)
ply1dg1rt.o 𝑂 = (eval1𝑅)
ply1dg1rt.d 𝐷 = (deg1𝑅)
ply1dg1rt.0 0 = (0g𝑅)
ply1dg1rt.r (𝜑𝑅 ∈ Field)
ply1dg1rt.g (𝜑𝐺𝑈)
ply1dg1rt.1 (𝜑 → (𝐷𝐺) = 1)
ply1dg1rt.x 𝑁 = (invg𝑅)
ply1dg1rt.m / = (/r𝑅)
ply1dg1rt.c 𝐶 = (coe1𝐺)
ply1dg1rt.a 𝐴 = (𝐶‘1)
ply1dg1rt.b 𝐵 = (𝐶‘0)
ply1dg1rt.z 𝑍 = ((𝑁𝐵) / 𝐴)
Assertion
Ref Expression
ply1dg1rt (𝜑 → ((𝑂𝐺) “ { 0 }) = {𝑍})

Proof of Theorem ply1dg1rt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ply1dg1rt.o . . . . 5 𝑂 = (eval1𝑅)
2 ply1dg1rt.p . . . . 5 𝑃 = (Poly1𝑅)
3 ply1dg1rt.u . . . . 5 𝑈 = (Base‘𝑃)
4 ply1dg1rt.r . . . . . 6 (𝜑𝑅 ∈ Field)
54fldcrngd 20700 . . . . 5 (𝜑𝑅 ∈ CRing)
6 eqid 2735 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
7 ply1dg1rt.g . . . . 5 (𝜑𝐺𝑈)
81, 2, 3, 5, 6, 7evl1fvf 33522 . . . 4 (𝜑 → (𝑂𝐺):(Base‘𝑅)⟶(Base‘𝑅))
98ffnd 6706 . . 3 (𝜑 → (𝑂𝐺) Fn (Base‘𝑅))
10 fniniseg2 7051 . . 3 ((𝑂𝐺) Fn (Base‘𝑅) → ((𝑂𝐺) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂𝐺)‘𝑥) = 0 })
119, 10syl 17 . 2 (𝜑 → ((𝑂𝐺) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂𝐺)‘𝑥) = 0 })
12 fveqeq2 6884 . . 3 (𝑥 = 𝑍 → (((𝑂𝐺)‘𝑥) = 0 ↔ ((𝑂𝐺)‘𝑍) = 0 ))
13 ply1dg1rt.z . . . 4 𝑍 = ((𝑁𝐵) / 𝐴)
145crngringd 20204 . . . . 5 (𝜑𝑅 ∈ Ring)
15 ply1dg1rt.x . . . . . 6 𝑁 = (invg𝑅)
165crnggrpd 20205 . . . . . 6 (𝜑𝑅 ∈ Grp)
17 ply1dg1rt.b . . . . . . 7 𝐵 = (𝐶‘0)
18 0nn0 12514 . . . . . . . 8 0 ∈ ℕ0
19 ply1dg1rt.c . . . . . . . . 9 𝐶 = (coe1𝐺)
2019, 3, 2, 6coe1fvalcl 22146 . . . . . . . 8 ((𝐺𝑈 ∧ 0 ∈ ℕ0) → (𝐶‘0) ∈ (Base‘𝑅))
217, 18, 20sylancl 586 . . . . . . 7 (𝜑 → (𝐶‘0) ∈ (Base‘𝑅))
2217, 21eqeltrid 2838 . . . . . 6 (𝜑𝐵 ∈ (Base‘𝑅))
236, 15, 16, 22grpinvcld 18969 . . . . 5 (𝜑 → (𝑁𝐵) ∈ (Base‘𝑅))
24 ply1dg1rt.a . . . . . 6 𝐴 = (𝐶‘1)
254flddrngd 20699 . . . . . . 7 (𝜑𝑅 ∈ DivRing)
26 1nn0 12515 . . . . . . . 8 1 ∈ ℕ0
2719, 3, 2, 6coe1fvalcl 22146 . . . . . . . 8 ((𝐺𝑈 ∧ 1 ∈ ℕ0) → (𝐶‘1) ∈ (Base‘𝑅))
287, 26, 27sylancl 586 . . . . . . 7 (𝜑 → (𝐶‘1) ∈ (Base‘𝑅))
29 ply1dg1rt.1 . . . . . . . . 9 (𝜑 → (𝐷𝐺) = 1)
3029fveq2d 6879 . . . . . . . 8 (𝜑 → (𝐶‘(𝐷𝐺)) = (𝐶‘1))
3129, 26eqeltrdi 2842 . . . . . . . . . 10 (𝜑 → (𝐷𝐺) ∈ ℕ0)
32 ply1dg1rt.d . . . . . . . . . . . 12 𝐷 = (deg1𝑅)
33 eqid 2735 . . . . . . . . . . . 12 (0g𝑃) = (0g𝑃)
3432, 2, 33, 3deg1nn0clb 26045 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐺𝑈) → (𝐺 ≠ (0g𝑃) ↔ (𝐷𝐺) ∈ ℕ0))
3534biimpar 477 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐺𝑈) ∧ (𝐷𝐺) ∈ ℕ0) → 𝐺 ≠ (0g𝑃))
3614, 7, 31, 35syl21anc 837 . . . . . . . . 9 (𝜑𝐺 ≠ (0g𝑃))
37 ply1dg1rt.0 . . . . . . . . . 10 0 = (0g𝑅)
3832, 2, 33, 3, 37, 19deg1ldg 26047 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐺𝑈𝐺 ≠ (0g𝑃)) → (𝐶‘(𝐷𝐺)) ≠ 0 )
3914, 7, 36, 38syl3anc 1373 . . . . . . . 8 (𝜑 → (𝐶‘(𝐷𝐺)) ≠ 0 )
4030, 39eqnetrrd 3000 . . . . . . 7 (𝜑 → (𝐶‘1) ≠ 0 )
41 eqid 2735 . . . . . . . . 9 (Unit‘𝑅) = (Unit‘𝑅)
426, 41, 37drngunit 20692 . . . . . . . 8 (𝑅 ∈ DivRing → ((𝐶‘1) ∈ (Unit‘𝑅) ↔ ((𝐶‘1) ∈ (Base‘𝑅) ∧ (𝐶‘1) ≠ 0 )))
4342biimpar 477 . . . . . . 7 ((𝑅 ∈ DivRing ∧ ((𝐶‘1) ∈ (Base‘𝑅) ∧ (𝐶‘1) ≠ 0 )) → (𝐶‘1) ∈ (Unit‘𝑅))
4425, 28, 40, 43syl12anc 836 . . . . . 6 (𝜑 → (𝐶‘1) ∈ (Unit‘𝑅))
4524, 44eqeltrid 2838 . . . . 5 (𝜑𝐴 ∈ (Unit‘𝑅))
46 ply1dg1rt.m . . . . . 6 / = (/r𝑅)
476, 41, 46dvrcl 20362 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁𝐵) ∈ (Base‘𝑅) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝑁𝐵) / 𝐴) ∈ (Base‘𝑅))
4814, 23, 45, 47syl3anc 1373 . . . 4 (𝜑 → ((𝑁𝐵) / 𝐴) ∈ (Base‘𝑅))
4913, 48eqeltrid 2838 . . 3 (𝜑𝑍 ∈ (Base‘𝑅))
50 eqidd 2736 . . . 4 (𝜑𝑍 = 𝑍)
51 eqeq1 2739 . . . . . 6 (𝑥 = 𝑍 → (𝑥 = 𝑍𝑍 = 𝑍))
5251imbi1d 341 . . . . 5 (𝑥 = 𝑍 → ((𝑥 = 𝑍 → ((𝑂𝐺)‘𝑍) = 0 ) ↔ (𝑍 = 𝑍 → ((𝑂𝐺)‘𝑍) = 0 )))
53 fveq2 6875 . . . . . . . . 9 (𝑥 = 𝑍 → ((𝑂𝐺)‘𝑥) = ((𝑂𝐺)‘𝑍))
5453adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑥 = 𝑍) → ((𝑂𝐺)‘𝑥) = ((𝑂𝐺)‘𝑍))
5516adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Grp)
56 eqid 2735 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
5714adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
5824, 28eqeltrid 2838 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ (Base‘𝑅))
5958adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐴 ∈ (Base‘𝑅))
60 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
616, 56, 57, 59, 60ringcld 20218 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐴(.r𝑅)𝑥) ∈ (Base‘𝑅))
6223adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑁𝐵) ∈ (Base‘𝑅))
6322adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐵 ∈ (Base‘𝑅))
64 eqid 2735 . . . . . . . . . . . . . 14 (+g𝑅) = (+g𝑅)
656, 64grprcan 18954 . . . . . . . . . . . . 13 ((𝑅 ∈ Grp ∧ ((𝐴(.r𝑅)𝑥) ∈ (Base‘𝑅) ∧ (𝑁𝐵) ∈ (Base‘𝑅) ∧ 𝐵 ∈ (Base‘𝑅))) → (((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = ((𝑁𝐵)(+g𝑅)𝐵) ↔ (𝐴(.r𝑅)𝑥) = (𝑁𝐵)))
6655, 61, 62, 63, 65syl13anc 1374 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = ((𝑁𝐵)(+g𝑅)𝐵) ↔ (𝐴(.r𝑅)𝑥) = (𝑁𝐵)))
675adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ CRing)
6848adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝑁𝐵) / 𝐴) ∈ (Base‘𝑅))
696, 56, 67, 68, 59crngcomd 20213 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝑁𝐵) / 𝐴)(.r𝑅)𝐴) = (𝐴(.r𝑅)((𝑁𝐵) / 𝐴)))
7045adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐴 ∈ (Unit‘𝑅))
716, 41, 46, 56dvrcan1 20367 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ (𝑁𝐵) ∈ (Base‘𝑅) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((𝑁𝐵) / 𝐴)(.r𝑅)𝐴) = (𝑁𝐵))
7257, 62, 70, 71syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝑁𝐵) / 𝐴)(.r𝑅)𝐴) = (𝑁𝐵))
7369, 72eqtr3d 2772 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐴(.r𝑅)((𝑁𝐵) / 𝐴)) = (𝑁𝐵))
7473eqeq2d 2746 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐴(.r𝑅)𝑥) = (𝐴(.r𝑅)((𝑁𝐵) / 𝐴)) ↔ (𝐴(.r𝑅)𝑥) = (𝑁𝐵)))
75 drngdomn 20707 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ DivRing → 𝑅 ∈ Domn)
7625, 75syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ Domn)
77 domnnzr 20664 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
7876, 77syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ NzRing)
7978adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ NzRing)
8041, 37, 79, 70unitnz 33180 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐴0 )
8159, 80eldifsnd 4763 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐴 ∈ ((Base‘𝑅) ∖ { 0 }))
8276adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Domn)
836, 37, 56, 81, 60, 68, 82domnlcanb 20678 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐴(.r𝑅)𝑥) = (𝐴(.r𝑅)((𝑁𝐵) / 𝐴)) ↔ 𝑥 = ((𝑁𝐵) / 𝐴)))
8466, 74, 833bitr2rd 308 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 = ((𝑁𝐵) / 𝐴) ↔ ((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = ((𝑁𝐵)(+g𝑅)𝐵)))
856, 64, 37, 15, 55, 63grplinvd 18975 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝑁𝐵)(+g𝑅)𝐵) = 0 )
8685eqeq2d 2746 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = ((𝑁𝐵)(+g𝑅)𝐵) ↔ ((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = 0 ))
8784, 86bitr2d 280 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = 0𝑥 = ((𝑁𝐵) / 𝐴)))
887adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐺𝑈)
8929adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐷𝐺) = 1)
902, 1, 6, 3, 56, 64, 19, 32, 24, 17, 67, 88, 89, 60evl1deg1 33535 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝑂𝐺)‘𝑥) = ((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵))
9190eqeq1d 2737 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝑂𝐺)‘𝑥) = 0 ↔ ((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = 0 ))
9213eqeq2i 2748 . . . . . . . . . . 11 (𝑥 = 𝑍𝑥 = ((𝑁𝐵) / 𝐴))
9392a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 = 𝑍𝑥 = ((𝑁𝐵) / 𝐴)))
9487, 91, 933bitr4d 311 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝑂𝐺)‘𝑥) = 0𝑥 = 𝑍))
9594biimpar 477 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑥 = 𝑍) → ((𝑂𝐺)‘𝑥) = 0 )
9654, 95eqtr3d 2772 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑥 = 𝑍) → ((𝑂𝐺)‘𝑍) = 0 )
9796ex 412 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 = 𝑍 → ((𝑂𝐺)‘𝑍) = 0 ))
9897ralrimiva 3132 . . . . 5 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)(𝑥 = 𝑍 → ((𝑂𝐺)‘𝑍) = 0 ))
9952, 98, 49rspcdva 3602 . . . 4 (𝜑 → (𝑍 = 𝑍 → ((𝑂𝐺)‘𝑍) = 0 ))
10050, 99mpd 15 . . 3 (𝜑 → ((𝑂𝐺)‘𝑍) = 0 )
10194biimpa 476 . . 3 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ ((𝑂𝐺)‘𝑥) = 0 ) → 𝑥 = 𝑍)
10212, 49, 100, 101rabeqsnd 4645 . 2 (𝜑 → {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂𝐺)‘𝑥) = 0 } = {𝑍})
10311, 102eqtrd 2770 1 (𝜑 → ((𝑂𝐺) “ { 0 }) = {𝑍})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  {crab 3415  {csn 4601  ccnv 5653  cima 5657   Fn wfn 6525  cfv 6530  (class class class)co 7403  0cc0 11127  1c1 11128  0cn0 12499  Basecbs 17226  +gcplusg 17269  .rcmulr 17270  0gc0g 17451  Grpcgrp 18914  invgcminusg 18915  Ringcrg 20191  CRingccrg 20192  Unitcui 20313  /rcdvr 20358  NzRingcnzr 20470  Domncdomn 20650  DivRingcdr 20687  Fieldcfield 20688  Poly1cpl1 22110  coe1cco1 22111  eval1ce1 22250  deg1cdg1 26009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-1cn 11185  ax-icn 11186  ax-addcl 11187  ax-addrcl 11188  ax-mulcl 11189  ax-mulrcl 11190  ax-mulcom 11191  ax-addass 11192  ax-mulass 11193  ax-distr 11194  ax-i2m1 11195  ax-1ne0 11196  ax-1rid 11197  ax-rnegex 11198  ax-rrecex 11199  ax-cnre 11200  ax-pre-lttri 11201  ax-pre-lttrn 11202  ax-pre-ltadd 11203  ax-pre-mulgt0 11204  ax-pre-sup 11205  ax-addf 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-isom 6539  df-riota 7360  df-ov 7406  df-oprab 7407  df-mpo 7408  df-of 7669  df-ofr 7670  df-om 7860  df-1st 7986  df-2nd 7987  df-supp 8158  df-tpos 8223  df-frecs 8278  df-wrecs 8309  df-recs 8383  df-rdg 8422  df-1o 8478  df-2o 8479  df-er 8717  df-map 8840  df-pm 8841  df-ixp 8910  df-en 8958  df-dom 8959  df-sdom 8960  df-fin 8961  df-fsupp 9372  df-sup 9452  df-oi 9522  df-card 9951  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-sub 11466  df-neg 11467  df-nn 12239  df-2 12301  df-3 12302  df-4 12303  df-5 12304  df-6 12305  df-7 12306  df-8 12307  df-9 12308  df-n0 12500  df-z 12587  df-dec 12707  df-uz 12851  df-fz 13523  df-fzo 13670  df-seq 14018  df-hash 14347  df-struct 17164  df-sets 17181  df-slot 17199  df-ndx 17211  df-base 17227  df-ress 17250  df-plusg 17282  df-mulr 17283  df-starv 17284  df-sca 17285  df-vsca 17286  df-ip 17287  df-tset 17288  df-ple 17289  df-ds 17291  df-unif 17292  df-hom 17293  df-cco 17294  df-0g 17453  df-gsum 17454  df-prds 17459  df-pws 17461  df-mre 17596  df-mrc 17597  df-acs 17599  df-mgm 18616  df-sgrp 18695  df-mnd 18711  df-mhm 18759  df-submnd 18760  df-grp 18917  df-minusg 18918  df-sbg 18919  df-mulg 19049  df-subg 19104  df-ghm 19194  df-cntz 19298  df-cmn 19761  df-abl 19762  df-mgp 20099  df-rng 20111  df-ur 20140  df-srg 20145  df-ring 20193  df-cring 20194  df-oppr 20295  df-dvdsr 20315  df-unit 20316  df-invr 20346  df-dvr 20359  df-rhm 20430  df-nzr 20471  df-subrng 20504  df-subrg 20528  df-rlreg 20652  df-domn 20653  df-drng 20689  df-field 20690  df-lmod 20817  df-lss 20887  df-lsp 20927  df-cnfld 21314  df-assa 21811  df-asp 21812  df-ascl 21813  df-psr 21867  df-mvr 21868  df-mpl 21869  df-opsr 21871  df-evls 22030  df-evl 22031  df-psr1 22113  df-vr1 22114  df-ply1 22115  df-coe1 22116  df-evls1 22251  df-evl1 22252  df-mdeg 26010  df-deg1 26011
This theorem is referenced by:  ply1dg1rtn0  33539
  Copyright terms: Public domain W3C validator