Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r1peuqusdeg1 Structured version   Visualization version   GIF version

Theorem r1peuqusdeg1 35648
Description: Uniqueness of polynomial remainder in terms of a quotient structure in the sense of the right hand side of r1pid2 26201. (Contributed by SN, 21-Jun-2025.)
Hypotheses
Ref Expression
r1peuqus.p 𝑃 = (Poly1𝑅)
r1peuqus.i 𝐼 = ((RSpan‘𝑃)‘{𝐹})
r1peuqus.t 𝑇 = (𝑃 /s (𝑃 ~QG 𝐼))
r1peuqus.q 𝑄 = (Base‘𝑇)
r1peuqus.n 𝑁 = (Unic1p𝑅)
r1peuqus.d 𝐷 = (deg1𝑅)
r1peuqus.r (𝜑𝑅 ∈ Domn)
r1peuqus.f (𝜑𝐹𝑁)
r1peuqus.z (𝜑𝑍𝑄)
Assertion
Ref Expression
r1peuqusdeg1 (𝜑 → ∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹))
Distinct variable groups:   𝜑,𝑞   𝑃,𝑞   𝐼,𝑞   𝐷,𝑞   𝐹,𝑞   𝑅,𝑞   𝑍,𝑞
Allowed substitution hints:   𝑄(𝑞)   𝑇(𝑞)   𝑁(𝑞)

Proof of Theorem r1peuqusdeg1
Dummy variables 𝑝 𝑠 𝑡 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . 4 (Base‘𝑃) = (Base‘𝑃)
2 eqid 2737 . . . 4 (+g𝑃) = (+g𝑃)
3 eqid 2737 . . . 4 (.r𝑃) = (.r𝑃)
4 eqid 2737 . . . 4 (𝑃 ~QG 𝐼) = (𝑃 ~QG 𝐼)
5 r1peuqus.t . . . 4 𝑇 = (𝑃 /s (𝑃 ~QG 𝐼))
6 r1peuqus.i . . . 4 𝐼 = ((RSpan‘𝑃)‘{𝐹})
7 r1peuqus.r . . . . . 6 (𝜑𝑅 ∈ Domn)
8 r1peuqus.p . . . . . . 7 𝑃 = (Poly1𝑅)
98ply1domn 26163 . . . . . 6 (𝑅 ∈ Domn → 𝑃 ∈ Domn)
107, 9syl 17 . . . . 5 (𝜑𝑃 ∈ Domn)
11 domnring 20707 . . . . 5 (𝑃 ∈ Domn → 𝑃 ∈ Ring)
1210, 11syl 17 . . . 4 (𝜑𝑃 ∈ Ring)
13 r1peuqus.f . . . . 5 (𝜑𝐹𝑁)
14 r1peuqus.n . . . . . 6 𝑁 = (Unic1p𝑅)
158, 1, 14uc1pcl 26183 . . . . 5 (𝐹𝑁𝐹 ∈ (Base‘𝑃))
1613, 15syl 17 . . . 4 (𝜑𝐹 ∈ (Base‘𝑃))
17 r1peuqus.z . . . . 5 (𝜑𝑍𝑄)
18 r1peuqus.q . . . . 5 𝑄 = (Base‘𝑇)
1917, 18eleqtrdi 2851 . . . 4 (𝜑𝑍 ∈ (Base‘𝑇))
201, 2, 3, 4, 5, 6, 12, 16, 19ellcsrspsn 35646 . . 3 (𝜑 → ∃𝑝 ∈ (Base‘𝑃)(𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))}))
21 r1peuqus.d . . . . . . . 8 𝐷 = (deg1𝑅)
22 domnring 20707 . . . . . . . . . 10 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
237, 22syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Ring)
2423adantr 480 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘𝑃)) → 𝑅 ∈ Ring)
25 simpr 484 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘𝑃)) → 𝑝 ∈ (Base‘𝑃))
2613adantr 480 . . . . . . . 8 ((𝜑𝑝 ∈ (Base‘𝑃)) → 𝐹𝑁)
278, 21, 1, 2, 3, 14, 24, 25, 26ply1divalg3 35647 . . . . . . 7 ((𝜑𝑝 ∈ (Base‘𝑃)) → ∃!𝑠 ∈ (Base‘𝑃)(𝐷‘(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))) < (𝐷𝐹))
2827adantr 480 . . . . . 6 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) → ∃!𝑠 ∈ (Base‘𝑃)(𝐷‘(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))) < (𝐷𝐹))
29 ovexd 7466 . . . . . . . . 9 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∈ V)
30 simpr 484 . . . . . . . . . 10 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → 𝑠 ∈ (Base‘𝑃))
31 eqidd 2738 . . . . . . . . . 10 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
32 oveq1 7438 . . . . . . . . . . . . 13 (𝑦 = 𝑠 → (𝑦(.r𝑃)𝐹) = (𝑠(.r𝑃)𝐹))
3332oveq2d 7447 . . . . . . . . . . . 12 (𝑦 = 𝑠 → (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
3433eqeq2d 2748 . . . . . . . . . . 11 (𝑦 = 𝑠 → ((𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))))
3534rspcev 3622 . . . . . . . . . 10 ((𝑠 ∈ (Base‘𝑃) ∧ (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))) → ∃𝑦 ∈ (Base‘𝑃)(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)))
3630, 31, 35syl2anc 584 . . . . . . . . 9 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → ∃𝑦 ∈ (Base‘𝑃)(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)))
37 eqeq1 2741 . . . . . . . . . 10 (𝑧 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) → (𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))))
3837rexbidv 3179 . . . . . . . . 9 (𝑧 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) → (∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ ∃𝑦 ∈ (Base‘𝑃)(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))))
3929, 36, 38elabd 3681 . . . . . . . 8 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})
40 simplrr 778 . . . . . . . 8 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})
4139, 40eleqtrrd 2844 . . . . . . 7 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑠 ∈ (Base‘𝑃)) → (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∈ 𝑍)
42 simprr 773 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) → 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})
4342eqimssd 4040 . . . . . . . . . 10 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) → 𝑍 ⊆ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})
4443sselda 3983 . . . . . . . . 9 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑞𝑍) → 𝑞 ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})
45 eqeq1 2741 . . . . . . . . . . . . 13 (𝑧 = 𝑞 → (𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ 𝑞 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))))
4645rexbidv 3179 . . . . . . . . . . . 12 (𝑧 = 𝑞 → (∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ ∃𝑦 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))))
4733eqeq2d 2748 . . . . . . . . . . . . 13 (𝑦 = 𝑠 → (𝑞 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ 𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))))
4847cbvrexvw 3238 . . . . . . . . . . . 12 (∃𝑦 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
4946, 48bitrdi 287 . . . . . . . . . . 11 (𝑧 = 𝑞 → (∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹)) ↔ ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))))
5049elabg 3676 . . . . . . . . . 10 (𝑞 ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))} → (𝑞 ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))} ↔ ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))))
5150ibi 267 . . . . . . . . 9 (𝑞 ∈ {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))} → ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
5244, 51syl 17 . . . . . . . 8 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑞𝑍) → ∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
53 eqtr2 2761 . . . . . . . . . . . 12 ((𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∧ 𝑞 = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹))) → (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)))
5412ringgrpd 20239 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ Grp)
5554adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑃 ∈ Grp)
5612adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑃 ∈ Ring)
57 simpr2 1196 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑠 ∈ (Base‘𝑃))
5816adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝐹 ∈ (Base‘𝑃))
591, 3, 56, 57, 58ringcld 20257 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → (𝑠(.r𝑃)𝐹) ∈ (Base‘𝑃))
60 simpr3 1197 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑡 ∈ (Base‘𝑃))
611, 3, 56, 60, 58ringcld 20257 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → (𝑡(.r𝑃)𝐹) ∈ (Base‘𝑃))
62 simpr1 1195 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → 𝑝 ∈ (Base‘𝑃))
631, 2grplcan 19018 . . . . . . . . . . . . . . . 16 ((𝑃 ∈ Grp ∧ ((𝑠(.r𝑃)𝐹) ∈ (Base‘𝑃) ∧ (𝑡(.r𝑃)𝐹) ∈ (Base‘𝑃) ∧ 𝑝 ∈ (Base‘𝑃))) → ((𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)) ↔ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)))
6455, 59, 61, 62, 63syl13anc 1374 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)) ↔ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)))
65 eqid 2737 . . . . . . . . . . . . . . . . 17 (0g𝑃) = (0g𝑃)
66 simplr2 1217 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)) → 𝑠 ∈ (Base‘𝑃))
67 simplr3 1218 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)) → 𝑡 ∈ (Base‘𝑃))
688, 65, 14uc1pn0 26185 . . . . . . . . . . . . . . . . . . . 20 (𝐹𝑁𝐹 ≠ (0g𝑃))
6913, 68syl 17 . . . . . . . . . . . . . . . . . . 19 (𝜑𝐹 ≠ (0g𝑃))
7016, 69eldifsnd 4787 . . . . . . . . . . . . . . . . . 18 (𝜑𝐹 ∈ ((Base‘𝑃) ∖ {(0g𝑃)}))
7170ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)) → 𝐹 ∈ ((Base‘𝑃) ∖ {(0g𝑃)}))
7210ad2antrr 726 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)) → 𝑃 ∈ Domn)
73 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)) → (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹))
741, 65, 3, 66, 67, 71, 72, 73domnrcan 20723 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) ∧ (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹)) → 𝑠 = 𝑡)
7574ex 412 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹) → 𝑠 = 𝑡))
7664, 75sylbid 240 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑝 ∈ (Base‘𝑃) ∧ 𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)) → 𝑠 = 𝑡))
77763exp2 1355 . . . . . . . . . . . . 13 (𝜑 → (𝑝 ∈ (Base‘𝑃) → (𝑠 ∈ (Base‘𝑃) → (𝑡 ∈ (Base‘𝑃) → ((𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)) → 𝑠 = 𝑡)))))
7877imp43 427 . . . . . . . . . . . 12 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)) → 𝑠 = 𝑡))
7953, 78syl5 34 . . . . . . . . . . 11 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑠 ∈ (Base‘𝑃) ∧ 𝑡 ∈ (Base‘𝑃))) → ((𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∧ 𝑞 = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹))) → 𝑠 = 𝑡))
8079ralrimivva 3202 . . . . . . . . . 10 ((𝜑𝑝 ∈ (Base‘𝑃)) → ∀𝑠 ∈ (Base‘𝑃)∀𝑡 ∈ (Base‘𝑃)((𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∧ 𝑞 = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹))) → 𝑠 = 𝑡))
81 oveq1 7438 . . . . . . . . . . . . 13 (𝑠 = 𝑡 → (𝑠(.r𝑃)𝐹) = (𝑡(.r𝑃)𝐹))
8281oveq2d 7447 . . . . . . . . . . . 12 (𝑠 = 𝑡 → (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹)))
8382eqeq2d 2748 . . . . . . . . . . 11 (𝑠 = 𝑡 → (𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ↔ 𝑞 = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹))))
8483rmo4 3736 . . . . . . . . . 10 (∃*𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ↔ ∀𝑠 ∈ (Base‘𝑃)∀𝑡 ∈ (Base‘𝑃)((𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∧ 𝑞 = (𝑝(+g𝑃)(𝑡(.r𝑃)𝐹))) → 𝑠 = 𝑡))
8580, 84sylibr 234 . . . . . . . . 9 ((𝜑𝑝 ∈ (Base‘𝑃)) → ∃*𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
8685ad2antrr 726 . . . . . . . 8 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑞𝑍) → ∃*𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
87 reu5 3382 . . . . . . . 8 (∃!𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ↔ (∃𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) ∧ ∃*𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))))
8852, 86, 87sylanbrc 583 . . . . . . 7 ((((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) ∧ 𝑞𝑍) → ∃!𝑠 ∈ (Base‘𝑃)𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)))
89 fveq2 6906 . . . . . . . 8 (𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) → (𝐷𝑞) = (𝐷‘(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))))
9089breq1d 5153 . . . . . . 7 (𝑞 = (𝑝(+g𝑃)(𝑠(.r𝑃)𝐹)) → ((𝐷𝑞) < (𝐷𝐹) ↔ (𝐷‘(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))) < (𝐷𝐹)))
9141, 88, 90reuxfr1ds 3757 . . . . . 6 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) → (∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹) ↔ ∃!𝑠 ∈ (Base‘𝑃)(𝐷‘(𝑝(+g𝑃)(𝑠(.r𝑃)𝐹))) < (𝐷𝐹)))
9228, 91mpbird 257 . . . . 5 (((𝜑𝑝 ∈ (Base‘𝑃)) ∧ (𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))})) → ∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹))
9392ex 412 . . . 4 ((𝜑𝑝 ∈ (Base‘𝑃)) → ((𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))}) → ∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹)))
9493reximdva 3168 . . 3 (𝜑 → (∃𝑝 ∈ (Base‘𝑃)(𝑍 = [𝑝](𝑃 ~QG 𝐼) ∧ 𝑍 = {𝑧 ∣ ∃𝑦 ∈ (Base‘𝑃)𝑧 = (𝑝(+g𝑃)(𝑦(.r𝑃)𝐹))}) → ∃𝑝 ∈ (Base‘𝑃)∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹)))
9520, 94mpd 15 . 2 (𝜑 → ∃𝑝 ∈ (Base‘𝑃)∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹))
96 id 22 . . 3 (∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹) → ∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹))
9796rexlimivw 3151 . 2 (∃𝑝 ∈ (Base‘𝑃)∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹) → ∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹))
9895, 97syl 17 1 (𝜑 → ∃!𝑞𝑍 (𝐷𝑞) < (𝐷𝐹))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  {cab 2714  wne 2940  wral 3061  wrex 3070  ∃!wreu 3378  ∃*wrmo 3379  Vcvv 3480  cdif 3948  {csn 4626   class class class wbr 5143  cfv 6561  (class class class)co 7431  [cec 8743   < clt 11295  Basecbs 17247  +gcplusg 17297  .rcmulr 17298  0gc0g 17484   /s cqus 17550  Grpcgrp 18951   ~QG cqg 19140  Ringcrg 20230  Domncdomn 20692  RSpancrsp 21217  Poly1cpl1 22178  deg1cdg1 26093  Unic1pcuc1p 26166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233  ax-addf 11234
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-tp 4631  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-iin 4994  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-ofr 7698  df-om 7888  df-1st 8014  df-2nd 8015  df-supp 8186  df-tpos 8251  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-ec 8747  df-qs 8751  df-map 8868  df-pm 8869  df-ixp 8938  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-fsupp 9402  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-fz 13548  df-fzo 13695  df-seq 14043  df-hash 14370  df-struct 17184  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-mulr 17311  df-starv 17312  df-sca 17313  df-vsca 17314  df-ip 17315  df-tset 17316  df-ple 17317  df-ds 17319  df-unif 17320  df-hom 17321  df-cco 17322  df-0g 17486  df-gsum 17487  df-prds 17492  df-pws 17494  df-imas 17553  df-qus 17554  df-mre 17629  df-mrc 17630  df-acs 17632  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-mhm 18796  df-submnd 18797  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-eqg 19143  df-ghm 19231  df-cntz 19335  df-cmn 19800  df-abl 19801  df-mgp 20138  df-rng 20150  df-ur 20179  df-ring 20232  df-cring 20233  df-oppr 20334  df-dvdsr 20357  df-unit 20358  df-invr 20388  df-nzr 20513  df-subrng 20546  df-subrg 20570  df-rlreg 20694  df-domn 20695  df-lmod 20860  df-lss 20930  df-lsp 20970  df-sra 21172  df-rgmod 21173  df-lidl 21218  df-rsp 21219  df-cnfld 21365  df-ascl 21875  df-psr 21929  df-mvr 21930  df-mpl 21931  df-opsr 21933  df-psr1 22181  df-vr1 22182  df-ply1 22183  df-coe1 22184  df-mdeg 26094  df-deg1 26095  df-uc1p 26171
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator