| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > drngmcl | Structured version Visualization version GIF version | ||
| Description: The product of two nonzero elements of a division ring is nonzero. (Contributed by NM, 7-Sep-2011.) (Proof shortened by SN, 25-Jun-2025.) |
| Ref | Expression |
|---|---|
| drngmcl.b | ⊢ 𝐵 = (Base‘𝑅) |
| drngmcl.t | ⊢ · = (.r‘𝑅) |
| drngmcl.z | ⊢ 0 = (0g‘𝑅) |
| Ref | Expression |
|---|---|
| drngmcl | ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ (𝐵 ∖ { 0 }) ∧ 𝑌 ∈ (𝐵 ∖ { 0 })) → (𝑋 · 𝑌) ∈ (𝐵 ∖ { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | drngring 20651 | . . 3 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Ring) | |
| 2 | eldifi 4078 | . . 3 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) → 𝑋 ∈ 𝐵) | |
| 3 | eldifi 4078 | . . 3 ⊢ (𝑌 ∈ (𝐵 ∖ { 0 }) → 𝑌 ∈ 𝐵) | |
| 4 | drngmcl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 5 | drngmcl.t | . . . 4 ⊢ · = (.r‘𝑅) | |
| 6 | 4, 5 | ringcl 20168 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 · 𝑌) ∈ 𝐵) |
| 7 | 1, 2, 3, 6 | syl3an 1160 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ (𝐵 ∖ { 0 }) ∧ 𝑌 ∈ (𝐵 ∖ { 0 })) → (𝑋 · 𝑌) ∈ 𝐵) |
| 8 | drngdomn 20664 | . . 3 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Domn) | |
| 9 | eldifsn 4735 | . . . 4 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) ↔ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) | |
| 10 | 9 | biimpi 216 | . . 3 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) → (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) |
| 11 | eldifsn 4735 | . . . 4 ⊢ (𝑌 ∈ (𝐵 ∖ { 0 }) ↔ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) | |
| 12 | 11 | biimpi 216 | . . 3 ⊢ (𝑌 ∈ (𝐵 ∖ { 0 }) → (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) |
| 13 | drngmcl.z | . . . 4 ⊢ 0 = (0g‘𝑅) | |
| 14 | 4, 5, 13 | domnmuln0 20624 | . . 3 ⊢ ((𝑅 ∈ Domn ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 ) ∧ (𝑌 ∈ 𝐵 ∧ 𝑌 ≠ 0 )) → (𝑋 · 𝑌) ≠ 0 ) |
| 15 | 8, 10, 12, 14 | syl3an 1160 | . 2 ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ (𝐵 ∖ { 0 }) ∧ 𝑌 ∈ (𝐵 ∖ { 0 })) → (𝑋 · 𝑌) ≠ 0 ) |
| 16 | 7, 15 | eldifsnd 4736 | 1 ⊢ ((𝑅 ∈ DivRing ∧ 𝑋 ∈ (𝐵 ∖ { 0 }) ∧ 𝑌 ∈ (𝐵 ∖ { 0 })) → (𝑋 · 𝑌) ∈ (𝐵 ∖ { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3894 {csn 4573 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 .rcmulr 17162 0gc0g 17343 Ringcrg 20151 Domncdomn 20607 DivRingcdr 20644 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-grp 18849 df-minusg 18850 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-nzr 20428 df-rlreg 20609 df-domn 20610 df-drng 20646 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |