![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > readvcot | Structured version Visualization version GIF version |
Description: Real antiderivative of cotangent. (Contributed by SN, 7-Oct-2025.) |
Ref | Expression |
---|---|
readvcot.d | ⊢ 𝐷 = {𝑦 ∈ ℝ ∣ (sin‘𝑦) ≠ 0} |
Ref | Expression |
---|---|
readvcot | ⊢ (ℝ D (𝑥 ∈ 𝐷 ↦ (log‘(abs‘(sin‘𝑥))))) = (𝑥 ∈ 𝐷 ↦ ((cos‘𝑥) / (sin‘𝑥))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reelprrecn 11251 | . . . . 5 ⊢ ℝ ∈ {ℝ, ℂ} | |
2 | 1 | a1i 11 | . . . 4 ⊢ (⊤ → ℝ ∈ {ℝ, ℂ}) |
3 | fveq2 6911 | . . . . . . . 8 ⊢ (𝑦 = 𝑥 → (sin‘𝑦) = (sin‘𝑥)) | |
4 | 3 | neeq1d 2999 | . . . . . . 7 ⊢ (𝑦 = 𝑥 → ((sin‘𝑦) ≠ 0 ↔ (sin‘𝑥) ≠ 0)) |
5 | readvcot.d | . . . . . . 7 ⊢ 𝐷 = {𝑦 ∈ ℝ ∣ (sin‘𝑦) ≠ 0} | |
6 | 4, 5 | elrab2 3699 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 ↔ (𝑥 ∈ ℝ ∧ (sin‘𝑥) ≠ 0)) |
7 | resincl 16179 | . . . . . . . 8 ⊢ (𝑥 ∈ ℝ → (sin‘𝑥) ∈ ℝ) | |
8 | 7 | adantr 480 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ (sin‘𝑥) ≠ 0) → (sin‘𝑥) ∈ ℝ) |
9 | simpr 484 | . . . . . . 7 ⊢ ((𝑥 ∈ ℝ ∧ (sin‘𝑥) ≠ 0) → (sin‘𝑥) ≠ 0) | |
10 | 8, 9 | eldifsnd 4793 | . . . . . 6 ⊢ ((𝑥 ∈ ℝ ∧ (sin‘𝑥) ≠ 0) → (sin‘𝑥) ∈ (ℝ ∖ {0})) |
11 | 6, 10 | sylbi 217 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 → (sin‘𝑥) ∈ (ℝ ∖ {0})) |
12 | 11 | adantl 481 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐷) → (sin‘𝑥) ∈ (ℝ ∖ {0})) |
13 | fvexd 6926 | . . . 4 ⊢ ((⊤ ∧ 𝑥 ∈ 𝐷) → (cos‘𝑥) ∈ V) | |
14 | eldifi 4142 | . . . . . . . . 9 ⊢ (𝑧 ∈ (ℝ ∖ {0}) → 𝑧 ∈ ℝ) | |
15 | 14 | adantl 481 | . . . . . . . 8 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → 𝑧 ∈ ℝ) |
16 | 15 | recnd 11293 | . . . . . . 7 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → 𝑧 ∈ ℂ) |
17 | 16 | abscld 15478 | . . . . . 6 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → (abs‘𝑧) ∈ ℝ) |
18 | 17 | recnd 11293 | . . . . 5 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → (abs‘𝑧) ∈ ℂ) |
19 | eldifsni 4796 | . . . . . . 7 ⊢ (𝑧 ∈ (ℝ ∖ {0}) → 𝑧 ≠ 0) | |
20 | 19 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → 𝑧 ≠ 0) |
21 | 16, 20 | absne0d 15489 | . . . . 5 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → (abs‘𝑧) ≠ 0) |
22 | 18, 21 | logcld 26635 | . . . 4 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → (log‘(abs‘𝑧)) ∈ ℂ) |
23 | ovexd 7470 | . . . 4 ⊢ ((⊤ ∧ 𝑧 ∈ (ℝ ∖ {0})) → (1 / 𝑧) ∈ V) | |
24 | 7 | recnd 11293 | . . . . . 6 ⊢ (𝑥 ∈ ℝ → (sin‘𝑥) ∈ ℂ) |
25 | 24 | adantl 481 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → (sin‘𝑥) ∈ ℂ) |
26 | fvexd 6926 | . . . . 5 ⊢ ((⊤ ∧ 𝑥 ∈ ℝ) → (cos‘𝑥) ∈ V) | |
27 | eqid 2736 | . . . . . 6 ⊢ (TopOpen‘ℂfld) = (TopOpen‘ℂfld) | |
28 | cnopn 24829 | . . . . . . 7 ⊢ ℂ ∈ (TopOpen‘ℂfld) | |
29 | 28 | a1i 11 | . . . . . 6 ⊢ (⊤ → ℂ ∈ (TopOpen‘ℂfld)) |
30 | ax-resscn 11216 | . . . . . . . 8 ⊢ ℝ ⊆ ℂ | |
31 | dfss2 3982 | . . . . . . . 8 ⊢ (ℝ ⊆ ℂ ↔ (ℝ ∩ ℂ) = ℝ) | |
32 | 30, 31 | mpbi 230 | . . . . . . 7 ⊢ (ℝ ∩ ℂ) = ℝ |
33 | 32 | a1i 11 | . . . . . 6 ⊢ (⊤ → (ℝ ∩ ℂ) = ℝ) |
34 | sincl 16165 | . . . . . . 7 ⊢ (𝑥 ∈ ℂ → (sin‘𝑥) ∈ ℂ) | |
35 | 34 | adantl 481 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ) → (sin‘𝑥) ∈ ℂ) |
36 | fvexd 6926 | . . . . . 6 ⊢ ((⊤ ∧ 𝑥 ∈ ℂ) → (cos‘𝑥) ∈ V) | |
37 | dvsin 26043 | . . . . . . 7 ⊢ (ℂ D sin) = cos | |
38 | sinf 16163 | . . . . . . . . . 10 ⊢ sin:ℂ⟶ℂ | |
39 | 38 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → sin:ℂ⟶ℂ) |
40 | 39 | feqmptd 6981 | . . . . . . . 8 ⊢ (⊤ → sin = (𝑥 ∈ ℂ ↦ (sin‘𝑥))) |
41 | 40 | oveq2d 7451 | . . . . . . 7 ⊢ (⊤ → (ℂ D sin) = (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥)))) |
42 | cosf 16164 | . . . . . . . . 9 ⊢ cos:ℂ⟶ℂ | |
43 | 42 | a1i 11 | . . . . . . . 8 ⊢ (⊤ → cos:ℂ⟶ℂ) |
44 | 43 | feqmptd 6981 | . . . . . . 7 ⊢ (⊤ → cos = (𝑥 ∈ ℂ ↦ (cos‘𝑥))) |
45 | 37, 41, 44 | 3eqtr3a 2800 | . . . . . 6 ⊢ (⊤ → (ℂ D (𝑥 ∈ ℂ ↦ (sin‘𝑥))) = (𝑥 ∈ ℂ ↦ (cos‘𝑥))) |
46 | 27, 2, 29, 33, 35, 36, 45 | dvmptres3 26017 | . . . . 5 ⊢ (⊤ → (ℝ D (𝑥 ∈ ℝ ↦ (sin‘𝑥))) = (𝑥 ∈ ℝ ↦ (cos‘𝑥))) |
47 | 5 | ssrab3 4093 | . . . . . 6 ⊢ 𝐷 ⊆ ℝ |
48 | 47 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝐷 ⊆ ℝ) |
49 | tgioo4 24848 | . . . . 5 ⊢ (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ) | |
50 | 5 | resuppsinopn 42384 | . . . . . 6 ⊢ 𝐷 ∈ (topGen‘ran (,)) |
51 | 50 | a1i 11 | . . . . 5 ⊢ (⊤ → 𝐷 ∈ (topGen‘ran (,))) |
52 | 2, 25, 26, 46, 48, 49, 27, 51 | dvmptres 26024 | . . . 4 ⊢ (⊤ → (ℝ D (𝑥 ∈ 𝐷 ↦ (sin‘𝑥))) = (𝑥 ∈ 𝐷 ↦ (cos‘𝑥))) |
53 | eqid 2736 | . . . . . 6 ⊢ (ℝ ∖ {0}) = (ℝ ∖ {0}) | |
54 | 53 | readvrec 42383 | . . . . 5 ⊢ (ℝ D (𝑧 ∈ (ℝ ∖ {0}) ↦ (log‘(abs‘𝑧)))) = (𝑧 ∈ (ℝ ∖ {0}) ↦ (1 / 𝑧)) |
55 | 54 | a1i 11 | . . . 4 ⊢ (⊤ → (ℝ D (𝑧 ∈ (ℝ ∖ {0}) ↦ (log‘(abs‘𝑧)))) = (𝑧 ∈ (ℝ ∖ {0}) ↦ (1 / 𝑧))) |
56 | 2fveq3 6916 | . . . 4 ⊢ (𝑧 = (sin‘𝑥) → (log‘(abs‘𝑧)) = (log‘(abs‘(sin‘𝑥)))) | |
57 | oveq2 7443 | . . . 4 ⊢ (𝑧 = (sin‘𝑥) → (1 / 𝑧) = (1 / (sin‘𝑥))) | |
58 | 2, 2, 12, 13, 22, 23, 52, 55, 56, 57 | dvmptco 26033 | . . 3 ⊢ (⊤ → (ℝ D (𝑥 ∈ 𝐷 ↦ (log‘(abs‘(sin‘𝑥))))) = (𝑥 ∈ 𝐷 ↦ ((1 / (sin‘𝑥)) · (cos‘𝑥)))) |
59 | 58 | mptru 1545 | . 2 ⊢ (ℝ D (𝑥 ∈ 𝐷 ↦ (log‘(abs‘(sin‘𝑥))))) = (𝑥 ∈ 𝐷 ↦ ((1 / (sin‘𝑥)) · (cos‘𝑥))) |
60 | 6 | simplbi 497 | . . . . . 6 ⊢ (𝑥 ∈ 𝐷 → 𝑥 ∈ ℝ) |
61 | 60 | recoscld 16183 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 → (cos‘𝑥) ∈ ℝ) |
62 | 61 | recnd 11293 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → (cos‘𝑥) ∈ ℂ) |
63 | 6, 8 | sylbi 217 | . . . . 5 ⊢ (𝑥 ∈ 𝐷 → (sin‘𝑥) ∈ ℝ) |
64 | 63 | recnd 11293 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → (sin‘𝑥) ∈ ℂ) |
65 | 6, 9 | sylbi 217 | . . . 4 ⊢ (𝑥 ∈ 𝐷 → (sin‘𝑥) ≠ 0) |
66 | 62, 64, 65 | divrec2d 12051 | . . 3 ⊢ (𝑥 ∈ 𝐷 → ((cos‘𝑥) / (sin‘𝑥)) = ((1 / (sin‘𝑥)) · (cos‘𝑥))) |
67 | 66 | mpteq2ia 5252 | . 2 ⊢ (𝑥 ∈ 𝐷 ↦ ((cos‘𝑥) / (sin‘𝑥))) = (𝑥 ∈ 𝐷 ↦ ((1 / (sin‘𝑥)) · (cos‘𝑥))) |
68 | 59, 67 | eqtr4i 2767 | 1 ⊢ (ℝ D (𝑥 ∈ 𝐷 ↦ (log‘(abs‘(sin‘𝑥))))) = (𝑥 ∈ 𝐷 ↦ ((cos‘𝑥) / (sin‘𝑥))) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1538 ⊤wtru 1539 ∈ wcel 2107 ≠ wne 2939 {crab 3434 Vcvv 3479 ∖ cdif 3961 ∩ cin 3963 ⊆ wss 3964 {csn 4632 {cpr 4634 ↦ cmpt 5232 ran crn 5691 ⟶wf 6562 ‘cfv 6566 (class class class)co 7435 ℂcc 11157 ℝcr 11158 0cc0 11159 1c1 11160 · cmul 11164 / cdiv 11924 (,)cioo 13390 abscabs 15276 sincsin 16102 cosccos 16103 TopOpenctopn 17474 topGenctg 17490 ℂfldccnfld 21388 D cdv 25921 logclog 26619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-inf2 9685 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 ax-pre-sup 11237 ax-addf 11238 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-tp 4637 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-se 5643 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-isom 6575 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-of 7701 df-om 7892 df-1st 8019 df-2nd 8020 df-supp 8191 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-1o 8511 df-2o 8512 df-er 8750 df-map 8873 df-pm 8874 df-ixp 8943 df-en 8991 df-dom 8992 df-sdom 8993 df-fin 8994 df-fsupp 9406 df-fi 9455 df-sup 9486 df-inf 9487 df-oi 9554 df-card 9983 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-div 11925 df-nn 12271 df-2 12333 df-3 12334 df-4 12335 df-5 12336 df-6 12337 df-7 12338 df-8 12339 df-9 12340 df-n0 12531 df-z 12618 df-dec 12738 df-uz 12883 df-q 12995 df-rp 13039 df-xneg 13158 df-xadd 13159 df-xmul 13160 df-ioo 13394 df-ioc 13395 df-ico 13396 df-icc 13397 df-fz 13551 df-fzo 13698 df-fl 13835 df-mod 13913 df-seq 14046 df-exp 14106 df-fac 14316 df-bc 14345 df-hash 14373 df-shft 15109 df-cj 15141 df-re 15142 df-im 15143 df-sqrt 15277 df-abs 15278 df-limsup 15510 df-clim 15527 df-rlim 15528 df-sum 15726 df-ef 16106 df-sin 16108 df-cos 16109 df-tan 16110 df-pi 16111 df-struct 17187 df-sets 17204 df-slot 17222 df-ndx 17234 df-base 17252 df-ress 17281 df-plusg 17317 df-mulr 17318 df-starv 17319 df-sca 17320 df-vsca 17321 df-ip 17322 df-tset 17323 df-ple 17324 df-ds 17326 df-unif 17327 df-hom 17328 df-cco 17329 df-rest 17475 df-topn 17476 df-0g 17494 df-gsum 17495 df-topgen 17496 df-pt 17497 df-prds 17500 df-xrs 17555 df-qtop 17560 df-imas 17561 df-xps 17563 df-mre 17637 df-mrc 17638 df-acs 17640 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-submnd 18816 df-mulg 19105 df-cntz 19354 df-cmn 19821 df-psmet 21380 df-xmet 21381 df-met 21382 df-bl 21383 df-mopn 21384 df-fbas 21385 df-fg 21386 df-cnfld 21389 df-top 22922 df-topon 22939 df-topsp 22961 df-bases 22975 df-cld 23049 df-ntr 23050 df-cls 23051 df-nei 23128 df-lp 23166 df-perf 23167 df-cn 23257 df-cnp 23258 df-t1 23344 df-haus 23345 df-cmp 23417 df-tx 23592 df-hmeo 23785 df-fil 23876 df-fm 23968 df-flim 23969 df-flf 23970 df-xms 24352 df-ms 24353 df-tms 24354 df-cncf 24926 df-limc 25924 df-dv 25925 df-log 26621 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |