| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > readvcot | Structured version Visualization version GIF version | ||
| Description: Real antiderivative of cotangent. (Contributed by SN, 7-Oct-2025.) |
| Ref | Expression |
|---|---|
| readvcot.d | ⊢ 𝐷 = {𝑦 ∈ ℝ ∣ (sin‘𝑦) ≠ 0} |
| Ref | Expression |
|---|---|
| readvcot | ⊢ (ℝ D (𝑥 ∈ 𝐷 ↦ (log‘(abs‘(sin‘𝑥))))) = (𝑥 ∈ 𝐷 ↦ ((cos‘𝑥) / (sin‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reelprrecn 11105 | . . . . 5 ⊢ ℝ ∈ {ℝ, ℂ} | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ ∈ {ℝ, ℂ}) |
| 3 | fveq2 6828 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (sin‘𝑦) = (sin‘𝑥)) | |
| 4 | 3 | neeq1d 2988 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((sin‘𝑦) ≠ 0 ↔ (sin‘𝑥) ≠ 0)) |
| 5 | readvcot.d | . . . . . . 7 ⊢ 𝐷 = {𝑦 ∈ ℝ ∣ (sin‘𝑦) ≠ 0} | |
| 6 | 4, 5 | elrab2 3646 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ ℝ ∧ (sin‘𝑥) ≠ 0)) |
| 7 | resincl 16051 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (sin‘𝑥) ∈ ℝ) | |
| 8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ (sin‘𝑥) ≠ 0) → (sin‘𝑥) ∈ ℝ) |
| 9 | simpr 484 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ (sin‘𝑥) ≠ 0) → (sin‘𝑥) ≠ 0) | |
| 10 | 8, 9 | eldifsnd 4738 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ (sin‘𝑥) ≠ 0) → (sin‘𝑥) ∈ (ℝ ∖ {0})) |
| 11 | 6, 10 | sylbi 217 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 → (sin‘𝑥) ∈ (ℝ ∖ {0})) |
| 12 | 11 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐷) → (sin‘𝑥) ∈ (ℝ ∖ {0})) |
| 13 | fvexd 6843 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐷) → (cos‘𝑥) ∈ V) | |
| 14 | eldifi 4080 | . . . . . . . . 9 ⊢ (𝑧 ∈ (ℝ ∖ {0}) → 𝑧 ∈ ℝ) | |
| 15 | 14 | adantl 481 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → 𝑧 ∈ ℝ) |
| 16 | 15 | recnd 11147 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → 𝑧 ∈ ℂ) |
| 17 | 16 | abscld 15348 | . . . . . 6 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → (abs‘𝑧) ∈ ℝ) |
| 18 | 17 | recnd 11147 | . . . . 5 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → (abs‘𝑧) ∈ ℂ) |
| 19 | eldifsni 4741 | . . . . . . 7 ⊢ (𝑧 ∈ (ℝ ∖ {0}) → 𝑧 ≠ 0) | |
| 20 | 19 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → 𝑧 ≠ 0) |
| 21 | 16, 20 | absne0d 15359 | . . . . 5 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → (abs‘𝑧) ≠ 0) |
| 22 | 18, 21 | logcld 26507 | . . . 4 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → (log‘(abs‘𝑧)) ∈ ℂ) |
| 23 | ovexd 7387 | . . . 4 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → (1 / 𝑧) ∈ V) | |
| 24 | 7 | recnd 11147 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → (sin‘𝑥) ∈ ℂ) |
| 25 | 24 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → (sin‘𝑥) ∈ ℂ) |
| 26 | fvexd 6843 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → (cos‘𝑥) ∈ V) | |
| 27 | eqid 2733 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 28 | cnopn 24702 | . . . . . . 7 ⊢ ℂ ∈ (TopOpen‘ℂfld) | |
| 29 | 28 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℂ ∈ (TopOpen‘ℂfld)) |
| 30 | ax-resscn 11070 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
| 31 | dfss2 3916 | . . . . . . . 8 ⊢ (ℝ ⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ) | |
| 32 | 30, 31 | mpbi 230 | . . . . . . 7 ⊢ (ℝ ∩ ℂ) = ℝ |
| 33 | 32 | a1i 11 | . . . . . 6 ⊢ (⊤ → (ℝ ∩ ℂ) = ℝ) |
| 34 | sincl 16037 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ → (sin‘𝑥) ∈ ℂ) | |
| 35 | 34 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ) → (sin‘𝑥) ∈ ℂ) |
| 36 | fvexd 6843 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ) → (cos‘𝑥) ∈ V) | |
| 37 | dvsin 25914 | . . . . . . 7 ⊢ (ℂ D sin) = cos | |
| 38 | sinf 16035 | . . . . . . . . . 10 ⊢ sin:ℂ⟶ℂ | |
| 39 | 38 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → sin:ℂ⟶ℂ) |
| 40 | 39 | feqmptd 6896 | . . . . . . . 8 ⊢ (⊤ → sin = (𝑥 ∈ ℂ ↦ (sin‘𝑥))) |
| 41 | 40 | oveq2d 7368 | . . . . . . 7 ⊢ (⊤ → (ℂ D sin) = (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥)))) |
| 42 | cosf 16036 | . . . . . . . . 9 ⊢ cos:ℂ⟶ℂ | |
| 43 | 42 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → cos:ℂ⟶ℂ) |
| 44 | 43 | feqmptd 6896 | . . . . . . 7 ⊢ (⊤ → cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥))) |
| 45 | 37, 41, 44 | 3eqtr3a 2792 | . . . . . 6 ⊢ (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))) = (𝑥 ∈ ℂ ↦ (cos‘𝑥))) |
| 46 | 27, 2, 29, 33, 35, 36, 45 | dvmptres3 25888 | . . . . 5 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ (sin‘𝑥))) = (𝑥 ∈ ℝ ↦ (cos‘𝑥))) |
| 47 | 5 | ssrab3 4031 | . . . . . 6 ⊢ 𝐷 ⊆ ℝ |
| 48 | 47 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝐷 ⊆ ℝ) |
| 49 | tgioo4 24721 | . . . . 5 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 50 | 5 | resuppsinopn 42481 | . . . . . 6 ⊢ 𝐷 ∈ (topGen‘ran (,)) |
| 51 | 50 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝐷 ∈ (topGen‘ran (,))) |
| 52 | 2, 25, 26, 46, 48, 49, 27, 51 | dvmptres 25895 | . . . 4 ⊢ (⊤ → (ℝ D (𝑥 ∈ 𝐷 ↦ (sin‘𝑥))) = (𝑥 ∈ 𝐷 ↦ (cos‘𝑥))) |
| 53 | eqid 2733 | . . . . . 6 ⊢ (ℝ ∖ {0}) = (ℝ ∖ {0}) | |
| 54 | 53 | readvrec 42480 | . . . . 5 ⊢ (ℝ D (𝑧 ∈ (ℝ ∖ {0}) ↦ (log‘(abs‘𝑧)))) = (𝑧 ∈ (ℝ ∖ {0}) ↦ (1 / 𝑧)) |
| 55 | 54 | a1i 11 | . . . 4 ⊢ (⊤ → (ℝ D (𝑧 ∈ (ℝ ∖ {0}) ↦ (log‘(abs‘𝑧)))) = (𝑧 ∈ (ℝ ∖ {0}) ↦ (1 / 𝑧))) |
| 56 | 2fveq3 6833 | . . . 4 ⊢ (𝑧 = (sin‘𝑥) → (log‘(abs‘𝑧)) = (log‘(abs‘(sin‘𝑥)))) | |
| 57 | oveq2 7360 | . . . 4 ⊢ (𝑧 = (sin‘𝑥) → (1 / 𝑧) = (1 / (sin‘𝑥))) | |
| 58 | 2, 2, 12, 13, 22, 23, 52, 55, 56, 57 | dvmptco 25904 | . . 3 ⊢ (⊤ → (ℝ D (𝑥 ∈ 𝐷 ↦ (log‘(abs‘(sin‘𝑥))))) = (𝑥 ∈ 𝐷 ↦ ((1 / (sin‘𝑥)) · (cos‘𝑥)))) |
| 59 | 58 | mptru 1548 | . 2 ⊢ (ℝ D (𝑥 ∈ 𝐷 ↦ (log‘(abs‘(sin‘𝑥))))) = (𝑥 ∈ 𝐷 ↦ ((1 / (sin‘𝑥)) · (cos‘𝑥))) |
| 60 | 6 | simplbi 497 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ℝ) |
| 61 | 60 | recoscld 16055 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 → (cos‘𝑥) ∈ ℝ) |
| 62 | 61 | recnd 11147 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → (cos‘𝑥) ∈ ℂ) |
| 63 | 6, 8 | sylbi 217 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 → (sin‘𝑥) ∈ ℝ) |
| 64 | 63 | recnd 11147 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → (sin‘𝑥) ∈ ℂ) |
| 65 | 6, 9 | sylbi 217 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → (sin‘𝑥) ≠ 0) |
| 66 | 62, 64, 65 | divrec2d 11908 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ((cos‘𝑥) / (sin‘𝑥)) = ((1 / (sin‘𝑥)) · (cos‘𝑥))) |
| 67 | 66 | mpteq2ia 5188 | . 2 ⊢ (𝑥 ∈ 𝐷 ↦ ((cos‘𝑥) / (sin‘𝑥))) = (𝑥 ∈ 𝐷 ↦ ((1 / (sin‘𝑥)) · (cos‘𝑥))) |
| 68 | 59, 67 | eqtr4i 2759 | 1 ⊢ (ℝ D (𝑥 ∈ 𝐷 ↦ (log‘(abs‘(sin‘𝑥))))) = (𝑥 ∈ 𝐷 ↦ ((cos‘𝑥) / (sin‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ⊤wtru 1542 ∈ wcel 2113 ≠ wne 2929 {crab 3396 Vcvv 3437 ∖ cdif 3895 ∩ cin 3897 ⊆ wss 3898 {csn 4575 {cpr 4577 ↦ cmpt 5174 ran crn 5620 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ℂcc 11011 ℝcr 11012 0cc0 11013 1c1 11014 · cmul 11018 / cdiv 11781 (,)cioo 13247 abscabs 15143 sincsin 15972 cosccos 15973 TopOpenctopn 17327 topGenctg 17343 ℂfldccnfld 21293 D cdv 25792 logclog 26491 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-inf2 9538 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 ax-addf 11092 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-iin 4944 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-of 7616 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-er 8628 df-map 8758 df-pm 8759 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9253 df-fi 9302 df-sup 9333 df-inf 9334 df-oi 9403 df-card 9839 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-uz 12739 df-q 12849 df-rp 12893 df-xneg 13013 df-xadd 13014 df-xmul 13015 df-ioo 13251 df-ioc 13252 df-ico 13253 df-icc 13254 df-fz 13410 df-fzo 13557 df-fl 13698 df-mod 13776 df-seq 13911 df-exp 13971 df-fac 14183 df-bc 14212 df-hash 14240 df-shft 14976 df-cj 15008 df-re 15009 df-im 15010 df-sqrt 15144 df-abs 15145 df-limsup 15380 df-clim 15397 df-rlim 15398 df-sum 15596 df-ef 15976 df-sin 15978 df-cos 15979 df-tan 15980 df-pi 15981 df-struct 17060 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-ress 17144 df-plusg 17176 df-mulr 17177 df-starv 17178 df-sca 17179 df-vsca 17180 df-ip 17181 df-tset 17182 df-ple 17183 df-ds 17185 df-unif 17186 df-hom 17187 df-cco 17188 df-rest 17328 df-topn 17329 df-0g 17347 df-gsum 17348 df-topgen 17349 df-pt 17350 df-prds 17353 df-xrs 17408 df-qtop 17413 df-imas 17414 df-xps 17416 df-mre 17490 df-mrc 17491 df-acs 17493 df-mgm 18550 df-sgrp 18629 df-mnd 18645 df-submnd 18694 df-mulg 18983 df-cntz 19231 df-cmn 19696 df-psmet 21285 df-xmet 21286 df-met 21287 df-bl 21288 df-mopn 21289 df-fbas 21290 df-fg 21291 df-cnfld 21294 df-top 22810 df-topon 22827 df-topsp 22849 df-bases 22862 df-cld 22935 df-ntr 22936 df-cls 22937 df-nei 23014 df-lp 23052 df-perf 23053 df-cn 23143 df-cnp 23144 df-t1 23230 df-haus 23231 df-cmp 23303 df-tx 23478 df-hmeo 23671 df-fil 23762 df-fm 23854 df-flim 23855 df-flf 23856 df-xms 24236 df-ms 24237 df-tms 24238 df-cncf 24799 df-limc 25795 df-dv 25796 df-log 26493 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |