| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > readvcot | Structured version Visualization version GIF version | ||
| Description: Real antiderivative of cotangent. (Contributed by SN, 7-Oct-2025.) |
| Ref | Expression |
|---|---|
| readvcot.d | ⊢ 𝐷 = {𝑦 ∈ ℝ ∣ (sin‘𝑦) ≠ 0} |
| Ref | Expression |
|---|---|
| readvcot | ⊢ (ℝ D (𝑥 ∈ 𝐷 ↦ (log‘(abs‘(sin‘𝑥))))) = (𝑥 ∈ 𝐷 ↦ ((cos‘𝑥) / (sin‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reelprrecn 11230 | . . . . 5 ⊢ ℝ ∈ {ℝ, ℂ} | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ ∈ {ℝ, ℂ}) |
| 3 | fveq2 6887 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (sin‘𝑦) = (sin‘𝑥)) | |
| 4 | 3 | neeq1d 2990 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((sin‘𝑦) ≠ 0 ↔ (sin‘𝑥) ≠ 0)) |
| 5 | readvcot.d | . . . . . . 7 ⊢ 𝐷 = {𝑦 ∈ ℝ ∣ (sin‘𝑦) ≠ 0} | |
| 6 | 4, 5 | elrab2 3679 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ ℝ ∧ (sin‘𝑥) ≠ 0)) |
| 7 | resincl 16159 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (sin‘𝑥) ∈ ℝ) | |
| 8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ (sin‘𝑥) ≠ 0) → (sin‘𝑥) ∈ ℝ) |
| 9 | simpr 484 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ (sin‘𝑥) ≠ 0) → (sin‘𝑥) ≠ 0) | |
| 10 | 8, 9 | eldifsnd 4769 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ (sin‘𝑥) ≠ 0) → (sin‘𝑥) ∈ (ℝ ∖ {0})) |
| 11 | 6, 10 | sylbi 217 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 → (sin‘𝑥) ∈ (ℝ ∖ {0})) |
| 12 | 11 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐷) → (sin‘𝑥) ∈ (ℝ ∖ {0})) |
| 13 | fvexd 6902 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐷) → (cos‘𝑥) ∈ V) | |
| 14 | eldifi 4113 | . . . . . . . . 9 ⊢ (𝑧 ∈ (ℝ ∖ {0}) → 𝑧 ∈ ℝ) | |
| 15 | 14 | adantl 481 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → 𝑧 ∈ ℝ) |
| 16 | 15 | recnd 11272 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → 𝑧 ∈ ℂ) |
| 17 | 16 | abscld 15458 | . . . . . 6 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → (abs‘𝑧) ∈ ℝ) |
| 18 | 17 | recnd 11272 | . . . . 5 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → (abs‘𝑧) ∈ ℂ) |
| 19 | eldifsni 4772 | . . . . . . 7 ⊢ (𝑧 ∈ (ℝ ∖ {0}) → 𝑧 ≠ 0) | |
| 20 | 19 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → 𝑧 ≠ 0) |
| 21 | 16, 20 | absne0d 15469 | . . . . 5 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → (abs‘𝑧) ≠ 0) |
| 22 | 18, 21 | logcld 26567 | . . . 4 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → (log‘(abs‘𝑧)) ∈ ℂ) |
| 23 | ovexd 7449 | . . . 4 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → (1 / 𝑧) ∈ V) | |
| 24 | 7 | recnd 11272 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → (sin‘𝑥) ∈ ℂ) |
| 25 | 24 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → (sin‘𝑥) ∈ ℂ) |
| 26 | fvexd 6902 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → (cos‘𝑥) ∈ V) | |
| 27 | eqid 2734 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 28 | cnopn 24762 | . . . . . . 7 ⊢ ℂ ∈ (TopOpen‘ℂfld) | |
| 29 | 28 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℂ ∈ (TopOpen‘ℂfld)) |
| 30 | ax-resscn 11195 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
| 31 | dfss2 3951 | . . . . . . . 8 ⊢ (ℝ ⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ) | |
| 32 | 30, 31 | mpbi 230 | . . . . . . 7 ⊢ (ℝ ∩ ℂ) = ℝ |
| 33 | 32 | a1i 11 | . . . . . 6 ⊢ (⊤ → (ℝ ∩ ℂ) = ℝ) |
| 34 | sincl 16145 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ → (sin‘𝑥) ∈ ℂ) | |
| 35 | 34 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ) → (sin‘𝑥) ∈ ℂ) |
| 36 | fvexd 6902 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ) → (cos‘𝑥) ∈ V) | |
| 37 | dvsin 25975 | . . . . . . 7 ⊢ (ℂ D sin) = cos | |
| 38 | sinf 16143 | . . . . . . . . . 10 ⊢ sin:ℂ⟶ℂ | |
| 39 | 38 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → sin:ℂ⟶ℂ) |
| 40 | 39 | feqmptd 6958 | . . . . . . . 8 ⊢ (⊤ → sin = (𝑥 ∈ ℂ ↦ (sin‘𝑥))) |
| 41 | 40 | oveq2d 7430 | . . . . . . 7 ⊢ (⊤ → (ℂ D sin) = (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥)))) |
| 42 | cosf 16144 | . . . . . . . . 9 ⊢ cos:ℂ⟶ℂ | |
| 43 | 42 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → cos:ℂ⟶ℂ) |
| 44 | 43 | feqmptd 6958 | . . . . . . 7 ⊢ (⊤ → cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥))) |
| 45 | 37, 41, 44 | 3eqtr3a 2793 | . . . . . 6 ⊢ (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))) = (𝑥 ∈ ℂ ↦ (cos‘𝑥))) |
| 46 | 27, 2, 29, 33, 35, 36, 45 | dvmptres3 25949 | . . . . 5 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ (sin‘𝑥))) = (𝑥 ∈ ℝ ↦ (cos‘𝑥))) |
| 47 | 5 | ssrab3 4064 | . . . . . 6 ⊢ 𝐷 ⊆ ℝ |
| 48 | 47 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝐷 ⊆ ℝ) |
| 49 | tgioo4 24781 | . . . . 5 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 50 | 5 | resuppsinopn 42338 | . . . . . 6 ⊢ 𝐷 ∈ (topGen‘ran (,)) |
| 51 | 50 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝐷 ∈ (topGen‘ran (,))) |
| 52 | 2, 25, 26, 46, 48, 49, 27, 51 | dvmptres 25956 | . . . 4 ⊢ (⊤ → (ℝ D (𝑥 ∈ 𝐷 ↦ (sin‘𝑥))) = (𝑥 ∈ 𝐷 ↦ (cos‘𝑥))) |
| 53 | eqid 2734 | . . . . . 6 ⊢ (ℝ ∖ {0}) = (ℝ ∖ {0}) | |
| 54 | 53 | readvrec 42337 | . . . . 5 ⊢ (ℝ D (𝑧 ∈ (ℝ ∖ {0}) ↦ (log‘(abs‘𝑧)))) = (𝑧 ∈ (ℝ ∖ {0}) ↦ (1 / 𝑧)) |
| 55 | 54 | a1i 11 | . . . 4 ⊢ (⊤ → (ℝ D (𝑧 ∈ (ℝ ∖ {0}) ↦ (log‘(abs‘𝑧)))) = (𝑧 ∈ (ℝ ∖ {0}) ↦ (1 / 𝑧))) |
| 56 | 2fveq3 6892 | . . . 4 ⊢ (𝑧 = (sin‘𝑥) → (log‘(abs‘𝑧)) = (log‘(abs‘(sin‘𝑥)))) | |
| 57 | oveq2 7422 | . . . 4 ⊢ (𝑧 = (sin‘𝑥) → (1 / 𝑧) = (1 / (sin‘𝑥))) | |
| 58 | 2, 2, 12, 13, 22, 23, 52, 55, 56, 57 | dvmptco 25965 | . . 3 ⊢ (⊤ → (ℝ D (𝑥 ∈ 𝐷 ↦ (log‘(abs‘(sin‘𝑥))))) = (𝑥 ∈ 𝐷 ↦ ((1 / (sin‘𝑥)) · (cos‘𝑥)))) |
| 59 | 58 | mptru 1546 | . 2 ⊢ (ℝ D (𝑥 ∈ 𝐷 ↦ (log‘(abs‘(sin‘𝑥))))) = (𝑥 ∈ 𝐷 ↦ ((1 / (sin‘𝑥)) · (cos‘𝑥))) |
| 60 | 6 | simplbi 497 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ℝ) |
| 61 | 60 | recoscld 16163 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 → (cos‘𝑥) ∈ ℝ) |
| 62 | 61 | recnd 11272 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → (cos‘𝑥) ∈ ℂ) |
| 63 | 6, 8 | sylbi 217 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 → (sin‘𝑥) ∈ ℝ) |
| 64 | 63 | recnd 11272 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → (sin‘𝑥) ∈ ℂ) |
| 65 | 6, 9 | sylbi 217 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → (sin‘𝑥) ≠ 0) |
| 66 | 62, 64, 65 | divrec2d 12030 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ((cos‘𝑥) / (sin‘𝑥)) = ((1 / (sin‘𝑥)) · (cos‘𝑥))) |
| 67 | 66 | mpteq2ia 5227 | . 2 ⊢ (𝑥 ∈ 𝐷 ↦ ((cos‘𝑥) / (sin‘𝑥))) = (𝑥 ∈ 𝐷 ↦ ((1 / (sin‘𝑥)) · (cos‘𝑥))) |
| 68 | 59, 67 | eqtr4i 2760 | 1 ⊢ (ℝ D (𝑥 ∈ 𝐷 ↦ (log‘(abs‘(sin‘𝑥))))) = (𝑥 ∈ 𝐷 ↦ ((cos‘𝑥) / (sin‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1539 ⊤wtru 1540 ∈ wcel 2107 ≠ wne 2931 {crab 3420 Vcvv 3464 ∖ cdif 3930 ∩ cin 3932 ⊆ wss 3933 {csn 4608 {cpr 4610 ↦ cmpt 5207 ran crn 5668 ⟶wf 6538 ‘cfv 6542 (class class class)co 7414 ℂcc 11136 ℝcr 11137 0cc0 11138 1c1 11139 · cmul 11143 / cdiv 11903 (,)cioo 13370 abscabs 15256 sincsin 16082 cosccos 16083 TopOpenctopn 17442 topGenctg 17458 ℂfldccnfld 21331 D cdv 25853 logclog 26551 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-inf2 9664 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 ax-pre-sup 11216 ax-addf 11217 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-om 7871 df-1st 7997 df-2nd 7998 df-supp 8169 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-2o 8490 df-er 8728 df-map 8851 df-pm 8852 df-ixp 8921 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fsupp 9385 df-fi 9434 df-sup 9465 df-inf 9466 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-div 11904 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-q 12974 df-rp 13018 df-xneg 13137 df-xadd 13138 df-xmul 13139 df-ioo 13374 df-ioc 13375 df-ico 13376 df-icc 13377 df-fz 13531 df-fzo 13678 df-fl 13815 df-mod 13893 df-seq 14026 df-exp 14086 df-fac 14296 df-bc 14325 df-hash 14353 df-shft 15089 df-cj 15121 df-re 15122 df-im 15123 df-sqrt 15257 df-abs 15258 df-limsup 15490 df-clim 15507 df-rlim 15508 df-sum 15706 df-ef 16086 df-sin 16088 df-cos 16089 df-tan 16090 df-pi 16091 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-starv 17292 df-sca 17293 df-vsca 17294 df-ip 17295 df-tset 17296 df-ple 17297 df-ds 17299 df-unif 17300 df-hom 17301 df-cco 17302 df-rest 17443 df-topn 17444 df-0g 17462 df-gsum 17463 df-topgen 17464 df-pt 17465 df-prds 17468 df-xrs 17523 df-qtop 17528 df-imas 17529 df-xps 17531 df-mre 17605 df-mrc 17606 df-acs 17608 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-submnd 18771 df-mulg 19060 df-cntz 19309 df-cmn 19773 df-psmet 21323 df-xmet 21324 df-met 21325 df-bl 21326 df-mopn 21327 df-fbas 21328 df-fg 21329 df-cnfld 21332 df-top 22867 df-topon 22884 df-topsp 22906 df-bases 22919 df-cld 22992 df-ntr 22993 df-cls 22994 df-nei 23071 df-lp 23109 df-perf 23110 df-cn 23200 df-cnp 23201 df-t1 23287 df-haus 23288 df-cmp 23360 df-tx 23535 df-hmeo 23728 df-fil 23819 df-fm 23911 df-flim 23912 df-flf 23913 df-xms 24294 df-ms 24295 df-tms 24296 df-cncf 24859 df-limc 25856 df-dv 25857 df-log 26553 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |