Step | Hyp | Ref
| Expression |
1 | | ply1dg1rt.o |
. . . . 5
⊢ 𝑂 = (eval1‘𝑅) |
2 | | ply1dg1rt.p |
. . . . 5
⊢ 𝑃 = (Poly1‘𝑅) |
3 | | ply1dg1rt.u |
. . . . 5
⊢ 𝑈 = (Base‘𝑃) |
4 | | ply1dg1rt.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Field) |
5 | 4 | fldcrngd 20716 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ CRing) |
6 | | eqid 2726 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝑅) |
7 | | ply1dg1rt.g |
. . . . 5
⊢ (𝜑 → 𝐺 ∈ 𝑈) |
8 | 1, 2, 3, 5, 6, 7 | evl1fvf 33442 |
. . . 4
⊢ (𝜑 → (𝑂‘𝐺):(Base‘𝑅)⟶(Base‘𝑅)) |
9 | 8 | ffnd 6721 |
. . 3
⊢ (𝜑 → (𝑂‘𝐺) Fn (Base‘𝑅)) |
10 | | fniniseg2 7067 |
. . 3
⊢ ((𝑂‘𝐺) Fn (Base‘𝑅) → (◡(𝑂‘𝐺) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐺)‘𝑥) = 0 }) |
11 | 9, 10 | syl 17 |
. 2
⊢ (𝜑 → (◡(𝑂‘𝐺) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐺)‘𝑥) = 0 }) |
12 | | fveqeq2 6902 |
. . 3
⊢ (𝑥 = 𝑍 → (((𝑂‘𝐺)‘𝑥) = 0 ↔ ((𝑂‘𝐺)‘𝑍) = 0 )) |
13 | | ply1dg1rt.z |
. . . 4
⊢ 𝑍 = ((𝑁‘𝐵) / 𝐴) |
14 | 5 | crngringd 20225 |
. . . . 5
⊢ (𝜑 → 𝑅 ∈ Ring) |
15 | | ply1dg1rt.x |
. . . . . 6
⊢ 𝑁 = (invg‘𝑅) |
16 | 5 | crnggrpd 20226 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Grp) |
17 | | ply1dg1rt.b |
. . . . . . 7
⊢ 𝐵 = (𝐶‘0) |
18 | | 0nn0 12533 |
. . . . . . . 8
⊢ 0 ∈
ℕ0 |
19 | | ply1dg1rt.c |
. . . . . . . . 9
⊢ 𝐶 = (coe1‘𝐺) |
20 | 19, 3, 2, 6 | coe1fvalcl 22198 |
. . . . . . . 8
⊢ ((𝐺 ∈ 𝑈 ∧ 0 ∈ ℕ0) →
(𝐶‘0) ∈
(Base‘𝑅)) |
21 | 7, 18, 20 | sylancl 584 |
. . . . . . 7
⊢ (𝜑 → (𝐶‘0) ∈ (Base‘𝑅)) |
22 | 17, 21 | eqeltrid 2830 |
. . . . . 6
⊢ (𝜑 → 𝐵 ∈ (Base‘𝑅)) |
23 | 6, 15, 16, 22 | grpinvcld 18978 |
. . . . 5
⊢ (𝜑 → (𝑁‘𝐵) ∈ (Base‘𝑅)) |
24 | | ply1dg1rt.a |
. . . . . 6
⊢ 𝐴 = (𝐶‘1) |
25 | 4 | flddrngd 20715 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ DivRing) |
26 | | 1nn0 12534 |
. . . . . . . 8
⊢ 1 ∈
ℕ0 |
27 | 19, 3, 2, 6 | coe1fvalcl 22198 |
. . . . . . . 8
⊢ ((𝐺 ∈ 𝑈 ∧ 1 ∈ ℕ0) →
(𝐶‘1) ∈
(Base‘𝑅)) |
28 | 7, 26, 27 | sylancl 584 |
. . . . . . 7
⊢ (𝜑 → (𝐶‘1) ∈ (Base‘𝑅)) |
29 | | ply1dg1rt.1 |
. . . . . . . . 9
⊢ (𝜑 → (𝐷‘𝐺) = 1) |
30 | 29 | fveq2d 6897 |
. . . . . . . 8
⊢ (𝜑 → (𝐶‘(𝐷‘𝐺)) = (𝐶‘1)) |
31 | 29, 26 | eqeltrdi 2834 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐷‘𝐺) ∈
ℕ0) |
32 | | ply1dg1rt.d |
. . . . . . . . . . . 12
⊢ 𝐷 = (deg1‘𝑅) |
33 | | eqid 2726 |
. . . . . . . . . . . 12
⊢
(0g‘𝑃) = (0g‘𝑃) |
34 | 32, 2, 33, 3 | deg1nn0clb 26114 |
. . . . . . . . . . 11
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝑈) → (𝐺 ≠ (0g‘𝑃) ↔ (𝐷‘𝐺) ∈
ℕ0)) |
35 | 34 | biimpar 476 |
. . . . . . . . . 10
⊢ (((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝑈) ∧ (𝐷‘𝐺) ∈ ℕ0) → 𝐺 ≠ (0g‘𝑃)) |
36 | 14, 7, 31, 35 | syl21anc 836 |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ≠ (0g‘𝑃)) |
37 | | ply1dg1rt.0 |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝑅) |
38 | 32, 2, 33, 3, 37, 19 | deg1ldg 26116 |
. . . . . . . . 9
⊢ ((𝑅 ∈ Ring ∧ 𝐺 ∈ 𝑈 ∧ 𝐺 ≠ (0g‘𝑃)) → (𝐶‘(𝐷‘𝐺)) ≠ 0 ) |
39 | 14, 7, 36, 38 | syl3anc 1368 |
. . . . . . . 8
⊢ (𝜑 → (𝐶‘(𝐷‘𝐺)) ≠ 0 ) |
40 | 30, 39 | eqnetrrd 2999 |
. . . . . . 7
⊢ (𝜑 → (𝐶‘1) ≠ 0 ) |
41 | | eqid 2726 |
. . . . . . . . 9
⊢
(Unit‘𝑅) =
(Unit‘𝑅) |
42 | 6, 41, 37 | drngunit 20708 |
. . . . . . . 8
⊢ (𝑅 ∈ DivRing → ((𝐶‘1) ∈
(Unit‘𝑅) ↔
((𝐶‘1) ∈
(Base‘𝑅) ∧ (𝐶‘1) ≠ 0
))) |
43 | 42 | biimpar 476 |
. . . . . . 7
⊢ ((𝑅 ∈ DivRing ∧ ((𝐶‘1) ∈
(Base‘𝑅) ∧ (𝐶‘1) ≠ 0 )) →
(𝐶‘1) ∈
(Unit‘𝑅)) |
44 | 25, 28, 40, 43 | syl12anc 835 |
. . . . . 6
⊢ (𝜑 → (𝐶‘1) ∈ (Unit‘𝑅)) |
45 | 24, 44 | eqeltrid 2830 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ (Unit‘𝑅)) |
46 | | ply1dg1rt.m |
. . . . . 6
⊢ / =
(/r‘𝑅) |
47 | 6, 41, 46 | dvrcl 20382 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ (𝑁‘𝐵) ∈ (Base‘𝑅) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝑁‘𝐵) / 𝐴) ∈ (Base‘𝑅)) |
48 | 14, 23, 45, 47 | syl3anc 1368 |
. . . 4
⊢ (𝜑 → ((𝑁‘𝐵) / 𝐴) ∈ (Base‘𝑅)) |
49 | 13, 48 | eqeltrid 2830 |
. . 3
⊢ (𝜑 → 𝑍 ∈ (Base‘𝑅)) |
50 | | eqidd 2727 |
. . . 4
⊢ (𝜑 → 𝑍 = 𝑍) |
51 | | eqeq1 2730 |
. . . . . 6
⊢ (𝑥 = 𝑍 → (𝑥 = 𝑍 ↔ 𝑍 = 𝑍)) |
52 | 51 | imbi1d 340 |
. . . . 5
⊢ (𝑥 = 𝑍 → ((𝑥 = 𝑍 → ((𝑂‘𝐺)‘𝑍) = 0 ) ↔ (𝑍 = 𝑍 → ((𝑂‘𝐺)‘𝑍) = 0 ))) |
53 | | fveq2 6893 |
. . . . . . . . 9
⊢ (𝑥 = 𝑍 → ((𝑂‘𝐺)‘𝑥) = ((𝑂‘𝐺)‘𝑍)) |
54 | 53 | adantl 480 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑥 = 𝑍) → ((𝑂‘𝐺)‘𝑥) = ((𝑂‘𝐺)‘𝑍)) |
55 | 16 | adantr 479 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Grp) |
56 | | eqid 2726 |
. . . . . . . . . . . . . 14
⊢
(.r‘𝑅) = (.r‘𝑅) |
57 | 14 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring) |
58 | 24, 28 | eqeltrid 2830 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐴 ∈ (Base‘𝑅)) |
59 | 58 | adantr 479 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → 𝐴 ∈ (Base‘𝑅)) |
60 | | simpr 483 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅)) |
61 | 6, 56, 57, 59, 60 | ringcld 20238 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐴(.r‘𝑅)𝑥) ∈ (Base‘𝑅)) |
62 | 23 | adantr 479 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑁‘𝐵) ∈ (Base‘𝑅)) |
63 | 22 | adantr 479 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → 𝐵 ∈ (Base‘𝑅)) |
64 | | eqid 2726 |
. . . . . . . . . . . . . 14
⊢
(+g‘𝑅) = (+g‘𝑅) |
65 | 6, 64 | grprcan 18963 |
. . . . . . . . . . . . 13
⊢ ((𝑅 ∈ Grp ∧ ((𝐴(.r‘𝑅)𝑥) ∈ (Base‘𝑅) ∧ (𝑁‘𝐵) ∈ (Base‘𝑅) ∧ 𝐵 ∈ (Base‘𝑅))) → (((𝐴(.r‘𝑅)𝑥)(+g‘𝑅)𝐵) = ((𝑁‘𝐵)(+g‘𝑅)𝐵) ↔ (𝐴(.r‘𝑅)𝑥) = (𝑁‘𝐵))) |
66 | 55, 61, 62, 63, 65 | syl13anc 1369 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → (((𝐴(.r‘𝑅)𝑥)(+g‘𝑅)𝐵) = ((𝑁‘𝐵)(+g‘𝑅)𝐵) ↔ (𝐴(.r‘𝑅)𝑥) = (𝑁‘𝐵))) |
67 | 5 | adantr 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ CRing) |
68 | 48 | adantr 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝑁‘𝐵) / 𝐴) ∈ (Base‘𝑅)) |
69 | 6, 56, 67, 68, 59 | crngcomd 20234 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → (((𝑁‘𝐵) / 𝐴)(.r‘𝑅)𝐴) = (𝐴(.r‘𝑅)((𝑁‘𝐵) / 𝐴))) |
70 | 45 | adantr 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → 𝐴 ∈ (Unit‘𝑅)) |
71 | 6, 41, 46, 56 | dvrcan1 20387 |
. . . . . . . . . . . . . . 15
⊢ ((𝑅 ∈ Ring ∧ (𝑁‘𝐵) ∈ (Base‘𝑅) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((𝑁‘𝐵) / 𝐴)(.r‘𝑅)𝐴) = (𝑁‘𝐵)) |
72 | 57, 62, 70, 71 | syl3anc 1368 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → (((𝑁‘𝐵) / 𝐴)(.r‘𝑅)𝐴) = (𝑁‘𝐵)) |
73 | 69, 72 | eqtr3d 2768 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐴(.r‘𝑅)((𝑁‘𝐵) / 𝐴)) = (𝑁‘𝐵)) |
74 | 73 | eqeq2d 2737 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐴(.r‘𝑅)𝑥) = (𝐴(.r‘𝑅)((𝑁‘𝐵) / 𝐴)) ↔ (𝐴(.r‘𝑅)𝑥) = (𝑁‘𝐵))) |
75 | | drngdomn 20723 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Domn) |
76 | 25, 75 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑅 ∈ Domn) |
77 | | domnnzr 20680 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) |
78 | 76, 77 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → 𝑅 ∈ NzRing) |
79 | 78 | adantr 479 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ NzRing) |
80 | 41, 37, 79, 70 | unitnz 33109 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → 𝐴 ≠ 0 ) |
81 | 59, 80 | eldifsnd 4786 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → 𝐴 ∈ ((Base‘𝑅) ∖ { 0 })) |
82 | 76 | adantr 479 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Domn) |
83 | 6, 37, 56, 81, 60, 68, 82 | domnlcanb 20694 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝐴(.r‘𝑅)𝑥) = (𝐴(.r‘𝑅)((𝑁‘𝐵) / 𝐴)) ↔ 𝑥 = ((𝑁‘𝐵) / 𝐴))) |
84 | 66, 74, 83 | 3bitr2rd 307 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥 = ((𝑁‘𝐵) / 𝐴) ↔ ((𝐴(.r‘𝑅)𝑥)(+g‘𝑅)𝐵) = ((𝑁‘𝐵)(+g‘𝑅)𝐵))) |
85 | 6, 64, 37, 15, 55, 63 | grplinvd 18984 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝑁‘𝐵)(+g‘𝑅)𝐵) = 0 ) |
86 | 85 | eqeq2d 2737 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → (((𝐴(.r‘𝑅)𝑥)(+g‘𝑅)𝐵) = ((𝑁‘𝐵)(+g‘𝑅)𝐵) ↔ ((𝐴(.r‘𝑅)𝑥)(+g‘𝑅)𝐵) = 0 )) |
87 | 84, 86 | bitr2d 279 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → (((𝐴(.r‘𝑅)𝑥)(+g‘𝑅)𝐵) = 0 ↔ 𝑥 = ((𝑁‘𝐵) / 𝐴))) |
88 | 7 | adantr 479 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → 𝐺 ∈ 𝑈) |
89 | 29 | adantr 479 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → (𝐷‘𝐺) = 1) |
90 | 2, 1, 6, 3, 56, 64, 19, 32, 24, 17, 67, 88, 89, 60 | evl1deg1 33454 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → ((𝑂‘𝐺)‘𝑥) = ((𝐴(.r‘𝑅)𝑥)(+g‘𝑅)𝐵)) |
91 | 90 | eqeq1d 2728 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → (((𝑂‘𝐺)‘𝑥) = 0 ↔ ((𝐴(.r‘𝑅)𝑥)(+g‘𝑅)𝐵) = 0 )) |
92 | 13 | eqeq2i 2739 |
. . . . . . . . . . 11
⊢ (𝑥 = 𝑍 ↔ 𝑥 = ((𝑁‘𝐵) / 𝐴)) |
93 | 92 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥 = 𝑍 ↔ 𝑥 = ((𝑁‘𝐵) / 𝐴))) |
94 | 87, 91, 93 | 3bitr4d 310 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → (((𝑂‘𝐺)‘𝑥) = 0 ↔ 𝑥 = 𝑍)) |
95 | 94 | biimpar 476 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑥 = 𝑍) → ((𝑂‘𝐺)‘𝑥) = 0 ) |
96 | 54, 95 | eqtr3d 2768 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑥 = 𝑍) → ((𝑂‘𝐺)‘𝑍) = 0 ) |
97 | 96 | ex 411 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) → (𝑥 = 𝑍 → ((𝑂‘𝐺)‘𝑍) = 0 )) |
98 | 97 | ralrimiva 3136 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝑅)(𝑥 = 𝑍 → ((𝑂‘𝐺)‘𝑍) = 0 )) |
99 | 52, 98, 49 | rspcdva 3608 |
. . . 4
⊢ (𝜑 → (𝑍 = 𝑍 → ((𝑂‘𝐺)‘𝑍) = 0 )) |
100 | 50, 99 | mpd 15 |
. . 3
⊢ (𝜑 → ((𝑂‘𝐺)‘𝑍) = 0 ) |
101 | 94 | biimpa 475 |
. . 3
⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ ((𝑂‘𝐺)‘𝑥) = 0 ) → 𝑥 = 𝑍) |
102 | 12, 49, 100, 101 | rabeqsnd 4666 |
. 2
⊢ (𝜑 → {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂‘𝐺)‘𝑥) = 0 } = {𝑍}) |
103 | 11, 102 | eqtrd 2766 |
1
⊢ (𝜑 → (◡(𝑂‘𝐺) “ { 0 }) = {𝑍}) |