Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1peuqusdeg1 Structured version   Visualization version   GIF version

Theorem r1peuqusdeg1 35665
Description: Uniqueness of polynomial remainder in terms of a quotient structure in the sense of the right hand side of r1pid2 26119. (Contributed by SN, 21-Jun-2025.)
Hypotheses
Ref Expression
r1peuqus.p 𝑃 = (Poly1𝑅)
r1peuqus.i 𝐼 = ((RSpan‘𝑃)‘{𝐹})
r1peuqus.t 𝑇 = (𝑃 /s (𝑃 ~QG 𝐼))
r1peuqus.q 𝑄 = (Base‘𝑇)
r1peuqus.n 𝑁 = (Unic1p𝑅)
r1peuqus.d 𝐷 = (deg1𝑅)
r1peuqus.r (𝜑𝑅 ∈ Domn)
r1peuqus.f (𝜑𝐹𝑁)
r1peuqus.z (𝜑𝑍𝑄)
Assertion
Ref Expression
r1peuqusdeg1 (𝜑 → ∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹))
Distinct variable groups:   𝜑,𝑞   𝑃,𝑞   𝐼,𝑞   𝐷,𝑞   𝐹,𝑞   𝑅,𝑞   𝑍,𝑞
Allowed substitution hints:   𝑄(𝑞)   𝑇(𝑞)   𝑁(𝑞)

Proof of Theorem r1peuqusdeg1
Dummy variables 𝑝 𝑠 𝑡 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . 4 (Base‘𝑃) = (Base‘𝑃)
2 eqid 2735 . . . 4 (+g𝑃) = (+g𝑃)
3 eqid 2735 . . . 4 (.r𝑃) = (.r𝑃)
4 eqid 2735 . . . 4 (𝑃 ~QG 𝐼) = (𝑃 ~QG 𝐼)
5 r1peuqus.t . . . 4 𝑇 = (𝑃 /s (𝑃 ~QG 𝐼))
6 r1peuqus.i . . . 4 𝐼 = ((RSpan‘𝑃)‘{𝐹})
7 r1peuqus.r . . . . . 6 (𝜑𝑅 ∈ Domn)
8 r1peuqus.p . . . . . . 7 𝑃 = (Poly1𝑅)
98ply1domn 26081 . . . . . 6 (𝑅 ∈ Domn → 𝑃 ∈ Domn)
107, 9syl 17 . . . . 5 (𝜑𝑃 ∈ Domn)
11 domnring 20667 . . . . 5 (𝑃 ∈ Domn → 𝑃 ∈ Ring)
1210, 11syl 17 . . . 4 (𝜑𝑃 ∈ Ring)
13 r1peuqus.f . . . . 5 (𝜑𝐹𝑁)
14 r1peuqus.n . . . . . 6 𝑁 = (Unic1p𝑅)
158, 1, 14uc1pcl 26101 . . . . 5 (𝐹𝑁𝐹 ∈ (Base‘𝑃))
1613, 15syl 17 . . . 4 (𝜑𝐹 ∈ (Base‘𝑃))
17 r1peuqus.z . . . . 5 (𝜑𝑍𝑄)
18 r1peuqus.q . . . . 5 𝑄 = (Base‘𝑇)
1917, 18eleqtrdi 2844 . . . 4 (𝜑𝑍 ∈ (Base‘𝑇))
201, 2, 3, 4, 5, 6, 12, 16, 19ellcsrspsn 35663 . . 3 (𝜑 → ∃𝑝 ∈ (Base‘𝑃)(𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))}))
21 r1peuqus.d . . . . . . . 8 𝐷 = (deg1𝑅)
22 domnring 20667 . . . . . . . . . 10 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
237, 22syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
2423adantr 480 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘𝑃)) → 𝑅 ∈ Ring)
25 simpr 484 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘𝑃)) → 𝑝 ∈ (Base‘𝑃))
2613adantr 480 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘𝑃)) → 𝐹𝑁)
278, 21, 1, 2, 3, 14, 24, 25, 26ply1divalg3 35664 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘𝑃)) → ∃!𝑠 ∈ (Base‘𝑃)(𝐷‘(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))) < (𝐷𝐹))
2827adantr 480 . . . . . 6 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) → ∃!𝑠 ∈ (Base‘𝑃)(𝐷‘(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))) < (𝐷𝐹))
29 ovexd 7440 . . . . . . . . 9 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∈ V)
30 simpr 484 . . . . . . . . . 10 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → 𝑠 ∈ (Base‘𝑃))
31 eqidd 2736 . . . . . . . . . 10 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
32 oveq1 7412 . . . . . . . . . . . . 13 (𝑦 = 𝑠 → (𝑦(.r𝑃)𝐹) = (𝑠(.r𝑃)𝐹))
3332oveq2d 7421 . . . . . . . . . . . 12 (𝑦 = 𝑠 → (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
3433eqeq2d 2746 . . . . . . . . . . 11 (𝑦 = 𝑠 → ((𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))))
3534rspcev 3601 . . . . . . . . . 10 ((𝑠 ∈ (Base‘𝑃) ∧ (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))) → ∃𝑦 ∈ (Base‘𝑃)(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)))
3630, 31, 35syl2anc 584 . . . . . . . . 9 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → ∃𝑦 ∈ (Base‘𝑃)(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)))
37 eqeq1 2739 . . . . . . . . . 10 (𝑧 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) → (𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))))
3837rexbidv 3164 . . . . . . . . 9 (𝑧 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) → (∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ ∃𝑦 ∈ (Base‘𝑃)(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))))
3929, 36, 38elabd 3660 . . . . . . . 8 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})
40 simplrr 777 . . . . . . . 8 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})
4139, 40eleqtrrd 2837 . . . . . . 7 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∈ 𝑍)
42 simprr 772 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) → 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})
4342eqimssd 4015 . . . . . . . . . 10 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) → 𝑍 ⊆ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})
4443sselda 3958 . . . . . . . . 9 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑞𝑍) → 𝑞 ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})
45 eqeq1 2739 . . . . . . . . . . . . 13 (𝑧 = 𝑞 → (𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ 𝑞 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))))
4645rexbidv 3164 . . . . . . . . . . . 12 (𝑧 = 𝑞 → (∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ ∃𝑦 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))))
4733eqeq2d 2746 . . . . . . . . . . . . 13 (𝑦 = 𝑠 → (𝑞 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ 𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))))
4847cbvrexvw 3221 . . . . . . . . . . . 12 (∃𝑦 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
4946, 48bitrdi 287 . . . . . . . . . . 11 (𝑧 = 𝑞 → (∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))))
5049elabg 3655 . . . . . . . . . 10 (𝑞 ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))} → (𝑞 ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))} ↔ ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))))
5150ibi 267 . . . . . . . . 9 (𝑞 ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))} → ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
5244, 51syl 17 . . . . . . . 8 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑞𝑍) → ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
53 eqtr2 2756 . . . . . . . . . . . 12 ((𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∧ 𝑞 = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹))) → (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)))
5412ringgrpd 20202 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ Grp)
5554adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑃 ∈ Grp)
5612adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑃 ∈ Ring)
57 simpr2 1196 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑠 ∈ (Base‘𝑃))
5816adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝐹 ∈ (Base‘𝑃))
591, 3, 56, 57, 58ringcld 20220 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → (𝑠(.r𝑃)𝐹) ∈ (Base‘𝑃))
60 simpr3 1197 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑡 ∈ (Base‘𝑃))
611, 3, 56, 60, 58ringcld 20220 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → (𝑡(.r𝑃)𝐹) ∈ (Base‘𝑃))
62 simpr1 1195 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑝 ∈ (Base‘𝑃))
631, 2grplcan 18983 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Grp ∧ ((𝑠(.r𝑃)𝐹) ∈ (Base‘𝑃) ∧ (𝑡(.r𝑃)𝐹) ∈ (Base‘𝑃) ∧ 𝑝 ∈ (Base‘𝑃))) → ((𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)) ↔ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)))
6455, 59, 61, 62, 63syl13anc 1374 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)) ↔ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)))
65 eqid 2735 . . . . . . . . . . . . . . . . 17 (0g𝑃) = (0g𝑃)
66 simplr2 1217 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)) → 𝑠 ∈ (Base‘𝑃))
67 simplr3 1218 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)) → 𝑡 ∈ (Base‘𝑃))
688, 65, 14uc1pn0 26103 . . . . . . . . . . . . . . . . . . . 20 (𝐹𝑁𝐹 ≠ (0g𝑃))
6913, 68syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 ≠ (0g𝑃))
7016, 69eldifsnd 4763 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ ((Base‘𝑃) ∖ {(0g𝑃)}))
7170ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)) → 𝐹 ∈ ((Base‘𝑃) ∖ {(0g𝑃)}))
7210ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)) → 𝑃 ∈ Domn)
73 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)) → (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹))
741, 65, 3, 66, 67, 71, 72, 73domnrcan 20683 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)) → 𝑠 = 𝑡)
7574ex 412 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹) → 𝑠 = 𝑡))
7664, 75sylbid 240 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)) → 𝑠 = 𝑡))
77763exp2 1355 . . . . . . . . . . . . 13 (𝜑 → (𝑝 ∈ (Base‘𝑃) → (𝑠 ∈ (Base‘𝑃) → (𝑡 ∈ (Base‘𝑃) → ((𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)) → 𝑠 = 𝑡)))))
7877imp43 427 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)) → 𝑠 = 𝑡))
7953, 78syl5 34 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∧ 𝑞 = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹))) → 𝑠 = 𝑡))
8079ralrimivva 3187 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘𝑃)) → ∀𝑠 ∈ (Base‘𝑃)∀𝑡 ∈ (Base‘𝑃)((𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∧ 𝑞 = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹))) → 𝑠 = 𝑡))
81 oveq1 7412 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹))
8281oveq2d 7421 . . . . . . . . . . . 12 (𝑠 = 𝑡 → (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)))
8382eqeq2d 2746 . . . . . . . . . . 11 (𝑠 = 𝑡 → (𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ↔ 𝑞 = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹))))
8483rmo4 3713 . . . . . . . . . 10 (∃*𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ↔ ∀𝑠 ∈ (Base‘𝑃)∀𝑡 ∈ (Base‘𝑃)((𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∧ 𝑞 = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹))) → 𝑠 = 𝑡))
8580, 84sylibr 234 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘𝑃)) → ∃*𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
8685ad2antrr 726 . . . . . . . 8 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑞𝑍) → ∃*𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
87 reu5 3361 . . . . . . . 8 (∃!𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ↔ (∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∧ ∃*𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))))
8852, 86, 87sylanbrc 583 . . . . . . 7 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑞𝑍) → ∃!𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
89 fveq2 6876 . . . . . . . 8 (𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) → (𝐷𝑞) = (𝐷‘(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))))
9089breq1d 5129 . . . . . . 7 (𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) → ((𝐷𝑞) < (𝐷𝐹) ↔ (𝐷‘(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))) < (𝐷𝐹)))
9141, 88, 90reuxfr1ds 3734 . . . . . 6 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) → (∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹) ↔ ∃!𝑠 ∈ (Base‘𝑃)(𝐷‘(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))) < (𝐷𝐹)))
9228, 91mpbird 257 . . . . 5 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) → ∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹))
9392ex 412 . . . 4 ((𝜑𝑝 ∈ (Base‘𝑃)) → ((𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))}) → ∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹)))
9493reximdva 3153 . . 3 (𝜑 → (∃𝑝 ∈ (Base‘𝑃)(𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))}) → ∃𝑝 ∈ (Base‘𝑃)∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹)))
9520, 94mpd 15 . 2 (𝜑 → ∃𝑝 ∈ (Base‘𝑃)∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹))
96 id 22 . . 3 (∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹) → ∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹))
9796rexlimivw 3137 . 2 (∃𝑝 ∈ (Base‘𝑃)∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹) → ∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹))
9895, 97syl 17 1 (𝜑 → ∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  {cab 2713  wne 2932  wral 3051  wrex 3060  ∃!wreu 3357  ∃*wrmo 3358  Vcvv 3459  cdif 3923  {csn 4601   class class class wbr 5119  cfv 6531  (class class class)co 7405  [cec 8717   < clt 11269  Basecbs 17228  +gcplusg 17271  .rcmulr 17272  0gc0g 17453   /s cqus 17519  Grpcgrp 18916   ~QG cqg 19105  Ringcrg 20193  Domncdomn 20652  RSpancrsp 21168  Poly1cpl1 22112  deg1cdg1 26011  Unic1pcuc1p 26084
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-ec 8721  df-qs 8725  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-imas 17522  df-qus 17523  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-eqg 19108  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-nzr 20473  df-subrng 20506  df-subrg 20530  df-rlreg 20654  df-domn 20655  df-lmod 20819  df-lss 20889  df-lsp 20929  df-sra 21131  df-rgmod 21132  df-lidl 21169  df-rsp 21170  df-cnfld 21316  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-opsr 21873  df-psr1 22115  df-vr1 22116  df-ply1 22117  df-coe1 22118  df-mdeg 26012  df-deg1 26013  df-uc1p 26089
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator