Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1peuqusdeg1 Structured version   Visualization version   GIF version

Theorem r1peuqusdeg1 35637
Description: Uniqueness of polynomial remainder in terms of a quotient structure in the sense of the right hand side of r1pid2 26074. (Contributed by SN, 21-Jun-2025.)
Hypotheses
Ref Expression
r1peuqus.p 𝑃 = (Poly1𝑅)
r1peuqus.i 𝐼 = ((RSpan‘𝑃)‘{𝐹})
r1peuqus.t 𝑇 = (𝑃 /s (𝑃 ~QG 𝐼))
r1peuqus.q 𝑄 = (Base‘𝑇)
r1peuqus.n 𝑁 = (Unic1p𝑅)
r1peuqus.d 𝐷 = (deg1𝑅)
r1peuqus.r (𝜑𝑅 ∈ Domn)
r1peuqus.f (𝜑𝐹𝑁)
r1peuqus.z (𝜑𝑍𝑄)
Assertion
Ref Expression
r1peuqusdeg1 (𝜑 → ∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹))
Distinct variable groups:   𝜑,𝑞   𝑃,𝑞   𝐼,𝑞   𝐷,𝑞   𝐹,𝑞   𝑅,𝑞   𝑍,𝑞
Allowed substitution hints:   𝑄(𝑞)   𝑇(𝑞)   𝑁(𝑞)

Proof of Theorem r1peuqusdeg1
Dummy variables 𝑝 𝑠 𝑡 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 (Base‘𝑃) = (Base‘𝑃)
2 eqid 2730 . . . 4 (+g𝑃) = (+g𝑃)
3 eqid 2730 . . . 4 (.r𝑃) = (.r𝑃)
4 eqid 2730 . . . 4 (𝑃 ~QG 𝐼) = (𝑃 ~QG 𝐼)
5 r1peuqus.t . . . 4 𝑇 = (𝑃 /s (𝑃 ~QG 𝐼))
6 r1peuqus.i . . . 4 𝐼 = ((RSpan‘𝑃)‘{𝐹})
7 r1peuqus.r . . . . . 6 (𝜑𝑅 ∈ Domn)
8 r1peuqus.p . . . . . . 7 𝑃 = (Poly1𝑅)
98ply1domn 26036 . . . . . 6 (𝑅 ∈ Domn → 𝑃 ∈ Domn)
107, 9syl 17 . . . . 5 (𝜑𝑃 ∈ Domn)
11 domnring 20623 . . . . 5 (𝑃 ∈ Domn → 𝑃 ∈ Ring)
1210, 11syl 17 . . . 4 (𝜑𝑃 ∈ Ring)
13 r1peuqus.f . . . . 5 (𝜑𝐹𝑁)
14 r1peuqus.n . . . . . 6 𝑁 = (Unic1p𝑅)
158, 1, 14uc1pcl 26056 . . . . 5 (𝐹𝑁𝐹 ∈ (Base‘𝑃))
1613, 15syl 17 . . . 4 (𝜑𝐹 ∈ (Base‘𝑃))
17 r1peuqus.z . . . . 5 (𝜑𝑍𝑄)
18 r1peuqus.q . . . . 5 𝑄 = (Base‘𝑇)
1917, 18eleqtrdi 2839 . . . 4 (𝜑𝑍 ∈ (Base‘𝑇))
201, 2, 3, 4, 5, 6, 12, 16, 19ellcsrspsn 35635 . . 3 (𝜑 → ∃𝑝 ∈ (Base‘𝑃)(𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))}))
21 r1peuqus.d . . . . . . . 8 𝐷 = (deg1𝑅)
22 domnring 20623 . . . . . . . . . 10 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
237, 22syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
2423adantr 480 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘𝑃)) → 𝑅 ∈ Ring)
25 simpr 484 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘𝑃)) → 𝑝 ∈ (Base‘𝑃))
2613adantr 480 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘𝑃)) → 𝐹𝑁)
278, 21, 1, 2, 3, 14, 24, 25, 26ply1divalg3 35636 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘𝑃)) → ∃!𝑠 ∈ (Base‘𝑃)(𝐷‘(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))) < (𝐷𝐹))
2827adantr 480 . . . . . 6 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) → ∃!𝑠 ∈ (Base‘𝑃)(𝐷‘(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))) < (𝐷𝐹))
29 ovexd 7425 . . . . . . . . 9 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∈ V)
30 simpr 484 . . . . . . . . . 10 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → 𝑠 ∈ (Base‘𝑃))
31 eqidd 2731 . . . . . . . . . 10 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
32 oveq1 7397 . . . . . . . . . . . . 13 (𝑦 = 𝑠 → (𝑦(.r𝑃)𝐹) = (𝑠(.r𝑃)𝐹))
3332oveq2d 7406 . . . . . . . . . . . 12 (𝑦 = 𝑠 → (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
3433eqeq2d 2741 . . . . . . . . . . 11 (𝑦 = 𝑠 → ((𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))))
3534rspcev 3591 . . . . . . . . . 10 ((𝑠 ∈ (Base‘𝑃) ∧ (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))) → ∃𝑦 ∈ (Base‘𝑃)(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)))
3630, 31, 35syl2anc 584 . . . . . . . . 9 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → ∃𝑦 ∈ (Base‘𝑃)(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)))
37 eqeq1 2734 . . . . . . . . . 10 (𝑧 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) → (𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))))
3837rexbidv 3158 . . . . . . . . 9 (𝑧 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) → (∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ ∃𝑦 ∈ (Base‘𝑃)(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))))
3929, 36, 38elabd 3651 . . . . . . . 8 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})
40 simplrr 777 . . . . . . . 8 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})
4139, 40eleqtrrd 2832 . . . . . . 7 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∈ 𝑍)
42 simprr 772 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) → 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})
4342eqimssd 4006 . . . . . . . . . 10 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) → 𝑍 ⊆ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})
4443sselda 3949 . . . . . . . . 9 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑞𝑍) → 𝑞 ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})
45 eqeq1 2734 . . . . . . . . . . . . 13 (𝑧 = 𝑞 → (𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ 𝑞 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))))
4645rexbidv 3158 . . . . . . . . . . . 12 (𝑧 = 𝑞 → (∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ ∃𝑦 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))))
4733eqeq2d 2741 . . . . . . . . . . . . 13 (𝑦 = 𝑠 → (𝑞 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ 𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))))
4847cbvrexvw 3217 . . . . . . . . . . . 12 (∃𝑦 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
4946, 48bitrdi 287 . . . . . . . . . . 11 (𝑧 = 𝑞 → (∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))))
5049elabg 3646 . . . . . . . . . 10 (𝑞 ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))} → (𝑞 ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))} ↔ ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))))
5150ibi 267 . . . . . . . . 9 (𝑞 ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))} → ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
5244, 51syl 17 . . . . . . . 8 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑞𝑍) → ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
53 eqtr2 2751 . . . . . . . . . . . 12 ((𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∧ 𝑞 = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹))) → (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)))
5412ringgrpd 20158 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ Grp)
5554adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑃 ∈ Grp)
5612adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑃 ∈ Ring)
57 simpr2 1196 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑠 ∈ (Base‘𝑃))
5816adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝐹 ∈ (Base‘𝑃))
591, 3, 56, 57, 58ringcld 20176 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → (𝑠(.r𝑃)𝐹) ∈ (Base‘𝑃))
60 simpr3 1197 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑡 ∈ (Base‘𝑃))
611, 3, 56, 60, 58ringcld 20176 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → (𝑡(.r𝑃)𝐹) ∈ (Base‘𝑃))
62 simpr1 1195 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑝 ∈ (Base‘𝑃))
631, 2grplcan 18939 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Grp ∧ ((𝑠(.r𝑃)𝐹) ∈ (Base‘𝑃) ∧ (𝑡(.r𝑃)𝐹) ∈ (Base‘𝑃) ∧ 𝑝 ∈ (Base‘𝑃))) → ((𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)) ↔ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)))
6455, 59, 61, 62, 63syl13anc 1374 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)) ↔ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)))
65 eqid 2730 . . . . . . . . . . . . . . . . 17 (0g𝑃) = (0g𝑃)
66 simplr2 1217 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)) → 𝑠 ∈ (Base‘𝑃))
67 simplr3 1218 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)) → 𝑡 ∈ (Base‘𝑃))
688, 65, 14uc1pn0 26058 . . . . . . . . . . . . . . . . . . . 20 (𝐹𝑁𝐹 ≠ (0g𝑃))
6913, 68syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 ≠ (0g𝑃))
7016, 69eldifsnd 4754 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ ((Base‘𝑃) ∖ {(0g𝑃)}))
7170ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)) → 𝐹 ∈ ((Base‘𝑃) ∖ {(0g𝑃)}))
7210ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)) → 𝑃 ∈ Domn)
73 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)) → (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹))
741, 65, 3, 66, 67, 71, 72, 73domnrcan 20639 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)) → 𝑠 = 𝑡)
7574ex 412 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹) → 𝑠 = 𝑡))
7664, 75sylbid 240 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)) → 𝑠 = 𝑡))
77763exp2 1355 . . . . . . . . . . . . 13 (𝜑 → (𝑝 ∈ (Base‘𝑃) → (𝑠 ∈ (Base‘𝑃) → (𝑡 ∈ (Base‘𝑃) → ((𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)) → 𝑠 = 𝑡)))))
7877imp43 427 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)) → 𝑠 = 𝑡))
7953, 78syl5 34 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∧ 𝑞 = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹))) → 𝑠 = 𝑡))
8079ralrimivva 3181 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘𝑃)) → ∀𝑠 ∈ (Base‘𝑃)∀𝑡 ∈ (Base‘𝑃)((𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∧ 𝑞 = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹))) → 𝑠 = 𝑡))
81 oveq1 7397 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹))
8281oveq2d 7406 . . . . . . . . . . . 12 (𝑠 = 𝑡 → (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)))
8382eqeq2d 2741 . . . . . . . . . . 11 (𝑠 = 𝑡 → (𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ↔ 𝑞 = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹))))
8483rmo4 3704 . . . . . . . . . 10 (∃*𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ↔ ∀𝑠 ∈ (Base‘𝑃)∀𝑡 ∈ (Base‘𝑃)((𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∧ 𝑞 = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹))) → 𝑠 = 𝑡))
8580, 84sylibr 234 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘𝑃)) → ∃*𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
8685ad2antrr 726 . . . . . . . 8 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑞𝑍) → ∃*𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
87 reu5 3358 . . . . . . . 8 (∃!𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ↔ (∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∧ ∃*𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))))
8852, 86, 87sylanbrc 583 . . . . . . 7 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑞𝑍) → ∃!𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
89 fveq2 6861 . . . . . . . 8 (𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) → (𝐷𝑞) = (𝐷‘(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))))
9089breq1d 5120 . . . . . . 7 (𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) → ((𝐷𝑞) < (𝐷𝐹) ↔ (𝐷‘(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))) < (𝐷𝐹)))
9141, 88, 90reuxfr1ds 3725 . . . . . 6 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) → (∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹) ↔ ∃!𝑠 ∈ (Base‘𝑃)(𝐷‘(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))) < (𝐷𝐹)))
9228, 91mpbird 257 . . . . 5 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) → ∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹))
9392ex 412 . . . 4 ((𝜑𝑝 ∈ (Base‘𝑃)) → ((𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))}) → ∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹)))
9493reximdva 3147 . . 3 (𝜑 → (∃𝑝 ∈ (Base‘𝑃)(𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))}) → ∃𝑝 ∈ (Base‘𝑃)∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹)))
9520, 94mpd 15 . 2 (𝜑 → ∃𝑝 ∈ (Base‘𝑃)∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹))
96 id 22 . . 3 (∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹) → ∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹))
9796rexlimivw 3131 . 2 (∃𝑝 ∈ (Base‘𝑃)∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹) → ∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹))
9895, 97syl 17 1 (𝜑 → ∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  {cab 2708  wne 2926  wral 3045  wrex 3054  ∃!wreu 3354  ∃*wrmo 3355  Vcvv 3450  cdif 3914  {csn 4592   class class class wbr 5110  cfv 6514  (class class class)co 7390  [cec 8672   < clt 11215  Basecbs 17186  +gcplusg 17227  .rcmulr 17228  0gc0g 17409   /s cqus 17475  Grpcgrp 18872   ~QG cqg 19061  Ringcrg 20149  Domncdomn 20608  RSpancrsp 21124  Poly1cpl1 22068  deg1cdg1 25966  Unic1pcuc1p 26039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153  ax-addf 11154
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-ofr 7657  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-pm 8805  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-starv 17242  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-unif 17250  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-imas 17478  df-qus 17479  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-eqg 19064  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-cring 20152  df-oppr 20253  df-dvdsr 20273  df-unit 20274  df-invr 20304  df-nzr 20429  df-subrng 20462  df-subrg 20486  df-rlreg 20610  df-domn 20611  df-lmod 20775  df-lss 20845  df-lsp 20885  df-sra 21087  df-rgmod 21088  df-lidl 21125  df-rsp 21126  df-cnfld 21272  df-ascl 21771  df-psr 21825  df-mvr 21826  df-mpl 21827  df-opsr 21829  df-psr1 22071  df-vr1 22072  df-ply1 22073  df-coe1 22074  df-mdeg 25967  df-deg1 25968  df-uc1p 26044
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator