| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > readvcot | Structured version Visualization version GIF version | ||
| Description: Real antiderivative of cotangent. (Contributed by SN, 7-Oct-2025.) |
| Ref | Expression |
|---|---|
| readvcot.d | ⊢ 𝐷 = {𝑦 ∈ ℝ ∣ (sin‘𝑦) ≠ 0} |
| Ref | Expression |
|---|---|
| readvcot | ⊢ (ℝ D (𝑥 ∈ 𝐷 ↦ (log‘(abs‘(sin‘𝑥))))) = (𝑥 ∈ 𝐷 ↦ ((cos‘𝑥) / (sin‘𝑥))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reelprrecn 11120 | . . . . 5 ⊢ ℝ ∈ {ℝ, ℂ} | |
| 2 | 1 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ ∈ {ℝ, ℂ}) |
| 3 | fveq2 6826 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (sin‘𝑦) = (sin‘𝑥)) | |
| 4 | 3 | neeq1d 2984 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((sin‘𝑦) ≠ 0 ↔ (sin‘𝑥) ≠ 0)) |
| 5 | readvcot.d | . . . . . . 7 ⊢ 𝐷 = {𝑦 ∈ ℝ ∣ (sin‘𝑦) ≠ 0} | |
| 6 | 4, 5 | elrab2 3653 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ ℝ ∧ (sin‘𝑥) ≠ 0)) |
| 7 | resincl 16067 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (sin‘𝑥) ∈ ℝ) | |
| 8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ (sin‘𝑥) ≠ 0) → (sin‘𝑥) ∈ ℝ) |
| 9 | simpr 484 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ (sin‘𝑥) ≠ 0) → (sin‘𝑥) ≠ 0) | |
| 10 | 8, 9 | eldifsnd 4741 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ (sin‘𝑥) ≠ 0) → (sin‘𝑥) ∈ (ℝ ∖ {0})) |
| 11 | 6, 10 | sylbi 217 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 → (sin‘𝑥) ∈ (ℝ ∖ {0})) |
| 12 | 11 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐷) → (sin‘𝑥) ∈ (ℝ ∖ {0})) |
| 13 | fvexd 6841 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐷) → (cos‘𝑥) ∈ V) | |
| 14 | eldifi 4084 | . . . . . . . . 9 ⊢ (𝑧 ∈ (ℝ ∖ {0}) → 𝑧 ∈ ℝ) | |
| 15 | 14 | adantl 481 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → 𝑧 ∈ ℝ) |
| 16 | 15 | recnd 11162 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → 𝑧 ∈ ℂ) |
| 17 | 16 | abscld 15364 | . . . . . 6 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → (abs‘𝑧) ∈ ℝ) |
| 18 | 17 | recnd 11162 | . . . . 5 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → (abs‘𝑧) ∈ ℂ) |
| 19 | eldifsni 4744 | . . . . . . 7 ⊢ (𝑧 ∈ (ℝ ∖ {0}) → 𝑧 ≠ 0) | |
| 20 | 19 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → 𝑧 ≠ 0) |
| 21 | 16, 20 | absne0d 15375 | . . . . 5 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → (abs‘𝑧) ≠ 0) |
| 22 | 18, 21 | logcld 26495 | . . . 4 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → (log‘(abs‘𝑧)) ∈ ℂ) |
| 23 | ovexd 7388 | . . . 4 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → (1 / 𝑧) ∈ V) | |
| 24 | 7 | recnd 11162 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → (sin‘𝑥) ∈ ℂ) |
| 25 | 24 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → (sin‘𝑥) ∈ ℂ) |
| 26 | fvexd 6841 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → (cos‘𝑥) ∈ V) | |
| 27 | eqid 2729 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
| 28 | cnopn 24690 | . . . . . . 7 ⊢ ℂ ∈ (TopOpen‘ℂfld) | |
| 29 | 28 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℂ ∈ (TopOpen‘ℂfld)) |
| 30 | ax-resscn 11085 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
| 31 | dfss2 3923 | . . . . . . . 8 ⊢ (ℝ ⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ) | |
| 32 | 30, 31 | mpbi 230 | . . . . . . 7 ⊢ (ℝ ∩ ℂ) = ℝ |
| 33 | 32 | a1i 11 | . . . . . 6 ⊢ (⊤ → (ℝ ∩ ℂ) = ℝ) |
| 34 | sincl 16053 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ → (sin‘𝑥) ∈ ℂ) | |
| 35 | 34 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ) → (sin‘𝑥) ∈ ℂ) |
| 36 | fvexd 6841 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ) → (cos‘𝑥) ∈ V) | |
| 37 | dvsin 25902 | . . . . . . 7 ⊢ (ℂ D sin) = cos | |
| 38 | sinf 16051 | . . . . . . . . . 10 ⊢ sin:ℂ⟶ℂ | |
| 39 | 38 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → sin:ℂ⟶ℂ) |
| 40 | 39 | feqmptd 6895 | . . . . . . . 8 ⊢ (⊤ → sin = (𝑥 ∈ ℂ ↦ (sin‘𝑥))) |
| 41 | 40 | oveq2d 7369 | . . . . . . 7 ⊢ (⊤ → (ℂ D sin) = (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥)))) |
| 42 | cosf 16052 | . . . . . . . . 9 ⊢ cos:ℂ⟶ℂ | |
| 43 | 42 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → cos:ℂ⟶ℂ) |
| 44 | 43 | feqmptd 6895 | . . . . . . 7 ⊢ (⊤ → cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥))) |
| 45 | 37, 41, 44 | 3eqtr3a 2788 | . . . . . 6 ⊢ (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))) = (𝑥 ∈ ℂ ↦ (cos‘𝑥))) |
| 46 | 27, 2, 29, 33, 35, 36, 45 | dvmptres3 25876 | . . . . 5 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ (sin‘𝑥))) = (𝑥 ∈ ℝ ↦ (cos‘𝑥))) |
| 47 | 5 | ssrab3 4035 | . . . . . 6 ⊢ 𝐷 ⊆ ℝ |
| 48 | 47 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝐷 ⊆ ℝ) |
| 49 | tgioo4 24709 | . . . . 5 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
| 50 | 5 | resuppsinopn 42336 | . . . . . 6 ⊢ 𝐷 ∈ (topGen‘ran (,)) |
| 51 | 50 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝐷 ∈ (topGen‘ran (,))) |
| 52 | 2, 25, 26, 46, 48, 49, 27, 51 | dvmptres 25883 | . . . 4 ⊢ (⊤ → (ℝ D (𝑥 ∈ 𝐷 ↦ (sin‘𝑥))) = (𝑥 ∈ 𝐷 ↦ (cos‘𝑥))) |
| 53 | eqid 2729 | . . . . . 6 ⊢ (ℝ ∖ {0}) = (ℝ ∖ {0}) | |
| 54 | 53 | readvrec 42335 | . . . . 5 ⊢ (ℝ D (𝑧 ∈ (ℝ ∖ {0}) ↦ (log‘(abs‘𝑧)))) = (𝑧 ∈ (ℝ ∖ {0}) ↦ (1 / 𝑧)) |
| 55 | 54 | a1i 11 | . . . 4 ⊢ (⊤ → (ℝ D (𝑧 ∈ (ℝ ∖ {0}) ↦ (log‘(abs‘𝑧)))) = (𝑧 ∈ (ℝ ∖ {0}) ↦ (1 / 𝑧))) |
| 56 | 2fveq3 6831 | . . . 4 ⊢ (𝑧 = (sin‘𝑥) → (log‘(abs‘𝑧)) = (log‘(abs‘(sin‘𝑥)))) | |
| 57 | oveq2 7361 | . . . 4 ⊢ (𝑧 = (sin‘𝑥) → (1 / 𝑧) = (1 / (sin‘𝑥))) | |
| 58 | 2, 2, 12, 13, 22, 23, 52, 55, 56, 57 | dvmptco 25892 | . . 3 ⊢ (⊤ → (ℝ D (𝑥 ∈ 𝐷 ↦ (log‘(abs‘(sin‘𝑥))))) = (𝑥 ∈ 𝐷 ↦ ((1 / (sin‘𝑥)) · (cos‘𝑥)))) |
| 59 | 58 | mptru 1547 | . 2 ⊢ (ℝ D (𝑥 ∈ 𝐷 ↦ (log‘(abs‘(sin‘𝑥))))) = (𝑥 ∈ 𝐷 ↦ ((1 / (sin‘𝑥)) · (cos‘𝑥))) |
| 60 | 6 | simplbi 497 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ℝ) |
| 61 | 60 | recoscld 16071 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 → (cos‘𝑥) ∈ ℝ) |
| 62 | 61 | recnd 11162 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → (cos‘𝑥) ∈ ℂ) |
| 63 | 6, 8 | sylbi 217 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 → (sin‘𝑥) ∈ ℝ) |
| 64 | 63 | recnd 11162 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → (sin‘𝑥) ∈ ℂ) |
| 65 | 6, 9 | sylbi 217 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → (sin‘𝑥) ≠ 0) |
| 66 | 62, 64, 65 | divrec2d 11922 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ((cos‘𝑥) / (sin‘𝑥)) = ((1 / (sin‘𝑥)) · (cos‘𝑥))) |
| 67 | 66 | mpteq2ia 5190 | . 2 ⊢ (𝑥 ∈ 𝐷 ↦ ((cos‘𝑥) / (sin‘𝑥))) = (𝑥 ∈ 𝐷 ↦ ((1 / (sin‘𝑥)) · (cos‘𝑥))) |
| 68 | 59, 67 | eqtr4i 2755 | 1 ⊢ (ℝ D (𝑥 ∈ 𝐷 ↦ (log‘(abs‘(sin‘𝑥))))) = (𝑥 ∈ 𝐷 ↦ ((cos‘𝑥) / (sin‘𝑥))) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 ≠ wne 2925 {crab 3396 Vcvv 3438 ∖ cdif 3902 ∩ cin 3904 ⊆ wss 3905 {csn 4579 {cpr 4581 ↦ cmpt 5176 ran crn 5624 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ℂcc 11026 ℝcr 11027 0cc0 11028 1c1 11029 · cmul 11033 / cdiv 11795 (,)cioo 13266 abscabs 15159 sincsin 15988 cosccos 15989 TopOpenctopn 17343 topGenctg 17359 ℂfldccnfld 21279 D cdv 25780 logclog 26479 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-inf2 9556 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 ax-addf 11107 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-pm 8763 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-fi 9320 df-sup 9351 df-inf 9352 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-q 12868 df-rp 12912 df-xneg 13032 df-xadd 13033 df-xmul 13034 df-ioo 13270 df-ioc 13271 df-ico 13272 df-icc 13273 df-fz 13429 df-fzo 13576 df-fl 13714 df-mod 13792 df-seq 13927 df-exp 13987 df-fac 14199 df-bc 14228 df-hash 14256 df-shft 14992 df-cj 15024 df-re 15025 df-im 15026 df-sqrt 15160 df-abs 15161 df-limsup 15396 df-clim 15413 df-rlim 15414 df-sum 15612 df-ef 15992 df-sin 15994 df-cos 15995 df-tan 15996 df-pi 15997 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-starv 17194 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-unif 17202 df-hom 17203 df-cco 17204 df-rest 17344 df-topn 17345 df-0g 17363 df-gsum 17364 df-topgen 17365 df-pt 17366 df-prds 17369 df-xrs 17424 df-qtop 17429 df-imas 17430 df-xps 17432 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-mulg 18965 df-cntz 19214 df-cmn 19679 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-top 22797 df-topon 22814 df-topsp 22836 df-bases 22849 df-cld 22922 df-ntr 22923 df-cls 22924 df-nei 23001 df-lp 23039 df-perf 23040 df-cn 23130 df-cnp 23131 df-t1 23217 df-haus 23218 df-cmp 23290 df-tx 23465 df-hmeo 23658 df-fil 23749 df-fm 23841 df-flim 23842 df-flf 23843 df-xms 24224 df-ms 24225 df-tms 24226 df-cncf 24787 df-limc 25783 df-dv 25784 df-log 26481 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |