| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. . . 4
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 2 | | eqid 2737 |
. . . 4
⊢
(+g‘𝑃) = (+g‘𝑃) |
| 3 | | eqid 2737 |
. . . 4
⊢
(.r‘𝑃) = (.r‘𝑃) |
| 4 | | eqid 2737 |
. . . 4
⊢ (𝑃 ~QG 𝐼) = (𝑃 ~QG 𝐼) |
| 5 | | r1peuqus.t |
. . . 4
⊢ 𝑇 = (𝑃 /s (𝑃 ~QG 𝐼)) |
| 6 | | r1peuqus.i |
. . . 4
⊢ 𝐼 = ((RSpan‘𝑃)‘{𝐹}) |
| 7 | | r1peuqus.r |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ Domn) |
| 8 | | r1peuqus.p |
. . . . . . 7
⊢ 𝑃 = (Poly1‘𝑅) |
| 9 | 8 | ply1domn 26163 |
. . . . . 6
⊢ (𝑅 ∈ Domn → 𝑃 ∈ Domn) |
| 10 | 7, 9 | syl 17 |
. . . . 5
⊢ (𝜑 → 𝑃 ∈ Domn) |
| 11 | | domnring 20707 |
. . . . 5
⊢ (𝑃 ∈ Domn → 𝑃 ∈ Ring) |
| 12 | 10, 11 | syl 17 |
. . . 4
⊢ (𝜑 → 𝑃 ∈ Ring) |
| 13 | | r1peuqus.f |
. . . . 5
⊢ (𝜑 → 𝐹 ∈ 𝑁) |
| 14 | | r1peuqus.n |
. . . . . 6
⊢ 𝑁 =
(Unic1p‘𝑅) |
| 15 | 8, 1, 14 | uc1pcl 26183 |
. . . . 5
⊢ (𝐹 ∈ 𝑁 → 𝐹 ∈ (Base‘𝑃)) |
| 16 | 13, 15 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ (Base‘𝑃)) |
| 17 | | r1peuqus.z |
. . . . 5
⊢ (𝜑 → 𝑍 ∈ 𝑄) |
| 18 | | r1peuqus.q |
. . . . 5
⊢ 𝑄 = (Base‘𝑇) |
| 19 | 17, 18 | eleqtrdi 2851 |
. . . 4
⊢ (𝜑 → 𝑍 ∈ (Base‘𝑇)) |
| 20 | 1, 2, 3, 4, 5, 6, 12, 16, 19 | ellcsrspsn 35646 |
. . 3
⊢ (𝜑 → ∃𝑝 ∈ (Base‘𝑃)(𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) |
| 21 | | r1peuqus.d |
. . . . . . . 8
⊢ 𝐷 = (deg1‘𝑅) |
| 22 | | domnring 20707 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) |
| 23 | 7, 22 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝑅 ∈ Ring) |
| 24 | 23 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) → 𝑅 ∈ Ring) |
| 25 | | simpr 484 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) → 𝑝 ∈ (Base‘𝑃)) |
| 26 | 13 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) → 𝐹 ∈ 𝑁) |
| 27 | 8, 21, 1, 2, 3, 14,
24, 25, 26 | ply1divalg3 35647 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) → ∃!𝑠 ∈ (Base‘𝑃)(𝐷‘(𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹))) < (𝐷‘𝐹)) |
| 28 | 27 | adantr 480 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) → ∃!𝑠 ∈ (Base‘𝑃)(𝐷‘(𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹))) < (𝐷‘𝐹)) |
| 29 | | ovexd 7466 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) ∈ V) |
| 30 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → 𝑠 ∈ (Base‘𝑃)) |
| 31 | | eqidd 2738 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹))) |
| 32 | | oveq1 7438 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑠 → (𝑦(.r‘𝑃)𝐹) = (𝑠(.r‘𝑃)𝐹)) |
| 33 | 32 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑠 → (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹))) |
| 34 | 33 | eqeq2d 2748 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑠 → ((𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹)) ↔ (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)))) |
| 35 | 34 | rspcev 3622 |
. . . . . . . . . 10
⊢ ((𝑠 ∈ (Base‘𝑃) ∧ (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹))) → ∃𝑦 ∈ (Base‘𝑃)(𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))) |
| 36 | 30, 31, 35 | syl2anc 584 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → ∃𝑦 ∈ (Base‘𝑃)(𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))) |
| 37 | | eqeq1 2741 |
. . . . . . . . . 10
⊢ (𝑧 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) → (𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹)) ↔ (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹)))) |
| 38 | 37 | rexbidv 3179 |
. . . . . . . . 9
⊢ (𝑧 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) → (∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹)) ↔ ∃𝑦 ∈ (Base‘𝑃)(𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹)))) |
| 39 | 29, 36, 38 | elabd 3681 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))}) |
| 40 | | simplrr 778 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))}) |
| 41 | 39, 40 | eleqtrrd 2844 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) ∈ 𝑍) |
| 42 | | simprr 773 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) → 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))}) |
| 43 | 42 | eqimssd 4040 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) → 𝑍 ⊆ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))}) |
| 44 | 43 | sselda 3983 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) ∧ 𝑞 ∈ 𝑍) → 𝑞 ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))}) |
| 45 | | eqeq1 2741 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑞 → (𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹)) ↔ 𝑞 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹)))) |
| 46 | 45 | rexbidv 3179 |
. . . . . . . . . . . 12
⊢ (𝑧 = 𝑞 → (∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹)) ↔ ∃𝑦 ∈ (Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹)))) |
| 47 | 33 | eqeq2d 2748 |
. . . . . . . . . . . . 13
⊢ (𝑦 = 𝑠 → (𝑞 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹)) ↔ 𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)))) |
| 48 | 47 | cbvrexvw 3238 |
. . . . . . . . . . . 12
⊢
(∃𝑦 ∈
(Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹)) ↔ ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹))) |
| 49 | 46, 48 | bitrdi 287 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑞 → (∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹)) ↔ ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)))) |
| 50 | 49 | elabg 3676 |
. . . . . . . . . 10
⊢ (𝑞 ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))} → (𝑞 ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))} ↔ ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)))) |
| 51 | 50 | ibi 267 |
. . . . . . . . 9
⊢ (𝑞 ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))} → ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹))) |
| 52 | 44, 51 | syl 17 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) ∧ 𝑞 ∈ 𝑍) → ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹))) |
| 53 | | eqtr2 2761 |
. . . . . . . . . . . 12
⊢ ((𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) ∧ 𝑞 = (𝑝(+g‘𝑃)(𝑡(.r‘𝑃)𝐹))) → (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑡(.r‘𝑃)𝐹))) |
| 54 | 12 | ringgrpd 20239 |
. . . . . . . . . . . . . . . . 17
⊢ (𝜑 → 𝑃 ∈ Grp) |
| 55 | 54 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑃 ∈ Grp) |
| 56 | 12 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑃 ∈ Ring) |
| 57 | | simpr2 1196 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑠 ∈ (Base‘𝑃)) |
| 58 | 16 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝐹 ∈ (Base‘𝑃)) |
| 59 | 1, 3, 56, 57, 58 | ringcld 20257 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → (𝑠(.r‘𝑃)𝐹) ∈ (Base‘𝑃)) |
| 60 | | simpr3 1197 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑡 ∈ (Base‘𝑃)) |
| 61 | 1, 3, 56, 60, 58 | ringcld 20257 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → (𝑡(.r‘𝑃)𝐹) ∈ (Base‘𝑃)) |
| 62 | | simpr1 1195 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑝 ∈ (Base‘𝑃)) |
| 63 | 1, 2 | grplcan 19018 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑃 ∈ Grp ∧ ((𝑠(.r‘𝑃)𝐹) ∈ (Base‘𝑃) ∧ (𝑡(.r‘𝑃)𝐹) ∈ (Base‘𝑃) ∧ 𝑝 ∈ (Base‘𝑃))) → ((𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑡(.r‘𝑃)𝐹)) ↔ (𝑠(.r‘𝑃)𝐹) = (𝑡(.r‘𝑃)𝐹))) |
| 64 | 55, 59, 61, 62, 63 | syl13anc 1374 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑡(.r‘𝑃)𝐹)) ↔ (𝑠(.r‘𝑃)𝐹) = (𝑡(.r‘𝑃)𝐹))) |
| 65 | | eqid 2737 |
. . . . . . . . . . . . . . . . 17
⊢
(0g‘𝑃) = (0g‘𝑃) |
| 66 | | simplr2 1217 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r‘𝑃)𝐹) = (𝑡(.r‘𝑃)𝐹)) → 𝑠 ∈ (Base‘𝑃)) |
| 67 | | simplr3 1218 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r‘𝑃)𝐹) = (𝑡(.r‘𝑃)𝐹)) → 𝑡 ∈ (Base‘𝑃)) |
| 68 | 8, 65, 14 | uc1pn0 26185 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝐹 ∈ 𝑁 → 𝐹 ≠ (0g‘𝑃)) |
| 69 | 13, 68 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → 𝐹 ≠ (0g‘𝑃)) |
| 70 | 16, 69 | eldifsnd 4787 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝜑 → 𝐹 ∈ ((Base‘𝑃) ∖ {(0g‘𝑃)})) |
| 71 | 70 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r‘𝑃)𝐹) = (𝑡(.r‘𝑃)𝐹)) → 𝐹 ∈ ((Base‘𝑃) ∖ {(0g‘𝑃)})) |
| 72 | 10 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r‘𝑃)𝐹) = (𝑡(.r‘𝑃)𝐹)) → 𝑃 ∈ Domn) |
| 73 | | simpr 484 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r‘𝑃)𝐹) = (𝑡(.r‘𝑃)𝐹)) → (𝑠(.r‘𝑃)𝐹) = (𝑡(.r‘𝑃)𝐹)) |
| 74 | 1, 65, 3, 66, 67, 71, 72, 73 | domnrcan 20723 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r‘𝑃)𝐹) = (𝑡(.r‘𝑃)𝐹)) → 𝑠 = 𝑡) |
| 75 | 74 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑠(.r‘𝑃)𝐹) = (𝑡(.r‘𝑃)𝐹) → 𝑠 = 𝑡)) |
| 76 | 64, 75 | sylbid 240 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑡(.r‘𝑃)𝐹)) → 𝑠 = 𝑡)) |
| 77 | 76 | 3exp2 1355 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝑝 ∈ (Base‘𝑃) → (𝑠 ∈ (Base‘𝑃) → (𝑡 ∈ (Base‘𝑃) → ((𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑡(.r‘𝑃)𝐹)) → 𝑠 = 𝑡))))) |
| 78 | 77 | imp43 427 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑡(.r‘𝑃)𝐹)) → 𝑠 = 𝑡)) |
| 79 | 53, 78 | syl5 34 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) ∧ 𝑞 = (𝑝(+g‘𝑃)(𝑡(.r‘𝑃)𝐹))) → 𝑠 = 𝑡)) |
| 80 | 79 | ralrimivva 3202 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) → ∀𝑠 ∈ (Base‘𝑃)∀𝑡 ∈ (Base‘𝑃)((𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) ∧ 𝑞 = (𝑝(+g‘𝑃)(𝑡(.r‘𝑃)𝐹))) → 𝑠 = 𝑡)) |
| 81 | | oveq1 7438 |
. . . . . . . . . . . . 13
⊢ (𝑠 = 𝑡 → (𝑠(.r‘𝑃)𝐹) = (𝑡(.r‘𝑃)𝐹)) |
| 82 | 81 | oveq2d 7447 |
. . . . . . . . . . . 12
⊢ (𝑠 = 𝑡 → (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) = (𝑝(+g‘𝑃)(𝑡(.r‘𝑃)𝐹))) |
| 83 | 82 | eqeq2d 2748 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑡 → (𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) ↔ 𝑞 = (𝑝(+g‘𝑃)(𝑡(.r‘𝑃)𝐹)))) |
| 84 | 83 | rmo4 3736 |
. . . . . . . . . 10
⊢
(∃*𝑠 ∈
(Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) ↔ ∀𝑠 ∈ (Base‘𝑃)∀𝑡 ∈ (Base‘𝑃)((𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) ∧ 𝑞 = (𝑝(+g‘𝑃)(𝑡(.r‘𝑃)𝐹))) → 𝑠 = 𝑡)) |
| 85 | 80, 84 | sylibr 234 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) → ∃*𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹))) |
| 86 | 85 | ad2antrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) ∧ 𝑞 ∈ 𝑍) → ∃*𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹))) |
| 87 | | reu5 3382 |
. . . . . . . 8
⊢
(∃!𝑠 ∈
(Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) ↔ (∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) ∧ ∃*𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)))) |
| 88 | 52, 86, 87 | sylanbrc 583 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) ∧ 𝑞 ∈ 𝑍) → ∃!𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹))) |
| 89 | | fveq2 6906 |
. . . . . . . 8
⊢ (𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) → (𝐷‘𝑞) = (𝐷‘(𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)))) |
| 90 | 89 | breq1d 5153 |
. . . . . . 7
⊢ (𝑞 = (𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹)) → ((𝐷‘𝑞) < (𝐷‘𝐹) ↔ (𝐷‘(𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹))) < (𝐷‘𝐹))) |
| 91 | 41, 88, 90 | reuxfr1ds 3757 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) → (∃!𝑞 ∈ 𝑍 (𝐷‘𝑞) < (𝐷‘𝐹) ↔ ∃!𝑠 ∈ (Base‘𝑃)(𝐷‘(𝑝(+g‘𝑃)(𝑠(.r‘𝑃)𝐹))) < (𝐷‘𝐹))) |
| 92 | 28, 91 | mpbird 257 |
. . . . 5
⊢ (((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))})) → ∃!𝑞 ∈ 𝑍 (𝐷‘𝑞) < (𝐷‘𝐹)) |
| 93 | 92 | ex 412 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ (Base‘𝑃)) → ((𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))}) → ∃!𝑞 ∈ 𝑍 (𝐷‘𝑞) < (𝐷‘𝐹))) |
| 94 | 93 | reximdva 3168 |
. . 3
⊢ (𝜑 → (∃𝑝 ∈ (Base‘𝑃)(𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g‘𝑃)(𝑦(.r‘𝑃)𝐹))}) → ∃𝑝 ∈ (Base‘𝑃)∃!𝑞 ∈ 𝑍 (𝐷‘𝑞) < (𝐷‘𝐹))) |
| 95 | 20, 94 | mpd 15 |
. 2
⊢ (𝜑 → ∃𝑝 ∈ (Base‘𝑃)∃!𝑞 ∈ 𝑍 (𝐷‘𝑞) < (𝐷‘𝐹)) |
| 96 | | id 22 |
. . 3
⊢
(∃!𝑞 ∈
𝑍 (𝐷‘𝑞) < (𝐷‘𝐹) → ∃!𝑞 ∈ 𝑍 (𝐷‘𝑞) < (𝐷‘𝐹)) |
| 97 | 96 | rexlimivw 3151 |
. 2
⊢
(∃𝑝 ∈
(Base‘𝑃)∃!𝑞 ∈ 𝑍 (𝐷‘𝑞) < (𝐷‘𝐹) → ∃!𝑞 ∈ 𝑍 (𝐷‘𝑞) < (𝐷‘𝐹)) |
| 98 | 95, 97 | syl 17 |
1
⊢ (𝜑 → ∃!𝑞 ∈ 𝑍 (𝐷‘𝑞) < (𝐷‘𝐹)) |