Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1dg1rt Structured version   Visualization version   GIF version

Theorem ply1dg1rt 33511
Description: Express the root 𝐵 / 𝐴 of a polynomial 𝐴 · 𝑋 + 𝐵 of degree 1 over a field. (Contributed by Thierry Arnoux, 8-Jun-2025.)
Hypotheses
Ref Expression
ply1dg1rt.p 𝑃 = (Poly1𝑅)
ply1dg1rt.u 𝑈 = (Base‘𝑃)
ply1dg1rt.o 𝑂 = (eval1𝑅)
ply1dg1rt.d 𝐷 = (deg1𝑅)
ply1dg1rt.0 0 = (0g𝑅)
ply1dg1rt.r (𝜑𝑅 ∈ Field)
ply1dg1rt.g (𝜑𝐺𝑈)
ply1dg1rt.1 (𝜑 → (𝐷𝐺) = 1)
ply1dg1rt.x 𝑁 = (invg𝑅)
ply1dg1rt.m / = (/r𝑅)
ply1dg1rt.c 𝐶 = (coe1𝐺)
ply1dg1rt.a 𝐴 = (𝐶‘1)
ply1dg1rt.b 𝐵 = (𝐶‘0)
ply1dg1rt.z 𝑍 = ((𝑁𝐵) / 𝐴)
Assertion
Ref Expression
ply1dg1rt (𝜑 → ((𝑂𝐺) “ { 0 }) = {𝑍})

Proof of Theorem ply1dg1rt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ply1dg1rt.o . . . . 5 𝑂 = (eval1𝑅)
2 ply1dg1rt.p . . . . 5 𝑃 = (Poly1𝑅)
3 ply1dg1rt.u . . . . 5 𝑈 = (Base‘𝑃)
4 ply1dg1rt.r . . . . . 6 (𝜑𝑅 ∈ Field)
54fldcrngd 20611 . . . . 5 (𝜑𝑅 ∈ CRing)
6 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
7 ply1dg1rt.g . . . . 5 (𝜑𝐺𝑈)
81, 2, 3, 5, 6, 7evl1fvf 33494 . . . 4 (𝜑 → (𝑂𝐺):(Base‘𝑅)⟶(Base‘𝑅))
98ffnd 6647 . . 3 (𝜑 → (𝑂𝐺) Fn (Base‘𝑅))
10 fniniseg2 6989 . . 3 ((𝑂𝐺) Fn (Base‘𝑅) → ((𝑂𝐺) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂𝐺)‘𝑥) = 0 })
119, 10syl 17 . 2 (𝜑 → ((𝑂𝐺) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂𝐺)‘𝑥) = 0 })
12 fveqeq2 6825 . . 3 (𝑥 = 𝑍 → (((𝑂𝐺)‘𝑥) = 0 ↔ ((𝑂𝐺)‘𝑍) = 0 ))
13 ply1dg1rt.z . . . 4 𝑍 = ((𝑁𝐵) / 𝐴)
145crngringd 20118 . . . . 5 (𝜑𝑅 ∈ Ring)
15 ply1dg1rt.x . . . . . 6 𝑁 = (invg𝑅)
165crnggrpd 20119 . . . . . 6 (𝜑𝑅 ∈ Grp)
17 ply1dg1rt.b . . . . . . 7 𝐵 = (𝐶‘0)
18 0nn0 12387 . . . . . . . 8 0 ∈ ℕ0
19 ply1dg1rt.c . . . . . . . . 9 𝐶 = (coe1𝐺)
2019, 3, 2, 6coe1fvalcl 22079 . . . . . . . 8 ((𝐺𝑈 ∧ 0 ∈ ℕ0) → (𝐶‘0) ∈ (Base‘𝑅))
217, 18, 20sylancl 586 . . . . . . 7 (𝜑 → (𝐶‘0) ∈ (Base‘𝑅))
2217, 21eqeltrid 2832 . . . . . 6 (𝜑𝐵 ∈ (Base‘𝑅))
236, 15, 16, 22grpinvcld 18854 . . . . 5 (𝜑 → (𝑁𝐵) ∈ (Base‘𝑅))
24 ply1dg1rt.a . . . . . 6 𝐴 = (𝐶‘1)
254flddrngd 20610 . . . . . . 7 (𝜑𝑅 ∈ DivRing)
26 1nn0 12388 . . . . . . . 8 1 ∈ ℕ0
2719, 3, 2, 6coe1fvalcl 22079 . . . . . . . 8 ((𝐺𝑈 ∧ 1 ∈ ℕ0) → (𝐶‘1) ∈ (Base‘𝑅))
287, 26, 27sylancl 586 . . . . . . 7 (𝜑 → (𝐶‘1) ∈ (Base‘𝑅))
29 ply1dg1rt.1 . . . . . . . . 9 (𝜑 → (𝐷𝐺) = 1)
3029fveq2d 6820 . . . . . . . 8 (𝜑 → (𝐶‘(𝐷𝐺)) = (𝐶‘1))
3129, 26eqeltrdi 2836 . . . . . . . . . 10 (𝜑 → (𝐷𝐺) ∈ ℕ0)
32 ply1dg1rt.d . . . . . . . . . . . 12 𝐷 = (deg1𝑅)
33 eqid 2729 . . . . . . . . . . . 12 (0g𝑃) = (0g𝑃)
3432, 2, 33, 3deg1nn0clb 25976 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐺𝑈) → (𝐺 ≠ (0g𝑃) ↔ (𝐷𝐺) ∈ ℕ0))
3534biimpar 477 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐺𝑈) ∧ (𝐷𝐺) ∈ ℕ0) → 𝐺 ≠ (0g𝑃))
3614, 7, 31, 35syl21anc 837 . . . . . . . . 9 (𝜑𝐺 ≠ (0g𝑃))
37 ply1dg1rt.0 . . . . . . . . . 10 0 = (0g𝑅)
3832, 2, 33, 3, 37, 19deg1ldg 25978 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐺𝑈𝐺 ≠ (0g𝑃)) → (𝐶‘(𝐷𝐺)) ≠ 0 )
3914, 7, 36, 38syl3anc 1373 . . . . . . . 8 (𝜑 → (𝐶‘(𝐷𝐺)) ≠ 0 )
4030, 39eqnetrrd 2993 . . . . . . 7 (𝜑 → (𝐶‘1) ≠ 0 )
41 eqid 2729 . . . . . . . . 9 (Unit‘𝑅) = (Unit‘𝑅)
426, 41, 37drngunit 20603 . . . . . . . 8 (𝑅 ∈ DivRing → ((𝐶‘1) ∈ (Unit‘𝑅) ↔ ((𝐶‘1) ∈ (Base‘𝑅) ∧ (𝐶‘1) ≠ 0 )))
4342biimpar 477 . . . . . . 7 ((𝑅 ∈ DivRing ∧ ((𝐶‘1) ∈ (Base‘𝑅) ∧ (𝐶‘1) ≠ 0 )) → (𝐶‘1) ∈ (Unit‘𝑅))
4425, 28, 40, 43syl12anc 836 . . . . . 6 (𝜑 → (𝐶‘1) ∈ (Unit‘𝑅))
4524, 44eqeltrid 2832 . . . . 5 (𝜑𝐴 ∈ (Unit‘𝑅))
46 ply1dg1rt.m . . . . . 6 / = (/r𝑅)
476, 41, 46dvrcl 20276 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁𝐵) ∈ (Base‘𝑅) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝑁𝐵) / 𝐴) ∈ (Base‘𝑅))
4814, 23, 45, 47syl3anc 1373 . . . 4 (𝜑 → ((𝑁𝐵) / 𝐴) ∈ (Base‘𝑅))
4913, 48eqeltrid 2832 . . 3 (𝜑𝑍 ∈ (Base‘𝑅))
50 eqidd 2730 . . . 4 (𝜑𝑍 = 𝑍)
51 eqeq1 2733 . . . . . 6 (𝑥 = 𝑍 → (𝑥 = 𝑍𝑍 = 𝑍))
5251imbi1d 341 . . . . 5 (𝑥 = 𝑍 → ((𝑥 = 𝑍 → ((𝑂𝐺)‘𝑍) = 0 ) ↔ (𝑍 = 𝑍 → ((𝑂𝐺)‘𝑍) = 0 )))
53 fveq2 6816 . . . . . . . . 9 (𝑥 = 𝑍 → ((𝑂𝐺)‘𝑥) = ((𝑂𝐺)‘𝑍))
5453adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑥 = 𝑍) → ((𝑂𝐺)‘𝑥) = ((𝑂𝐺)‘𝑍))
5516adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Grp)
56 eqid 2729 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
5714adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
5824, 28eqeltrid 2832 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ (Base‘𝑅))
5958adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐴 ∈ (Base‘𝑅))
60 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
616, 56, 57, 59, 60ringcld 20132 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐴(.r𝑅)𝑥) ∈ (Base‘𝑅))
6223adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑁𝐵) ∈ (Base‘𝑅))
6322adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐵 ∈ (Base‘𝑅))
64 eqid 2729 . . . . . . . . . . . . . 14 (+g𝑅) = (+g𝑅)
656, 64grprcan 18839 . . . . . . . . . . . . 13 ((𝑅 ∈ Grp ∧ ((𝐴(.r𝑅)𝑥) ∈ (Base‘𝑅) ∧ (𝑁𝐵) ∈ (Base‘𝑅) ∧ 𝐵 ∈ (Base‘𝑅))) → (((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = ((𝑁𝐵)(+g𝑅)𝐵) ↔ (𝐴(.r𝑅)𝑥) = (𝑁𝐵)))
6655, 61, 62, 63, 65syl13anc 1374 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = ((𝑁𝐵)(+g𝑅)𝐵) ↔ (𝐴(.r𝑅)𝑥) = (𝑁𝐵)))
675adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ CRing)
6848adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝑁𝐵) / 𝐴) ∈ (Base‘𝑅))
696, 56, 67, 68, 59crngcomd 20127 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝑁𝐵) / 𝐴)(.r𝑅)𝐴) = (𝐴(.r𝑅)((𝑁𝐵) / 𝐴)))
7045adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐴 ∈ (Unit‘𝑅))
716, 41, 46, 56dvrcan1 20281 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ (𝑁𝐵) ∈ (Base‘𝑅) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((𝑁𝐵) / 𝐴)(.r𝑅)𝐴) = (𝑁𝐵))
7257, 62, 70, 71syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝑁𝐵) / 𝐴)(.r𝑅)𝐴) = (𝑁𝐵))
7369, 72eqtr3d 2766 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐴(.r𝑅)((𝑁𝐵) / 𝐴)) = (𝑁𝐵))
7473eqeq2d 2740 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐴(.r𝑅)𝑥) = (𝐴(.r𝑅)((𝑁𝐵) / 𝐴)) ↔ (𝐴(.r𝑅)𝑥) = (𝑁𝐵)))
75 drngdomn 20618 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ DivRing → 𝑅 ∈ Domn)
7625, 75syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ Domn)
77 domnnzr 20575 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
7876, 77syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ NzRing)
7978adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ NzRing)
8041, 37, 79, 70unitnz 33174 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐴0 )
8159, 80eldifsnd 4736 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐴 ∈ ((Base‘𝑅) ∖ { 0 }))
8276adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Domn)
836, 37, 56, 81, 60, 68, 82domnlcanb 20589 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐴(.r𝑅)𝑥) = (𝐴(.r𝑅)((𝑁𝐵) / 𝐴)) ↔ 𝑥 = ((𝑁𝐵) / 𝐴)))
8466, 74, 833bitr2rd 308 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 = ((𝑁𝐵) / 𝐴) ↔ ((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = ((𝑁𝐵)(+g𝑅)𝐵)))
856, 64, 37, 15, 55, 63grplinvd 18860 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝑁𝐵)(+g𝑅)𝐵) = 0 )
8685eqeq2d 2740 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = ((𝑁𝐵)(+g𝑅)𝐵) ↔ ((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = 0 ))
8784, 86bitr2d 280 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = 0𝑥 = ((𝑁𝐵) / 𝐴)))
887adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐺𝑈)
8929adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐷𝐺) = 1)
902, 1, 6, 3, 56, 64, 19, 32, 24, 17, 67, 88, 89, 60evl1deg1 33507 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝑂𝐺)‘𝑥) = ((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵))
9190eqeq1d 2731 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝑂𝐺)‘𝑥) = 0 ↔ ((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = 0 ))
9213eqeq2i 2742 . . . . . . . . . . 11 (𝑥 = 𝑍𝑥 = ((𝑁𝐵) / 𝐴))
9392a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 = 𝑍𝑥 = ((𝑁𝐵) / 𝐴)))
9487, 91, 933bitr4d 311 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝑂𝐺)‘𝑥) = 0𝑥 = 𝑍))
9594biimpar 477 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑥 = 𝑍) → ((𝑂𝐺)‘𝑥) = 0 )
9654, 95eqtr3d 2766 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑥 = 𝑍) → ((𝑂𝐺)‘𝑍) = 0 )
9796ex 412 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 = 𝑍 → ((𝑂𝐺)‘𝑍) = 0 ))
9897ralrimiva 3121 . . . . 5 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)(𝑥 = 𝑍 → ((𝑂𝐺)‘𝑍) = 0 ))
9952, 98, 49rspcdva 3575 . . . 4 (𝜑 → (𝑍 = 𝑍 → ((𝑂𝐺)‘𝑍) = 0 ))
10050, 99mpd 15 . . 3 (𝜑 → ((𝑂𝐺)‘𝑍) = 0 )
10194biimpa 476 . . 3 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ ((𝑂𝐺)‘𝑥) = 0 ) → 𝑥 = 𝑍)
10212, 49, 100, 101rabeqsnd 4619 . 2 (𝜑 → {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂𝐺)‘𝑥) = 0 } = {𝑍})
10311, 102eqtrd 2764 1 (𝜑 → ((𝑂𝐺) “ { 0 }) = {𝑍})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  {crab 3392  {csn 4573  ccnv 5612  cima 5616   Fn wfn 6471  cfv 6476  (class class class)co 7340  0cc0 10997  1c1 10998  0cn0 12372  Basecbs 17107  +gcplusg 17148  .rcmulr 17149  0gc0g 17330  Grpcgrp 18799  invgcminusg 18800  Ringcrg 20105  CRingccrg 20106  Unitcui 20227  /rcdvr 20272  NzRingcnzr 20381  Domncdomn 20561  DivRingcdr 20598  Fieldcfield 20599  Poly1cpl1 22043  coe1cco1 22044  eval1ce1 22183  deg1cdg1 25940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5214  ax-sep 5231  ax-nul 5241  ax-pow 5300  ax-pr 5367  ax-un 7662  ax-cnex 11053  ax-resscn 11054  ax-1cn 11055  ax-icn 11056  ax-addcl 11057  ax-addrcl 11058  ax-mulcl 11059  ax-mulrcl 11060  ax-mulcom 11061  ax-addass 11062  ax-mulass 11063  ax-distr 11064  ax-i2m1 11065  ax-1ne0 11066  ax-1rid 11067  ax-rnegex 11068  ax-rrecex 11069  ax-cnre 11070  ax-pre-lttri 11071  ax-pre-lttrn 11072  ax-pre-ltadd 11073  ax-pre-mulgt0 11074  ax-pre-sup 11075  ax-addf 11076
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3393  df-v 3435  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-int 4895  df-iun 4940  df-iin 4941  df-br 5089  df-opab 5151  df-mpt 5170  df-tr 5196  df-id 5508  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5566  df-se 5567  df-we 5568  df-xp 5619  df-rel 5620  df-cnv 5621  df-co 5622  df-dm 5623  df-rn 5624  df-res 5625  df-ima 5626  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7297  df-ov 7343  df-oprab 7344  df-mpo 7345  df-of 7604  df-ofr 7605  df-om 7791  df-1st 7915  df-2nd 7916  df-supp 8085  df-tpos 8150  df-frecs 8205  df-wrecs 8236  df-recs 8285  df-rdg 8323  df-1o 8379  df-2o 8380  df-er 8616  df-map 8746  df-pm 8747  df-ixp 8816  df-en 8864  df-dom 8865  df-sdom 8866  df-fin 8867  df-fsupp 9240  df-sup 9320  df-oi 9390  df-card 9823  df-pnf 11139  df-mnf 11140  df-xr 11141  df-ltxr 11142  df-le 11143  df-sub 11337  df-neg 11338  df-nn 12117  df-2 12179  df-3 12180  df-4 12181  df-5 12182  df-6 12183  df-7 12184  df-8 12185  df-9 12186  df-n0 12373  df-z 12460  df-dec 12580  df-uz 12724  df-fz 13399  df-fzo 13546  df-seq 13897  df-hash 14226  df-struct 17045  df-sets 17062  df-slot 17080  df-ndx 17092  df-base 17108  df-ress 17129  df-plusg 17161  df-mulr 17162  df-starv 17163  df-sca 17164  df-vsca 17165  df-ip 17166  df-tset 17167  df-ple 17168  df-ds 17170  df-unif 17171  df-hom 17172  df-cco 17173  df-0g 17332  df-gsum 17333  df-prds 17338  df-pws 17340  df-mre 17475  df-mrc 17476  df-acs 17478  df-mgm 18501  df-sgrp 18580  df-mnd 18596  df-mhm 18644  df-submnd 18645  df-grp 18802  df-minusg 18803  df-sbg 18804  df-mulg 18934  df-subg 18989  df-ghm 19079  df-cntz 19183  df-cmn 19648  df-abl 19649  df-mgp 20013  df-rng 20025  df-ur 20054  df-srg 20059  df-ring 20107  df-cring 20108  df-oppr 20209  df-dvdsr 20229  df-unit 20230  df-invr 20260  df-dvr 20273  df-rhm 20344  df-nzr 20382  df-subrng 20415  df-subrg 20439  df-rlreg 20563  df-domn 20564  df-drng 20600  df-field 20601  df-lmod 20749  df-lss 20819  df-lsp 20859  df-cnfld 21246  df-assa 21744  df-asp 21745  df-ascl 21746  df-psr 21800  df-mvr 21801  df-mpl 21802  df-opsr 21804  df-evls 21963  df-evl 21964  df-psr1 22046  df-vr1 22047  df-ply1 22048  df-coe1 22049  df-evls1 22184  df-evl1 22185  df-mdeg 25941  df-deg1 25942
This theorem is referenced by:  ply1dg1rtn0  33512
  Copyright terms: Public domain W3C validator