Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1peuqusdeg1 Structured version   Visualization version   GIF version

Theorem r1peuqusdeg1 35627
Description: Uniqueness of polynomial remainder in terms of a quotient structure in the sense of the right hand side of r1pid2 26215. (Contributed by SN, 21-Jun-2025.)
Hypotheses
Ref Expression
r1peuqus.p 𝑃 = (Poly1𝑅)
r1peuqus.i 𝐼 = ((RSpan‘𝑃)‘{𝐹})
r1peuqus.t 𝑇 = (𝑃 /s (𝑃 ~QG 𝐼))
r1peuqus.q 𝑄 = (Base‘𝑇)
r1peuqus.n 𝑁 = (Unic1p𝑅)
r1peuqus.d 𝐷 = (deg1𝑅)
r1peuqus.r (𝜑𝑅 ∈ Domn)
r1peuqus.f (𝜑𝐹𝑁)
r1peuqus.z (𝜑𝑍𝑄)
Assertion
Ref Expression
r1peuqusdeg1 (𝜑 → ∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹))
Distinct variable groups:   𝜑,𝑞   𝑃,𝑞   𝐼,𝑞   𝐷,𝑞   𝐹,𝑞   𝑅,𝑞   𝑍,𝑞
Allowed substitution hints:   𝑄(𝑞)   𝑇(𝑞)   𝑁(𝑞)

Proof of Theorem r1peuqusdeg1
Dummy variables 𝑝 𝑠 𝑡 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2734 . . . 4 (Base‘𝑃) = (Base‘𝑃)
2 eqid 2734 . . . 4 (+g𝑃) = (+g𝑃)
3 eqid 2734 . . . 4 (.r𝑃) = (.r𝑃)
4 eqid 2734 . . . 4 (𝑃 ~QG 𝐼) = (𝑃 ~QG 𝐼)
5 r1peuqus.t . . . 4 𝑇 = (𝑃 /s (𝑃 ~QG 𝐼))
6 r1peuqus.i . . . 4 𝐼 = ((RSpan‘𝑃)‘{𝐹})
7 r1peuqus.r . . . . . 6 (𝜑𝑅 ∈ Domn)
8 r1peuqus.p . . . . . . 7 𝑃 = (Poly1𝑅)
98ply1domn 26177 . . . . . 6 (𝑅 ∈ Domn → 𝑃 ∈ Domn)
107, 9syl 17 . . . . 5 (𝜑𝑃 ∈ Domn)
11 domnring 20723 . . . . 5 (𝑃 ∈ Domn → 𝑃 ∈ Ring)
1210, 11syl 17 . . . 4 (𝜑𝑃 ∈ Ring)
13 r1peuqus.f . . . . 5 (𝜑𝐹𝑁)
14 r1peuqus.n . . . . . 6 𝑁 = (Unic1p𝑅)
158, 1, 14uc1pcl 26197 . . . . 5 (𝐹𝑁𝐹 ∈ (Base‘𝑃))
1613, 15syl 17 . . . 4 (𝜑𝐹 ∈ (Base‘𝑃))
17 r1peuqus.z . . . . 5 (𝜑𝑍𝑄)
18 r1peuqus.q . . . . 5 𝑄 = (Base‘𝑇)
1917, 18eleqtrdi 2848 . . . 4 (𝜑𝑍 ∈ (Base‘𝑇))
201, 2, 3, 4, 5, 6, 12, 16, 19ellcsrspsn 35625 . . 3 (𝜑 → ∃𝑝 ∈ (Base‘𝑃)(𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))}))
21 r1peuqus.d . . . . . . . 8 𝐷 = (deg1𝑅)
22 domnring 20723 . . . . . . . . . 10 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
237, 22syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
2423adantr 480 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘𝑃)) → 𝑅 ∈ Ring)
25 simpr 484 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘𝑃)) → 𝑝 ∈ (Base‘𝑃))
2613adantr 480 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘𝑃)) → 𝐹𝑁)
278, 21, 1, 2, 3, 14, 24, 25, 26ply1divalg3 35626 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘𝑃)) → ∃!𝑠 ∈ (Base‘𝑃)(𝐷‘(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))) < (𝐷𝐹))
2827adantr 480 . . . . . 6 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) → ∃!𝑠 ∈ (Base‘𝑃)(𝐷‘(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))) < (𝐷𝐹))
29 ovexd 7465 . . . . . . . . 9 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∈ V)
30 simpr 484 . . . . . . . . . 10 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → 𝑠 ∈ (Base‘𝑃))
31 eqidd 2735 . . . . . . . . . 10 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
32 oveq1 7437 . . . . . . . . . . . . 13 (𝑦 = 𝑠 → (𝑦(.r𝑃)𝐹) = (𝑠(.r𝑃)𝐹))
3332oveq2d 7446 . . . . . . . . . . . 12 (𝑦 = 𝑠 → (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
3433eqeq2d 2745 . . . . . . . . . . 11 (𝑦 = 𝑠 → ((𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))))
3534rspcev 3621 . . . . . . . . . 10 ((𝑠 ∈ (Base‘𝑃) ∧ (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))) → ∃𝑦 ∈ (Base‘𝑃)(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)))
3630, 31, 35syl2anc 584 . . . . . . . . 9 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → ∃𝑦 ∈ (Base‘𝑃)(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)))
37 eqeq1 2738 . . . . . . . . . 10 (𝑧 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) → (𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))))
3837rexbidv 3176 . . . . . . . . 9 (𝑧 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) → (∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ ∃𝑦 ∈ (Base‘𝑃)(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))))
3929, 36, 38elabd 3683 . . . . . . . 8 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})
40 simplrr 778 . . . . . . . 8 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})
4139, 40eleqtrrd 2841 . . . . . . 7 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∈ 𝑍)
42 simprr 773 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) → 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})
4342eqimssd 4051 . . . . . . . . . 10 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) → 𝑍 ⊆ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})
4443sselda 3994 . . . . . . . . 9 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑞𝑍) → 𝑞 ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})
45 eqeq1 2738 . . . . . . . . . . . . 13 (𝑧 = 𝑞 → (𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ 𝑞 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))))
4645rexbidv 3176 . . . . . . . . . . . 12 (𝑧 = 𝑞 → (∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ ∃𝑦 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))))
4733eqeq2d 2745 . . . . . . . . . . . . 13 (𝑦 = 𝑠 → (𝑞 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ 𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))))
4847cbvrexvw 3235 . . . . . . . . . . . 12 (∃𝑦 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
4946, 48bitrdi 287 . . . . . . . . . . 11 (𝑧 = 𝑞 → (∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))))
5049elabg 3676 . . . . . . . . . 10 (𝑞 ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))} → (𝑞 ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))} ↔ ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))))
5150ibi 267 . . . . . . . . 9 (𝑞 ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))} → ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
5244, 51syl 17 . . . . . . . 8 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑞𝑍) → ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
53 eqtr2 2758 . . . . . . . . . . . 12 ((𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∧ 𝑞 = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹))) → (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)))
5412ringgrpd 20259 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ Grp)
5554adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑃 ∈ Grp)
5612adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑃 ∈ Ring)
57 simpr2 1194 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑠 ∈ (Base‘𝑃))
5816adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝐹 ∈ (Base‘𝑃))
591, 3, 56, 57, 58ringcld 20276 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → (𝑠(.r𝑃)𝐹) ∈ (Base‘𝑃))
60 simpr3 1195 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑡 ∈ (Base‘𝑃))
611, 3, 56, 60, 58ringcld 20276 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → (𝑡(.r𝑃)𝐹) ∈ (Base‘𝑃))
62 simpr1 1193 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑝 ∈ (Base‘𝑃))
631, 2grplcan 19030 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Grp ∧ ((𝑠(.r𝑃)𝐹) ∈ (Base‘𝑃) ∧ (𝑡(.r𝑃)𝐹) ∈ (Base‘𝑃) ∧ 𝑝 ∈ (Base‘𝑃))) → ((𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)) ↔ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)))
6455, 59, 61, 62, 63syl13anc 1371 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)) ↔ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)))
65 eqid 2734 . . . . . . . . . . . . . . . . 17 (0g𝑃) = (0g𝑃)
66 simplr2 1215 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)) → 𝑠 ∈ (Base‘𝑃))
67 simplr3 1216 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)) → 𝑡 ∈ (Base‘𝑃))
688, 65, 14uc1pn0 26199 . . . . . . . . . . . . . . . . . . . 20 (𝐹𝑁𝐹 ≠ (0g𝑃))
6913, 68syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 ≠ (0g𝑃))
7016, 69eldifsnd 4791 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ ((Base‘𝑃) ∖ {(0g𝑃)}))
7170ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)) → 𝐹 ∈ ((Base‘𝑃) ∖ {(0g𝑃)}))
7210ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)) → 𝑃 ∈ Domn)
73 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)) → (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹))
741, 65, 3, 66, 67, 71, 72, 73domnrcan 20739 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)) → 𝑠 = 𝑡)
7574ex 412 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹) → 𝑠 = 𝑡))
7664, 75sylbid 240 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)) → 𝑠 = 𝑡))
77763exp2 1353 . . . . . . . . . . . . 13 (𝜑 → (𝑝 ∈ (Base‘𝑃) → (𝑠 ∈ (Base‘𝑃) → (𝑡 ∈ (Base‘𝑃) → ((𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)) → 𝑠 = 𝑡)))))
7877imp43 427 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)) → 𝑠 = 𝑡))
7953, 78syl5 34 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∧ 𝑞 = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹))) → 𝑠 = 𝑡))
8079ralrimivva 3199 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘𝑃)) → ∀𝑠 ∈ (Base‘𝑃)∀𝑡 ∈ (Base‘𝑃)((𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∧ 𝑞 = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹))) → 𝑠 = 𝑡))
81 oveq1 7437 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹))
8281oveq2d 7446 . . . . . . . . . . . 12 (𝑠 = 𝑡 → (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)))
8382eqeq2d 2745 . . . . . . . . . . 11 (𝑠 = 𝑡 → (𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ↔ 𝑞 = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹))))
8483rmo4 3738 . . . . . . . . . 10 (∃*𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ↔ ∀𝑠 ∈ (Base‘𝑃)∀𝑡 ∈ (Base‘𝑃)((𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∧ 𝑞 = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹))) → 𝑠 = 𝑡))
8580, 84sylibr 234 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘𝑃)) → ∃*𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
8685ad2antrr 726 . . . . . . . 8 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑞𝑍) → ∃*𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
87 reu5 3379 . . . . . . . 8 (∃!𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ↔ (∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∧ ∃*𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))))
8852, 86, 87sylanbrc 583 . . . . . . 7 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑞𝑍) → ∃!𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
89 fveq2 6906 . . . . . . . 8 (𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) → (𝐷𝑞) = (𝐷‘(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))))
9089breq1d 5157 . . . . . . 7 (𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) → ((𝐷𝑞) < (𝐷𝐹) ↔ (𝐷‘(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))) < (𝐷𝐹)))
9141, 88, 90reuxfr1ds 3759 . . . . . 6 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) → (∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹) ↔ ∃!𝑠 ∈ (Base‘𝑃)(𝐷‘(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))) < (𝐷𝐹)))
9228, 91mpbird 257 . . . . 5 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) → ∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹))
9392ex 412 . . . 4 ((𝜑𝑝 ∈ (Base‘𝑃)) → ((𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))}) → ∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹)))
9493reximdva 3165 . . 3 (𝜑 → (∃𝑝 ∈ (Base‘𝑃)(𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))}) → ∃𝑝 ∈ (Base‘𝑃)∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹)))
9520, 94mpd 15 . 2 (𝜑 → ∃𝑝 ∈ (Base‘𝑃)∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹))
96 id 22 . . 3 (∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹) → ∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹))
9796rexlimivw 3148 . 2 (∃𝑝 ∈ (Base‘𝑃)∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹) → ∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹))
9895, 97syl 17 1 (𝜑 → ∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1536  wcel 2105  {cab 2711  wne 2937  wral 3058  wrex 3067  ∃!wreu 3375  ∃*wrmo 3376  Vcvv 3477  cdif 3959  {csn 4630   class class class wbr 5147  cfv 6562  (class class class)co 7430  [cec 8741   < clt 11292  Basecbs 17244  +gcplusg 17297  .rcmulr 17298  0gc0g 17485   /s cqus 17551  Grpcgrp 18963   ~QG cqg 19152  Ringcrg 20250  Domncdomn 20708  RSpancrsp 21234  Poly1cpl1 22193  deg1cdg1 26107  Unic1pcuc1p 26180
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1791  ax-4 1805  ax-5 1907  ax-6 1964  ax-7 2004  ax-8 2107  ax-9 2115  ax-10 2138  ax-11 2154  ax-12 2174  ax-ext 2705  ax-rep 5284  ax-sep 5301  ax-nul 5311  ax-pow 5370  ax-pr 5437  ax-un 7753  ax-cnex 11208  ax-resscn 11209  ax-1cn 11210  ax-icn 11211  ax-addcl 11212  ax-addrcl 11213  ax-mulcl 11214  ax-mulrcl 11215  ax-mulcom 11216  ax-addass 11217  ax-mulass 11218  ax-distr 11219  ax-i2m1 11220  ax-1ne0 11221  ax-1rid 11222  ax-rnegex 11223  ax-rrecex 11224  ax-cnre 11225  ax-pre-lttri 11226  ax-pre-lttrn 11227  ax-pre-ltadd 11228  ax-pre-mulgt0 11229  ax-pre-sup 11230  ax-addf 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1539  df-fal 1549  df-ex 1776  df-nf 1780  df-sb 2062  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2889  df-ne 2938  df-nel 3044  df-ral 3059  df-rex 3068  df-rmo 3377  df-reu 3378  df-rab 3433  df-v 3479  df-sbc 3791  df-csb 3908  df-dif 3965  df-un 3967  df-in 3969  df-ss 3979  df-pss 3982  df-nul 4339  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4912  df-int 4951  df-iun 4997  df-iin 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5582  df-eprel 5588  df-po 5596  df-so 5597  df-fr 5640  df-se 5641  df-we 5642  df-xp 5694  df-rel 5695  df-cnv 5696  df-co 5697  df-dm 5698  df-rn 5699  df-res 5700  df-ima 5701  df-pred 6322  df-ord 6388  df-on 6389  df-lim 6390  df-suc 6391  df-iota 6515  df-fun 6564  df-fn 6565  df-f 6566  df-f1 6567  df-fo 6568  df-f1o 6569  df-fv 6570  df-isom 6571  df-riota 7387  df-ov 7433  df-oprab 7434  df-mpo 7435  df-of 7696  df-ofr 7697  df-om 7887  df-1st 8012  df-2nd 8013  df-supp 8184  df-tpos 8249  df-frecs 8304  df-wrecs 8335  df-recs 8409  df-rdg 8448  df-1o 8504  df-2o 8505  df-er 8743  df-ec 8745  df-qs 8749  df-map 8866  df-pm 8867  df-ixp 8936  df-en 8984  df-dom 8985  df-sdom 8986  df-fin 8987  df-fsupp 9399  df-sup 9479  df-inf 9480  df-oi 9547  df-card 9976  df-pnf 11294  df-mnf 11295  df-xr 11296  df-ltxr 11297  df-le 11298  df-sub 11491  df-neg 11492  df-nn 12264  df-2 12326  df-3 12327  df-4 12328  df-5 12329  df-6 12330  df-7 12331  df-8 12332  df-9 12333  df-n0 12524  df-z 12611  df-dec 12731  df-uz 12876  df-fz 13544  df-fzo 13691  df-seq 14039  df-hash 14366  df-struct 17180  df-sets 17197  df-slot 17215  df-ndx 17227  df-base 17245  df-ress 17274  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17487  df-gsum 17488  df-prds 17493  df-pws 17495  df-imas 17554  df-qus 17555  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18665  df-sgrp 18744  df-mnd 18760  df-mhm 18808  df-submnd 18809  df-grp 18966  df-minusg 18967  df-sbg 18968  df-mulg 19098  df-subg 19153  df-eqg 19155  df-ghm 19243  df-cntz 19347  df-cmn 19814  df-abl 19815  df-mgp 20152  df-rng 20170  df-ur 20199  df-ring 20252  df-cring 20253  df-oppr 20350  df-dvdsr 20373  df-unit 20374  df-invr 20404  df-nzr 20529  df-subrng 20562  df-subrg 20586  df-rlreg 20710  df-domn 20711  df-lmod 20876  df-lss 20947  df-lsp 20987  df-sra 21189  df-rgmod 21190  df-lidl 21235  df-rsp 21236  df-cnfld 21382  df-ascl 21892  df-psr 21946  df-mvr 21947  df-mpl 21948  df-opsr 21950  df-psr1 22196  df-vr1 22197  df-ply1 22198  df-coe1 22199  df-mdeg 26108  df-deg1 26109  df-uc1p 26185
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator