| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > readvcot | Structured version Visualization version GIF version | ||
| Description: Real antiderivative of cotangent. (Contributed by SN, 7-Oct-2025.) |
| Ref | Expression |
|---|---|
| readvcot.d | ⊢ 𝐷 = {𝑦 ∈ ℝ ∣ (sin‘𝑦) ≠ 0} |
| Ref | Expression |
|---|---|
| readvcot | ⊢ (ℝ D (𝑥 ∈ 𝐷 ↦ (log‘(abs‘(sin‘𝑥))))) = (𝑥 ∈ 𝐷 ↦ ((cos‘𝑥) / (sin‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reelprrecn 11178 | . . . . 5 ⊢ ℝ ∈ {ℝ, ℂ} | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ ∈ {ℝ, ℂ}) |
| 3 | fveq2 6865 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (sin‘𝑦) = (sin‘𝑥)) | |
| 4 | 3 | neeq1d 2986 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((sin‘𝑦) ≠ 0 ↔ (sin‘𝑥) ≠ 0)) |
| 5 | readvcot.d | . . . . . . 7 ⊢ 𝐷 = {𝑦 ∈ ℝ ∣ (sin‘𝑦) ≠ 0} | |
| 6 | 4, 5 | elrab2 3670 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ ℝ ∧ (sin‘𝑥) ≠ 0)) |
| 7 | resincl 16115 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (sin‘𝑥) ∈ ℝ) | |
| 8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ (sin‘𝑥) ≠ 0) → (sin‘𝑥) ∈ ℝ) |
| 9 | simpr 484 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ (sin‘𝑥) ≠ 0) → (sin‘𝑥) ≠ 0) | |
| 10 | 8, 9 | eldifsnd 4759 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ (sin‘𝑥) ≠ 0) → (sin‘𝑥) ∈ (ℝ ∖ {0})) |
| 11 | 6, 10 | sylbi 217 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 → (sin‘𝑥) ∈ (ℝ ∖ {0})) |
| 12 | 11 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐷) → (sin‘𝑥) ∈ (ℝ ∖ {0})) |
| 13 | fvexd 6880 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐷) → (cos‘𝑥) ∈ V) | |
| 14 | eldifi 4102 | . . . . . . . . 9 ⊢ (𝑧 ∈ (ℝ ∖ {0}) → 𝑧 ∈ ℝ) | |
| 15 | 14 | adantl 481 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → 𝑧 ∈ ℝ) |
| 16 | 15 | recnd 11220 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → 𝑧 ∈ ℂ) |
| 17 | 16 | abscld 15412 | . . . . . 6 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → (abs‘𝑧) ∈ ℝ) |
| 18 | 17 | recnd 11220 | . . . . 5 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → (abs‘𝑧) ∈ ℂ) |
| 19 | eldifsni 4762 | . . . . . . 7 ⊢ (𝑧 ∈ (ℝ ∖ {0}) → 𝑧 ≠ 0) | |
| 20 | 19 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → 𝑧 ≠ 0) |
| 21 | 16, 20 | absne0d 15423 | . . . . 5 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → (abs‘𝑧) ≠ 0) |
| 22 | 18, 21 | logcld 26486 | . . . 4 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → (log‘(abs‘𝑧)) ∈ ℂ) |
| 23 | ovexd 7429 | . . . 4 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → (1 / 𝑧) ∈ V) | |
| 24 | 7 | recnd 11220 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → (sin‘𝑥) ∈ ℂ) |
| 25 | 24 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → (sin‘𝑥) ∈ ℂ) |
| 26 | fvexd 6880 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → (cos‘𝑥) ∈ V) | |
| 27 | eqid 2730 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 28 | cnopn 24680 | . . . . . . 7 ⊢ ℂ ∈ (TopOpen‘ℂfld) | |
| 29 | 28 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℂ ∈ (TopOpen‘ℂfld)) |
| 30 | ax-resscn 11143 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
| 31 | dfss2 3940 | . . . . . . . 8 ⊢ (ℝ ⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ) | |
| 32 | 30, 31 | mpbi 230 | . . . . . . 7 ⊢ (ℝ ∩ ℂ) = ℝ |
| 33 | 32 | a1i 11 | . . . . . 6 ⊢ (⊤ → (ℝ ∩ ℂ) = ℝ) |
| 34 | sincl 16101 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ → (sin‘𝑥) ∈ ℂ) | |
| 35 | 34 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ) → (sin‘𝑥) ∈ ℂ) |
| 36 | fvexd 6880 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ) → (cos‘𝑥) ∈ V) | |
| 37 | dvsin 25893 | . . . . . . 7 ⊢ (ℂ D sin) = cos | |
| 38 | sinf 16099 | . . . . . . . . . 10 ⊢ sin:ℂ⟶ℂ | |
| 39 | 38 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → sin:ℂ⟶ℂ) |
| 40 | 39 | feqmptd 6936 | . . . . . . . 8 ⊢ (⊤ → sin = (𝑥 ∈ ℂ ↦ (sin‘𝑥))) |
| 41 | 40 | oveq2d 7410 | . . . . . . 7 ⊢ (⊤ → (ℂ D sin) = (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥)))) |
| 42 | cosf 16100 | . . . . . . . . 9 ⊢ cos:ℂ⟶ℂ | |
| 43 | 42 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → cos:ℂ⟶ℂ) |
| 44 | 43 | feqmptd 6936 | . . . . . . 7 ⊢ (⊤ → cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥))) |
| 45 | 37, 41, 44 | 3eqtr3a 2789 | . . . . . 6 ⊢ (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))) = (𝑥 ∈ ℂ ↦ (cos‘𝑥))) |
| 46 | 27, 2, 29, 33, 35, 36, 45 | dvmptres3 25867 | . . . . 5 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ (sin‘𝑥))) = (𝑥 ∈ ℝ ↦ (cos‘𝑥))) |
| 47 | 5 | ssrab3 4053 | . . . . . 6 ⊢ 𝐷 ⊆ ℝ |
| 48 | 47 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝐷 ⊆ ℝ) |
| 49 | tgioo4 24699 | . . . . 5 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 50 | 5 | resuppsinopn 42343 | . . . . . 6 ⊢ 𝐷 ∈ (topGen‘ran (,)) |
| 51 | 50 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝐷 ∈ (topGen‘ran (,))) |
| 52 | 2, 25, 26, 46, 48, 49, 27, 51 | dvmptres 25874 | . . . 4 ⊢ (⊤ → (ℝ D (𝑥 ∈ 𝐷 ↦ (sin‘𝑥))) = (𝑥 ∈ 𝐷 ↦ (cos‘𝑥))) |
| 53 | eqid 2730 | . . . . . 6 ⊢ (ℝ ∖ {0}) = (ℝ ∖ {0}) | |
| 54 | 53 | readvrec 42342 | . . . . 5 ⊢ (ℝ D (𝑧 ∈ (ℝ ∖ {0}) ↦ (log‘(abs‘𝑧)))) = (𝑧 ∈ (ℝ ∖ {0}) ↦ (1 / 𝑧)) |
| 55 | 54 | a1i 11 | . . . 4 ⊢ (⊤ → (ℝ D (𝑧 ∈ (ℝ ∖ {0}) ↦ (log‘(abs‘𝑧)))) = (𝑧 ∈ (ℝ ∖ {0}) ↦ (1 / 𝑧))) |
| 56 | 2fveq3 6870 | . . . 4 ⊢ (𝑧 = (sin‘𝑥) → (log‘(abs‘𝑧)) = (log‘(abs‘(sin‘𝑥)))) | |
| 57 | oveq2 7402 | . . . 4 ⊢ (𝑧 = (sin‘𝑥) → (1 / 𝑧) = (1 / (sin‘𝑥))) | |
| 58 | 2, 2, 12, 13, 22, 23, 52, 55, 56, 57 | dvmptco 25883 | . . 3 ⊢ (⊤ → (ℝ D (𝑥 ∈ 𝐷 ↦ (log‘(abs‘(sin‘𝑥))))) = (𝑥 ∈ 𝐷 ↦ ((1 / (sin‘𝑥)) · (cos‘𝑥)))) |
| 59 | 58 | mptru 1547 | . 2 ⊢ (ℝ D (𝑥 ∈ 𝐷 ↦ (log‘(abs‘(sin‘𝑥))))) = (𝑥 ∈ 𝐷 ↦ ((1 / (sin‘𝑥)) · (cos‘𝑥))) |
| 60 | 6 | simplbi 497 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ℝ) |
| 61 | 60 | recoscld 16119 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 → (cos‘𝑥) ∈ ℝ) |
| 62 | 61 | recnd 11220 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → (cos‘𝑥) ∈ ℂ) |
| 63 | 6, 8 | sylbi 217 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 → (sin‘𝑥) ∈ ℝ) |
| 64 | 63 | recnd 11220 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → (sin‘𝑥) ∈ ℂ) |
| 65 | 6, 9 | sylbi 217 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → (sin‘𝑥) ≠ 0) |
| 66 | 62, 64, 65 | divrec2d 11978 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ((cos‘𝑥) / (sin‘𝑥)) = ((1 / (sin‘𝑥)) · (cos‘𝑥))) |
| 67 | 66 | mpteq2ia 5210 | . 2 ⊢ (𝑥 ∈ 𝐷 ↦ ((cos‘𝑥) / (sin‘𝑥))) = (𝑥 ∈ 𝐷 ↦ ((1 / (sin‘𝑥)) · (cos‘𝑥))) |
| 68 | 59, 67 | eqtr4i 2756 | 1 ⊢ (ℝ D (𝑥 ∈ 𝐷 ↦ (log‘(abs‘(sin‘𝑥))))) = (𝑥 ∈ 𝐷 ↦ ((cos‘𝑥) / (sin‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2927 {crab 3411 Vcvv 3455 ∖ cdif 3919 ∩ cin 3921 ⊆ wss 3922 {csn 4597 {cpr 4599 ↦ cmpt 5196 ran crn 5647 ⟶wf 6515 ‘cfv 6519 (class class class)co 7394 ℂcc 11084 ℝcr 11085 0cc0 11086 1c1 11087 · cmul 11091 / cdiv 11851 (,)cioo 13319 abscabs 15210 sincsin 16036 cosccos 16037 TopOpenctopn 17390 topGenctg 17406 ℂfldccnfld 21270 D cdv 25771 logclog 26470 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-inf2 9612 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 ax-addf 11165 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-iin 4966 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-of 7660 df-om 7851 df-1st 7977 df-2nd 7978 df-supp 8149 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-er 8682 df-map 8805 df-pm 8806 df-ixp 8875 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-fsupp 9331 df-fi 9380 df-sup 9411 df-inf 9412 df-oi 9481 df-card 9910 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-4 12262 df-5 12263 df-6 12264 df-7 12265 df-8 12266 df-9 12267 df-n0 12459 df-z 12546 df-dec 12666 df-uz 12810 df-q 12922 df-rp 12966 df-xneg 13085 df-xadd 13086 df-xmul 13087 df-ioo 13323 df-ioc 13324 df-ico 13325 df-icc 13326 df-fz 13482 df-fzo 13629 df-fl 13766 df-mod 13844 df-seq 13977 df-exp 14037 df-fac 14249 df-bc 14278 df-hash 14306 df-shft 15043 df-cj 15075 df-re 15076 df-im 15077 df-sqrt 15211 df-abs 15212 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 df-sin 16042 df-cos 16043 df-tan 16044 df-pi 16045 df-struct 17123 df-sets 17140 df-slot 17158 df-ndx 17170 df-base 17186 df-ress 17207 df-plusg 17239 df-mulr 17240 df-starv 17241 df-sca 17242 df-vsca 17243 df-ip 17244 df-tset 17245 df-ple 17246 df-ds 17248 df-unif 17249 df-hom 17250 df-cco 17251 df-rest 17391 df-topn 17392 df-0g 17410 df-gsum 17411 df-topgen 17412 df-pt 17413 df-prds 17416 df-xrs 17471 df-qtop 17476 df-imas 17477 df-xps 17479 df-mre 17553 df-mrc 17554 df-acs 17556 df-mgm 18573 df-sgrp 18652 df-mnd 18668 df-submnd 18717 df-mulg 19006 df-cntz 19255 df-cmn 19718 df-psmet 21262 df-xmet 21263 df-met 21264 df-bl 21265 df-mopn 21266 df-fbas 21267 df-fg 21268 df-cnfld 21271 df-top 22787 df-topon 22804 df-topsp 22826 df-bases 22839 df-cld 22912 df-ntr 22913 df-cls 22914 df-nei 22991 df-lp 23029 df-perf 23030 df-cn 23120 df-cnp 23121 df-t1 23207 df-haus 23208 df-cmp 23280 df-tx 23455 df-hmeo 23648 df-fil 23739 df-fm 23831 df-flim 23832 df-flf 23833 df-xms 24214 df-ms 24215 df-tms 24216 df-cncf 24777 df-limc 25774 df-dv 25775 df-log 26472 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |