Step | Hyp | Ref
| Expression |
1 | | eqid 2726 |
. . . 4
⊢
(Base‘𝑃) =
(Base‘𝑃) |
2 | | eqid 2726 |
. . . 4
⊢
(+g‘𝑃) = (+g‘𝑃) |
3 | | eqid 2726 |
. . . 4
⊢
(.r‘𝑃) = (.r‘𝑃) |
4 | | eqid 2726 |
. . . 4
⊢ (𝑃 ~QG 𝐼) = (𝑃 ~QG 𝐼) |
5 | | r1peuqus.t |
. . . 4
⊢ 𝑇 = (𝑃 /s (𝑃 ~QG 𝐼)) |
6 | | r1peuqus.i |
. . . 4
⊢ 𝐼 = ((RSpan‘𝑃)‘{𝐹}) |
7 | | r1peuqus.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Domn) |
8 | | r1peuqus.p |
. . . . . . 7
⊢ 𝑃 = (Poly1‘𝑅) |
9 | 8 | ply1domn 26148 |
. . . . . 6
⊢ (𝑅 ∈ Domn → 𝑃 ∈ Domn) |
10 | 7, 9 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ Domn) |
11 | | domnring 20681 |
. . . . 5
⊢ (𝑃 ∈ Domn → 𝑃 ∈ Ring) |
12 | 10, 11 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑃 ∈ Ring) |
13 | | r1peuqus.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ 𝑁) |
14 | | r1peuqus.n |
. . . . . 6
⊢ 𝑁 =
(Unic1p‘𝑅) |
15 | 8, 1, 14 | uc1pcl 26168 |
. . . . 5
⊢ (𝐹 ∈ 𝑁 → 𝐹 ∈ (Base‘𝑃)) |
16 | 13, 15 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (Base‘𝑃)) |
17 | | r1peuqus.z |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ 𝑄) |
18 | | r1peuqus.q |
. . . . 5
⊢ 𝑄 = (Base‘𝑇) |
19 | 17, 18 | eleqtrdi 2836 |
. . . 4
⊢ (𝜑 → 𝑍 ∈ (Base‘𝑇)) |
20 | 1, 2, 3, 4, 5, 6, 12, 16, 19 | ellcsrspsn 35482 |
. . 3
⊢ (𝜑 → ∃𝑝 ∈ (Base‘𝑃)(𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) |
21 | | r1peuqus.d |
. . . . . . . 8
⊢ 𝐷 = (deg1‘𝑅) |
22 | | domnring 20681 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
23 | 7, 22 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Ring) |
24 | 23 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) → 𝑅 ∈ Ring) |
25 | | simpr 483 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) → 𝑝 ∈ (Base‘𝑃)) |
26 | 13 | adantr 479 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) → 𝐹 ∈ 𝑁) |
27 | 8, 21, 1, 2, 3, 14,
24, 25, 26 | ply1divalg3 35483 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) → ∃!𝑠 ∈ (Base‘𝑃)(𝐷‘(𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹))) < (𝐷‘𝐹)) |
28 | 27 | adantr 479 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) → ∃!𝑠 ∈ (Base‘𝑃)(𝐷‘(𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹))) < (𝐷‘𝐹)) |
29 | | ovexd 7451 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) ∈ V) |
30 | | simpr 483 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → 𝑠 ∈ (Base‘𝑃)) |
31 | | eqidd 2727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹))) |
32 | | oveq1 7423 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑠 → (𝑦(.r‘𝑃)𝐹) = (𝑠(.r‘𝑃)𝐹)) |
33 | 32 | oveq2d 7432 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑠 → (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹))) |
34 | 33 | eqeq2d 2737 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑠 → ((𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹)) ↔ (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)))) |
35 | 34 | rspcev 3607 |
. . . . . . . . . 10
⊢ ((𝑠 ∈ (Base‘𝑃) ∧ (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹))) → ∃𝑦 ∈ (Base‘𝑃)(𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))) |
36 | 30, 31, 35 | syl2anc 582 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → ∃𝑦 ∈ (Base‘𝑃)(𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))) |
37 | | eqeq1 2730 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) → (𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹)) ↔ (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹)))) |
38 | 37 | rexbidv 3169 |
. . . . . . . . 9
⊢ (𝑧 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) → (∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹)) ↔ ∃𝑦 ∈ (Base‘𝑃)(𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹)))) |
39 | 29, 36, 38 | elabd 3668 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))}) |
40 | | simplrr 776 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))}) |
41 | 39, 40 | eleqtrrd 2829 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) ∈ 𝑍) |
42 | | simprr 771 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) → 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))}) |
43 | 42 | eqimssd 4035 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) → 𝑍 ⊆ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))}) |
44 | 43 | sselda 3978 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) ∧ 𝑞 ∈ 𝑍) → 𝑞 ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))}) |
45 | | eqeq1 2730 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑞 → (𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹)) ↔ 𝑞 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹)))) |
46 | 45 | rexbidv 3169 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑞 → (∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹)) ↔ ∃𝑦 ∈ (Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹)))) |
47 | 33 | eqeq2d 2737 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑠 → (𝑞 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹)) ↔ 𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)))) |
48 | 47 | cbvrexvw 3226 |
. . . . . . . . . . . 12
⊢
(∃𝑦 ∈
(Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹)) ↔ ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹))) |
49 | 46, 48 | bitrdi 286 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑞 → (∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹)) ↔ ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)))) |
50 | 49 | elabg 3663 |
. . . . . . . . . 10
⊢ (𝑞 ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))} → (𝑞 ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))} ↔ ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)))) |
51 | 50 | ibi 266 |
. . . . . . . . 9
⊢ (𝑞 ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))} → ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹))) |
52 | 44, 51 | syl 17 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) ∧ 𝑞 ∈ 𝑍) → ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹))) |
53 | | eqtr2 2750 |
. . . . . . . . . . . 12
⊢ ((𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) ∧ 𝑞 = (𝑝(+g‘𝑃)(𝑡(.r‘𝑃)𝐹))) → (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑡(.r‘𝑃)𝐹))) |
54 | 12 | ringgrpd 20221 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑃 ∈ Grp) |
55 | 54 | adantr 479 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑃 ∈ Grp) |
56 | 12 | adantr 479 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑃 ∈ Ring) |
57 | | simpr2 1192 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑠 ∈ (Base‘𝑃)) |
58 | 16 | adantr 479 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝐹 ∈ (Base‘𝑃)) |
59 | 1, 3, 56, 57, 58 | ringcld 20238 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → (𝑠(.r‘𝑃)𝐹) ∈ (Base‘𝑃)) |
60 | | simpr3 1193 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑡 ∈ (Base‘𝑃)) |
61 | 1, 3, 56, 60, 58 | ringcld 20238 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → (𝑡(.r‘𝑃)𝐹) ∈ (Base‘𝑃)) |
62 | | simpr1 1191 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑝 ∈ (Base‘𝑃)) |
63 | 1, 2 | grplcan 18990 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ Grp ∧ ((𝑠(.r‘𝑃)𝐹) ∈ (Base‘𝑃) ∧ (𝑡(.r‘𝑃)𝐹) ∈ (Base‘𝑃) ∧ 𝑝 ∈ (Base‘𝑃))) → ((𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑡(.r‘𝑃)𝐹)) ↔ (𝑠(.r‘𝑃)𝐹) = (𝑡(.r‘𝑃)𝐹))) |
64 | 55, 59, 61, 62, 63 | syl13anc 1369 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑡(.r‘𝑃)𝐹)) ↔ (𝑠(.r‘𝑃)𝐹) = (𝑡(.r‘𝑃)𝐹))) |
65 | | eqid 2726 |
. . . . . . . . . . . . . . . . 17
⊢
(0g‘𝑃) = (0g‘𝑃) |
66 | | simplr2 1213 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r‘𝑃)𝐹) = (𝑡(.r‘𝑃)𝐹)) → 𝑠 ∈ (Base‘𝑃)) |
67 | | simplr3 1214 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r‘𝑃)𝐹) = (𝑡(.r‘𝑃)𝐹)) → 𝑡 ∈ (Base‘𝑃)) |
68 | 8, 65, 14 | uc1pn0 26170 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐹 ∈ 𝑁 → 𝐹 ≠ (0g‘𝑃)) |
69 | 13, 68 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹 ≠ (0g‘𝑃)) |
70 | 16, 69 | eldifsnd 4786 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹 ∈ ((Base‘𝑃) ∖ {(0g‘𝑃)})) |
71 | 70 | ad2antrr 724 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r‘𝑃)𝐹) = (𝑡(.r‘𝑃)𝐹)) → 𝐹 ∈ ((Base‘𝑃) ∖ {(0g‘𝑃)})) |
72 | 10 | ad2antrr 724 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r‘𝑃)𝐹) = (𝑡(.r‘𝑃)𝐹)) → 𝑃 ∈ Domn) |
73 | | simpr 483 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r‘𝑃)𝐹) = (𝑡(.r‘𝑃)𝐹)) → (𝑠(.r‘𝑃)𝐹) = (𝑡(.r‘𝑃)𝐹)) |
74 | 1, 65, 3, 66, 67, 71, 72, 73 | domnrcan 20697 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r‘𝑃)𝐹) = (𝑡(.r‘𝑃)𝐹)) → 𝑠 = 𝑡) |
75 | 74 | ex 411 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑠(.r‘𝑃)𝐹) = (𝑡(.r‘𝑃)𝐹) → 𝑠 = 𝑡)) |
76 | 64, 75 | sylbid 239 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑡(.r‘𝑃)𝐹)) → 𝑠 = 𝑡)) |
77 | 76 | 3exp2 1351 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑝 ∈ (Base‘𝑃) → (𝑠 ∈ (Base‘𝑃) → (𝑡 ∈ (Base‘𝑃) → ((𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑡(.r‘𝑃)𝐹)) → 𝑠 = 𝑡))))) |
78 | 77 | imp43 426 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑡(.r‘𝑃)𝐹)) → 𝑠 = 𝑡)) |
79 | 53, 78 | syl5 34 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) ∧ 𝑞 = (𝑝(+g‘𝑃)(𝑡(.r‘𝑃)𝐹))) → 𝑠 = 𝑡)) |
80 | 79 | ralrimivva 3191 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) → ∀𝑠 ∈ (Base‘𝑃)∀𝑡 ∈ (Base‘𝑃)((𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) ∧ 𝑞 = (𝑝(+g‘𝑃)(𝑡(.r‘𝑃)𝐹))) → 𝑠 = 𝑡)) |
81 | | oveq1 7423 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑡 → (𝑠(.r‘𝑃)𝐹) = (𝑡(.r‘𝑃)𝐹)) |
82 | 81 | oveq2d 7432 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑡 → (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑡(.r‘𝑃)𝐹))) |
83 | 82 | eqeq2d 2737 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑡 → (𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) ↔ 𝑞 = (𝑝(+g‘𝑃)(𝑡(.r‘𝑃)𝐹)))) |
84 | 83 | rmo4 3723 |
. . . . . . . . . 10
⊢
(∃*𝑠 ∈
(Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) ↔ ∀𝑠 ∈ (Base‘𝑃)∀𝑡 ∈ (Base‘𝑃)((𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) ∧ 𝑞 = (𝑝(+g‘𝑃)(𝑡(.r‘𝑃)𝐹))) → 𝑠 = 𝑡)) |
85 | 80, 84 | sylibr 233 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) → ∃*𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹))) |
86 | 85 | ad2antrr 724 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) ∧ 𝑞 ∈ 𝑍) → ∃*𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹))) |
87 | | reu5 3366 |
. . . . . . . 8
⊢
(∃!𝑠 ∈
(Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) ↔ (∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) ∧ ∃*𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)))) |
88 | 52, 86, 87 | sylanbrc 581 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) ∧ 𝑞 ∈ 𝑍) → ∃!𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹))) |
89 | | fveq2 6893 |
. . . . . . . 8
⊢ (𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) → (𝐷‘𝑞) = (𝐷‘(𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)))) |
90 | 89 | breq1d 5155 |
. . . . . . 7
⊢ (𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) → ((𝐷‘𝑞) < (𝐷‘𝐹) ↔ (𝐷‘(𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹))) < (𝐷‘𝐹))) |
91 | 41, 88, 90 | reuxfr1ds 3744 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) → (∃!𝑞 ∈ 𝑍 (𝐷‘𝑞) < (𝐷‘𝐹) ↔ ∃!𝑠 ∈ (Base‘𝑃)(𝐷‘(𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹))) < (𝐷‘𝐹))) |
92 | 28, 91 | mpbird 256 |
. . . . 5
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) → ∃!𝑞 ∈ 𝑍 (𝐷‘𝑞) < (𝐷‘𝐹)) |
93 | 92 | ex 411 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) → ((𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))}) → ∃!𝑞 ∈ 𝑍 (𝐷‘𝑞) < (𝐷‘𝐹))) |
94 | 93 | reximdva 3158 |
. . 3
⊢ (𝜑 → (∃𝑝 ∈ (Base‘𝑃)(𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))}) → ∃𝑝 ∈ (Base‘𝑃)∃!𝑞 ∈ 𝑍 (𝐷‘𝑞) < (𝐷‘𝐹))) |
95 | 20, 94 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑝 ∈ (Base‘𝑃)∃!𝑞 ∈ 𝑍 (𝐷‘𝑞) < (𝐷‘𝐹)) |
96 | | id 22 |
. . 3
⊢
(∃!𝑞 ∈
𝑍 (𝐷‘𝑞) < (𝐷‘𝐹) → ∃!𝑞 ∈ 𝑍 (𝐷‘𝑞) < (𝐷‘𝐹)) |
97 | 96 | rexlimivw 3141 |
. 2
⊢
(∃𝑝 ∈
(Base‘𝑃)∃!𝑞 ∈ 𝑍 (𝐷‘𝑞) < (𝐷‘𝐹) → ∃!𝑞 ∈ 𝑍 (𝐷‘𝑞) < (𝐷‘𝐹)) |
98 | 95, 97 | syl 17 |
1
⊢ (𝜑 → ∃!𝑞 ∈ 𝑍 (𝐷‘𝑞) < (𝐷‘𝐹)) |