Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ply1dg1rt Structured version   Visualization version   GIF version

Theorem ply1dg1rt 33555
Description: Express the root 𝐵 / 𝐴 of a polynomial 𝐴 · 𝑋 + 𝐵 of degree 1 over a field. (Contributed by Thierry Arnoux, 8-Jun-2025.)
Hypotheses
Ref Expression
ply1dg1rt.p 𝑃 = (Poly1𝑅)
ply1dg1rt.u 𝑈 = (Base‘𝑃)
ply1dg1rt.o 𝑂 = (eval1𝑅)
ply1dg1rt.d 𝐷 = (deg1𝑅)
ply1dg1rt.0 0 = (0g𝑅)
ply1dg1rt.r (𝜑𝑅 ∈ Field)
ply1dg1rt.g (𝜑𝐺𝑈)
ply1dg1rt.1 (𝜑 → (𝐷𝐺) = 1)
ply1dg1rt.x 𝑁 = (invg𝑅)
ply1dg1rt.m / = (/r𝑅)
ply1dg1rt.c 𝐶 = (coe1𝐺)
ply1dg1rt.a 𝐴 = (𝐶‘1)
ply1dg1rt.b 𝐵 = (𝐶‘0)
ply1dg1rt.z 𝑍 = ((𝑁𝐵) / 𝐴)
Assertion
Ref Expression
ply1dg1rt (𝜑 → ((𝑂𝐺) “ { 0 }) = {𝑍})

Proof of Theorem ply1dg1rt
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ply1dg1rt.o . . . . 5 𝑂 = (eval1𝑅)
2 ply1dg1rt.p . . . . 5 𝑃 = (Poly1𝑅)
3 ply1dg1rt.u . . . . 5 𝑈 = (Base‘𝑃)
4 ply1dg1rt.r . . . . . 6 (𝜑𝑅 ∈ Field)
54fldcrngd 20658 . . . . 5 (𝜑𝑅 ∈ CRing)
6 eqid 2730 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
7 ply1dg1rt.g . . . . 5 (𝜑𝐺𝑈)
81, 2, 3, 5, 6, 7evl1fvf 33539 . . . 4 (𝜑 → (𝑂𝐺):(Base‘𝑅)⟶(Base‘𝑅))
98ffnd 6692 . . 3 (𝜑 → (𝑂𝐺) Fn (Base‘𝑅))
10 fniniseg2 7037 . . 3 ((𝑂𝐺) Fn (Base‘𝑅) → ((𝑂𝐺) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂𝐺)‘𝑥) = 0 })
119, 10syl 17 . 2 (𝜑 → ((𝑂𝐺) “ { 0 }) = {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂𝐺)‘𝑥) = 0 })
12 fveqeq2 6870 . . 3 (𝑥 = 𝑍 → (((𝑂𝐺)‘𝑥) = 0 ↔ ((𝑂𝐺)‘𝑍) = 0 ))
13 ply1dg1rt.z . . . 4 𝑍 = ((𝑁𝐵) / 𝐴)
145crngringd 20162 . . . . 5 (𝜑𝑅 ∈ Ring)
15 ply1dg1rt.x . . . . . 6 𝑁 = (invg𝑅)
165crnggrpd 20163 . . . . . 6 (𝜑𝑅 ∈ Grp)
17 ply1dg1rt.b . . . . . . 7 𝐵 = (𝐶‘0)
18 0nn0 12464 . . . . . . . 8 0 ∈ ℕ0
19 ply1dg1rt.c . . . . . . . . 9 𝐶 = (coe1𝐺)
2019, 3, 2, 6coe1fvalcl 22104 . . . . . . . 8 ((𝐺𝑈 ∧ 0 ∈ ℕ0) → (𝐶‘0) ∈ (Base‘𝑅))
217, 18, 20sylancl 586 . . . . . . 7 (𝜑 → (𝐶‘0) ∈ (Base‘𝑅))
2217, 21eqeltrid 2833 . . . . . 6 (𝜑𝐵 ∈ (Base‘𝑅))
236, 15, 16, 22grpinvcld 18927 . . . . 5 (𝜑 → (𝑁𝐵) ∈ (Base‘𝑅))
24 ply1dg1rt.a . . . . . 6 𝐴 = (𝐶‘1)
254flddrngd 20657 . . . . . . 7 (𝜑𝑅 ∈ DivRing)
26 1nn0 12465 . . . . . . . 8 1 ∈ ℕ0
2719, 3, 2, 6coe1fvalcl 22104 . . . . . . . 8 ((𝐺𝑈 ∧ 1 ∈ ℕ0) → (𝐶‘1) ∈ (Base‘𝑅))
287, 26, 27sylancl 586 . . . . . . 7 (𝜑 → (𝐶‘1) ∈ (Base‘𝑅))
29 ply1dg1rt.1 . . . . . . . . 9 (𝜑 → (𝐷𝐺) = 1)
3029fveq2d 6865 . . . . . . . 8 (𝜑 → (𝐶‘(𝐷𝐺)) = (𝐶‘1))
3129, 26eqeltrdi 2837 . . . . . . . . . 10 (𝜑 → (𝐷𝐺) ∈ ℕ0)
32 ply1dg1rt.d . . . . . . . . . . . 12 𝐷 = (deg1𝑅)
33 eqid 2730 . . . . . . . . . . . 12 (0g𝑃) = (0g𝑃)
3432, 2, 33, 3deg1nn0clb 26002 . . . . . . . . . . 11 ((𝑅 ∈ Ring ∧ 𝐺𝑈) → (𝐺 ≠ (0g𝑃) ↔ (𝐷𝐺) ∈ ℕ0))
3534biimpar 477 . . . . . . . . . 10 (((𝑅 ∈ Ring ∧ 𝐺𝑈) ∧ (𝐷𝐺) ∈ ℕ0) → 𝐺 ≠ (0g𝑃))
3614, 7, 31, 35syl21anc 837 . . . . . . . . 9 (𝜑𝐺 ≠ (0g𝑃))
37 ply1dg1rt.0 . . . . . . . . . 10 0 = (0g𝑅)
3832, 2, 33, 3, 37, 19deg1ldg 26004 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝐺𝑈𝐺 ≠ (0g𝑃)) → (𝐶‘(𝐷𝐺)) ≠ 0 )
3914, 7, 36, 38syl3anc 1373 . . . . . . . 8 (𝜑 → (𝐶‘(𝐷𝐺)) ≠ 0 )
4030, 39eqnetrrd 2994 . . . . . . 7 (𝜑 → (𝐶‘1) ≠ 0 )
41 eqid 2730 . . . . . . . . 9 (Unit‘𝑅) = (Unit‘𝑅)
426, 41, 37drngunit 20650 . . . . . . . 8 (𝑅 ∈ DivRing → ((𝐶‘1) ∈ (Unit‘𝑅) ↔ ((𝐶‘1) ∈ (Base‘𝑅) ∧ (𝐶‘1) ≠ 0 )))
4342biimpar 477 . . . . . . 7 ((𝑅 ∈ DivRing ∧ ((𝐶‘1) ∈ (Base‘𝑅) ∧ (𝐶‘1) ≠ 0 )) → (𝐶‘1) ∈ (Unit‘𝑅))
4425, 28, 40, 43syl12anc 836 . . . . . 6 (𝜑 → (𝐶‘1) ∈ (Unit‘𝑅))
4524, 44eqeltrid 2833 . . . . 5 (𝜑𝐴 ∈ (Unit‘𝑅))
46 ply1dg1rt.m . . . . . 6 / = (/r𝑅)
476, 41, 46dvrcl 20320 . . . . 5 ((𝑅 ∈ Ring ∧ (𝑁𝐵) ∈ (Base‘𝑅) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝑁𝐵) / 𝐴) ∈ (Base‘𝑅))
4814, 23, 45, 47syl3anc 1373 . . . 4 (𝜑 → ((𝑁𝐵) / 𝐴) ∈ (Base‘𝑅))
4913, 48eqeltrid 2833 . . 3 (𝜑𝑍 ∈ (Base‘𝑅))
50 eqidd 2731 . . . 4 (𝜑𝑍 = 𝑍)
51 eqeq1 2734 . . . . . 6 (𝑥 = 𝑍 → (𝑥 = 𝑍𝑍 = 𝑍))
5251imbi1d 341 . . . . 5 (𝑥 = 𝑍 → ((𝑥 = 𝑍 → ((𝑂𝐺)‘𝑍) = 0 ) ↔ (𝑍 = 𝑍 → ((𝑂𝐺)‘𝑍) = 0 )))
53 fveq2 6861 . . . . . . . . 9 (𝑥 = 𝑍 → ((𝑂𝐺)‘𝑥) = ((𝑂𝐺)‘𝑍))
5453adantl 481 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑥 = 𝑍) → ((𝑂𝐺)‘𝑥) = ((𝑂𝐺)‘𝑍))
5516adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Grp)
56 eqid 2730 . . . . . . . . . . . . . 14 (.r𝑅) = (.r𝑅)
5714adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Ring)
5824, 28eqeltrid 2833 . . . . . . . . . . . . . . 15 (𝜑𝐴 ∈ (Base‘𝑅))
5958adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐴 ∈ (Base‘𝑅))
60 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑥 ∈ (Base‘𝑅))
616, 56, 57, 59, 60ringcld 20176 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐴(.r𝑅)𝑥) ∈ (Base‘𝑅))
6223adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑁𝐵) ∈ (Base‘𝑅))
6322adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐵 ∈ (Base‘𝑅))
64 eqid 2730 . . . . . . . . . . . . . 14 (+g𝑅) = (+g𝑅)
656, 64grprcan 18912 . . . . . . . . . . . . 13 ((𝑅 ∈ Grp ∧ ((𝐴(.r𝑅)𝑥) ∈ (Base‘𝑅) ∧ (𝑁𝐵) ∈ (Base‘𝑅) ∧ 𝐵 ∈ (Base‘𝑅))) → (((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = ((𝑁𝐵)(+g𝑅)𝐵) ↔ (𝐴(.r𝑅)𝑥) = (𝑁𝐵)))
6655, 61, 62, 63, 65syl13anc 1374 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = ((𝑁𝐵)(+g𝑅)𝐵) ↔ (𝐴(.r𝑅)𝑥) = (𝑁𝐵)))
675adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ CRing)
6848adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝑁𝐵) / 𝐴) ∈ (Base‘𝑅))
696, 56, 67, 68, 59crngcomd 20171 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝑁𝐵) / 𝐴)(.r𝑅)𝐴) = (𝐴(.r𝑅)((𝑁𝐵) / 𝐴)))
7045adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐴 ∈ (Unit‘𝑅))
716, 41, 46, 56dvrcan1 20325 . . . . . . . . . . . . . . 15 ((𝑅 ∈ Ring ∧ (𝑁𝐵) ∈ (Base‘𝑅) ∧ 𝐴 ∈ (Unit‘𝑅)) → (((𝑁𝐵) / 𝐴)(.r𝑅)𝐴) = (𝑁𝐵))
7257, 62, 70, 71syl3anc 1373 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝑁𝐵) / 𝐴)(.r𝑅)𝐴) = (𝑁𝐵))
7369, 72eqtr3d 2767 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐴(.r𝑅)((𝑁𝐵) / 𝐴)) = (𝑁𝐵))
7473eqeq2d 2741 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐴(.r𝑅)𝑥) = (𝐴(.r𝑅)((𝑁𝐵) / 𝐴)) ↔ (𝐴(.r𝑅)𝑥) = (𝑁𝐵)))
75 drngdomn 20665 . . . . . . . . . . . . . . . . . 18 (𝑅 ∈ DivRing → 𝑅 ∈ Domn)
7625, 75syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝑅 ∈ Domn)
77 domnnzr 20622 . . . . . . . . . . . . . . . . 17 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
7876, 77syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑅 ∈ NzRing)
7978adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ NzRing)
8041, 37, 79, 70unitnz 33197 . . . . . . . . . . . . . 14 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐴0 )
8159, 80eldifsnd 4754 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐴 ∈ ((Base‘𝑅) ∖ { 0 }))
8276adantr 480 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝑅 ∈ Domn)
836, 37, 56, 81, 60, 68, 82domnlcanb 20636 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝐴(.r𝑅)𝑥) = (𝐴(.r𝑅)((𝑁𝐵) / 𝐴)) ↔ 𝑥 = ((𝑁𝐵) / 𝐴)))
8466, 74, 833bitr2rd 308 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 = ((𝑁𝐵) / 𝐴) ↔ ((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = ((𝑁𝐵)(+g𝑅)𝐵)))
856, 64, 37, 15, 55, 63grplinvd 18933 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝑁𝐵)(+g𝑅)𝐵) = 0 )
8685eqeq2d 2741 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = ((𝑁𝐵)(+g𝑅)𝐵) ↔ ((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = 0 ))
8784, 86bitr2d 280 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = 0𝑥 = ((𝑁𝐵) / 𝐴)))
887adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → 𝐺𝑈)
8929adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝐷𝐺) = 1)
902, 1, 6, 3, 56, 64, 19, 32, 24, 17, 67, 88, 89, 60evl1deg1 33552 . . . . . . . . . . 11 ((𝜑𝑥 ∈ (Base‘𝑅)) → ((𝑂𝐺)‘𝑥) = ((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵))
9190eqeq1d 2732 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝑂𝐺)‘𝑥) = 0 ↔ ((𝐴(.r𝑅)𝑥)(+g𝑅)𝐵) = 0 ))
9213eqeq2i 2743 . . . . . . . . . . 11 (𝑥 = 𝑍𝑥 = ((𝑁𝐵) / 𝐴))
9392a1i 11 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 = 𝑍𝑥 = ((𝑁𝐵) / 𝐴)))
9487, 91, 933bitr4d 311 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑅)) → (((𝑂𝐺)‘𝑥) = 0𝑥 = 𝑍))
9594biimpar 477 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑥 = 𝑍) → ((𝑂𝐺)‘𝑥) = 0 )
9654, 95eqtr3d 2767 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑥 = 𝑍) → ((𝑂𝐺)‘𝑍) = 0 )
9796ex 412 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑅)) → (𝑥 = 𝑍 → ((𝑂𝐺)‘𝑍) = 0 ))
9897ralrimiva 3126 . . . . 5 (𝜑 → ∀𝑥 ∈ (Base‘𝑅)(𝑥 = 𝑍 → ((𝑂𝐺)‘𝑍) = 0 ))
9952, 98, 49rspcdva 3592 . . . 4 (𝜑 → (𝑍 = 𝑍 → ((𝑂𝐺)‘𝑍) = 0 ))
10050, 99mpd 15 . . 3 (𝜑 → ((𝑂𝐺)‘𝑍) = 0 )
10194biimpa 476 . . 3 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ ((𝑂𝐺)‘𝑥) = 0 ) → 𝑥 = 𝑍)
10212, 49, 100, 101rabeqsnd 4636 . 2 (𝜑 → {𝑥 ∈ (Base‘𝑅) ∣ ((𝑂𝐺)‘𝑥) = 0 } = {𝑍})
10311, 102eqtrd 2765 1 (𝜑 → ((𝑂𝐺) “ { 0 }) = {𝑍})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2926  {crab 3408  {csn 4592  ccnv 5640  cima 5644   Fn wfn 6509  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076  0cn0 12449  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  0gc0g 17409  Grpcgrp 18872  invgcminusg 18873  Ringcrg 20149  CRingccrg 20150  Unitcui 20271  /rcdvr 20316  NzRingcnzr 20428  Domncdomn 20608  DivRingcdr 20645  Fieldcfield 20646  Poly1cpl1 22068  coe1cco1 22069  eval1ce1 22208  deg1cdg1 25966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-srg 20103  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-dvr 20317  df-rhm 20388  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-domn 20611  df-drng 20647  df-field 20648  df-lmod 20775  df-lss 20845  df-lsp 20885  df-cnfld 21272  df-assa 21769  df-asp 21770  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-evls 21988  df-evl 21989  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-evls1 22209  df-evl1 22210  df-mdeg 25967  df-deg1 25968
This theorem is referenced by:  ply1dg1rtn0  33556
  Copyright terms: Public domain W3C validator