Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitscyglem4 Structured version   Visualization version   GIF version

Theorem unitscyglem4 42364
Description: Lemma for unitscyg (Contributed by metakunt, 14-Jul-2025.)
Hypotheses
Ref Expression
unitscyglem1.1 𝐵 = (Base‘𝐺)
unitscyglem1.2 = (.g𝐺)
unitscyglem1.3 (𝜑𝐺 ∈ Grp)
unitscyglem1.4 (𝜑𝐵 ∈ Fin)
unitscyglem1.5 (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛)
unitscyglem4.1 (𝜑𝐷 ∈ ℕ)
unitscyglem4.2 (𝜑𝐷 ∥ (♯‘𝐵))
Assertion
Ref Expression
unitscyglem4 (𝜑 → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷))
Distinct variable groups:   𝑥, ,𝑛   𝑥,𝐵,𝑛   𝑦,𝐵,𝑥   𝑥,𝐷,𝑦   𝑥,𝐺,𝑛   𝑦,𝐺   𝜑,𝑥,𝑛
Allowed substitution hints:   𝜑(𝑦)   𝐷(𝑛)   (𝑦)

Proof of Theorem unitscyglem4
Dummy variables 𝑙 𝑎 𝑘 𝑚 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2895 . . . . . 6 𝑦𝐵
2 nfcv 2895 . . . . . 6 𝑥𝐵
3 nfv 1915 . . . . . 6 𝑥((od‘𝐺)‘𝑦) = 𝐷
4 nfv 1915 . . . . . 6 𝑦((od‘𝐺)‘𝑥) = 𝐷
5 fveqeq2 6840 . . . . . 6 (𝑦 = 𝑥 → (((od‘𝐺)‘𝑦) = 𝐷 ↔ ((od‘𝐺)‘𝑥) = 𝐷))
61, 2, 3, 4, 5cbvrabw 3431 . . . . 5 {𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}
76fveq2i 6834 . . . 4 (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})
87a1i 11 . . 3 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}))
9 unitscyglem4.2 . . . . . . . 8 (𝜑𝐷 ∥ (♯‘𝐵))
109adantr 480 . . . . . . 7 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → 𝐷 ∥ (♯‘𝐵))
1110ex 412 . . . . . 6 (𝜑 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅ → 𝐷 ∥ (♯‘𝐵)))
1211ancrd 551 . . . . 5 (𝜑 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅ → (𝐷 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)))
1312imdistani 568 . . . 4 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (𝜑 ∧ (𝐷 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)))
14 breq1 5098 . . . . . . . 8 (𝑚 = 𝐷 → (𝑚 ∥ (♯‘𝐵) ↔ 𝐷 ∥ (♯‘𝐵)))
15 eqeq2 2745 . . . . . . . . . 10 (𝑚 = 𝐷 → (((od‘𝐺)‘𝑥) = 𝑚 ↔ ((od‘𝐺)‘𝑥) = 𝐷))
1615rabbidv 3403 . . . . . . . . 9 (𝑚 = 𝐷 → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})
1716neeq1d 2988 . . . . . . . 8 (𝑚 = 𝐷 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅ ↔ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅))
1814, 17anbi12d 632 . . . . . . 7 (𝑚 = 𝐷 → ((𝑚 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅) ↔ (𝐷 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)))
1916fveq2d 6835 . . . . . . . 8 (𝑚 = 𝐷 → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}))
20 fveq2 6831 . . . . . . . 8 (𝑚 = 𝐷 → (ϕ‘𝑚) = (ϕ‘𝐷))
2119, 20eqeq12d 2749 . . . . . . 7 (𝑚 = 𝐷 → ((♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (ϕ‘𝑚) ↔ (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷)))
2218, 21imbi12d 344 . . . . . 6 (𝑚 = 𝐷 → (((𝑚 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (ϕ‘𝑚)) ↔ ((𝐷 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷))))
23 unitscyglem1.1 . . . . . . 7 𝐵 = (Base‘𝐺)
24 unitscyglem1.2 . . . . . . 7 = (.g𝐺)
25 unitscyglem1.3 . . . . . . 7 (𝜑𝐺 ∈ Grp)
26 unitscyglem1.4 . . . . . . 7 (𝜑𝐵 ∈ Fin)
27 unitscyglem1.5 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛)
2823, 24, 25, 26, 27unitscyglem3 42363 . . . . . 6 (𝜑 → ∀𝑚 ∈ ℕ ((𝑚 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (ϕ‘𝑚)))
29 unitscyglem4.1 . . . . . 6 (𝜑𝐷 ∈ ℕ)
3022, 28, 29rspcdva 3574 . . . . 5 (𝜑 → ((𝐷 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷)))
3130imp 406 . . . 4 ((𝜑 ∧ (𝐷 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷))
3213, 31syl 17 . . 3 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷))
338, 32eqtrd 2768 . 2 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷))
34 id 22 . . . . 5 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅ → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)
3534necon1bi 2957 . . . 4 (¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅ → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅)
3635adantl 481 . . 3 ((𝜑 ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅)
3725adantr 480 . . . . . . . . 9 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → 𝐺 ∈ Grp)
3826adantr 480 . . . . . . . . 9 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → 𝐵 ∈ Fin)
3923, 37, 38hashfingrpnn 18893 . . . . . . . . 9 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ ℕ)
4023, 24, 37, 38, 39grpods 42360 . . . . . . . 8 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘{𝑥𝐵 ∣ ((♯‘𝐵) 𝑥) = (0g𝐺)}))
41 simpr 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) ∧ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)) → (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵))
4241eqcomd 2739 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) ∧ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)) → (♯‘𝐵) = (𝑙 · ((od‘𝐺)‘𝑥)))
4342oveq1d 7370 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) ∧ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)) → ((♯‘𝐵) 𝑥) = ((𝑙 · ((od‘𝐺)‘𝑥)) 𝑥))
4425adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → 𝐺 ∈ Grp)
4544adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → 𝐺 ∈ Grp)
46 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → 𝑙 ∈ ℤ)
47 eqid 2733 . . . . . . . . . . . . . . . . . . . 20 (od‘𝐺) = (od‘𝐺)
48 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐵) → 𝑥𝐵)
4923, 47, 48odcld 19472 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐵) → ((od‘𝐺)‘𝑥) ∈ ℕ0)
5049adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → ((od‘𝐺)‘𝑥) ∈ ℕ0)
5150nn0zd 12504 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → ((od‘𝐺)‘𝑥) ∈ ℤ)
52 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → 𝑥𝐵)
5346, 51, 523jca 1128 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → (𝑙 ∈ ℤ ∧ ((od‘𝐺)‘𝑥) ∈ ℤ ∧ 𝑥𝐵))
5423, 24mulgass 19032 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ (𝑙 ∈ ℤ ∧ ((od‘𝐺)‘𝑥) ∈ ℤ ∧ 𝑥𝐵)) → ((𝑙 · ((od‘𝐺)‘𝑥)) 𝑥) = (𝑙 (((od‘𝐺)‘𝑥) 𝑥)))
5545, 53, 54syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → ((𝑙 · ((od‘𝐺)‘𝑥)) 𝑥) = (𝑙 (((od‘𝐺)‘𝑥) 𝑥)))
56 eqid 2733 . . . . . . . . . . . . . . . . . . 19 (0g𝐺) = (0g𝐺)
5723, 47, 24, 56odid 19458 . . . . . . . . . . . . . . . . . 18 (𝑥𝐵 → (((od‘𝐺)‘𝑥) 𝑥) = (0g𝐺))
5852, 57syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → (((od‘𝐺)‘𝑥) 𝑥) = (0g𝐺))
5958oveq2d 7371 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → (𝑙 (((od‘𝐺)‘𝑥) 𝑥)) = (𝑙 (0g𝐺)))
6023, 24, 56mulgz 19023 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝑙 ∈ ℤ) → (𝑙 (0g𝐺)) = (0g𝐺))
6144, 60sylan 580 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → (𝑙 (0g𝐺)) = (0g𝐺))
6259, 61eqtrd 2768 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → (𝑙 (((od‘𝐺)‘𝑥) 𝑥)) = (0g𝐺))
6355, 62eqtrd 2768 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → ((𝑙 · ((od‘𝐺)‘𝑥)) 𝑥) = (0g𝐺))
6463adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) ∧ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)) → ((𝑙 · ((od‘𝐺)‘𝑥)) 𝑥) = (0g𝐺))
6543, 64eqtrd 2768 . . . . . . . . . . . 12 ((((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) ∧ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)) → ((♯‘𝐵) 𝑥) = (0g𝐺))
6626adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐵) → 𝐵 ∈ Fin)
6723, 47oddvds2 19486 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥𝐵) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝐵))
6844, 66, 48, 67syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑥𝐵) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝐵))
6949nn0zd 12504 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐵) → ((od‘𝐺)‘𝑥) ∈ ℤ)
70 hashcl 14270 . . . . . . . . . . . . . . . 16 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
7166, 70syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐵) → (♯‘𝐵) ∈ ℕ0)
7271nn0zd 12504 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐵) → (♯‘𝐵) ∈ ℤ)
73 divides 16172 . . . . . . . . . . . . . 14 ((((od‘𝐺)‘𝑥) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) → (((od‘𝐺)‘𝑥) ∥ (♯‘𝐵) ↔ ∃𝑙 ∈ ℤ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)))
7469, 72, 73syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑥𝐵) → (((od‘𝐺)‘𝑥) ∥ (♯‘𝐵) ↔ ∃𝑙 ∈ ℤ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)))
7568, 74mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → ∃𝑙 ∈ ℤ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵))
7665, 75r19.29a 3141 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → ((♯‘𝐵) 𝑥) = (0g𝐺))
7776rabeqcda 3407 . . . . . . . . . 10 (𝜑 → {𝑥𝐵 ∣ ((♯‘𝐵) 𝑥) = (0g𝐺)} = 𝐵)
7877adantr 480 . . . . . . . . 9 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑥𝐵 ∣ ((♯‘𝐵) 𝑥) = (0g𝐺)} = 𝐵)
7978fveq2d 6835 . . . . . . . 8 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑥𝐵 ∣ ((♯‘𝐵) 𝑥) = (0g𝐺)}) = (♯‘𝐵))
8040, 79eqtr2d 2769 . . . . . . 7 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) = Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
81 nfv 1915 . . . . . . . . . . 11 𝑘(𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅)
82 nfcv 2895 . . . . . . . . . . 11 𝑘(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)})
83 fzfid 13887 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (1...(♯‘𝐵)) ∈ Fin)
84 ssrab2 4029 . . . . . . . . . . . . 13 {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ (1...(♯‘𝐵))
8584a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ (1...(♯‘𝐵)))
8683, 85ssfid 9164 . . . . . . . . . . 11 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∈ Fin)
8738adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝐵 ∈ Fin)
88 ssrab2 4029 . . . . . . . . . . . . . . 15 {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵
8988a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵)
9087, 89ssfid 9164 . . . . . . . . . . . . 13 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin)
91 hashcl 14270 . . . . . . . . . . . . 13 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℕ0)
9290, 91syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℕ0)
9392nn0cnd 12455 . . . . . . . . . . 11 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℂ)
94 breq1 5098 . . . . . . . . . . . 12 (𝑎 = (♯‘𝐵) → (𝑎 ∥ (♯‘𝐵) ↔ (♯‘𝐵) ∥ (♯‘𝐵)))
95 1zzd 12513 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → 1 ∈ ℤ)
9639nnzd 12505 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ ℤ)
9739nnge1d 12184 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → 1 ≤ (♯‘𝐵))
9839nnred 12151 . . . . . . . . . . . . . 14 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ ℝ)
9998leidd 11694 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ≤ (♯‘𝐵))
10095, 96, 96, 97, 99elfzd 13422 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ (1...(♯‘𝐵)))
101 iddvds 16187 . . . . . . . . . . . . 13 ((♯‘𝐵) ∈ ℤ → (♯‘𝐵) ∥ (♯‘𝐵))
10296, 101syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∥ (♯‘𝐵))
10394, 100, 102elrabd 3645 . . . . . . . . . . 11 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)})
104 eqeq2 2745 . . . . . . . . . . . . 13 (𝑘 = (♯‘𝐵) → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑥) = (♯‘𝐵)))
105104rabbidv 3403 . . . . . . . . . . . 12 (𝑘 = (♯‘𝐵) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)})
106105fveq2d 6835 . . . . . . . . . . 11 (𝑘 = (♯‘𝐵) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}))
10781, 82, 86, 93, 103, 106fsumsplit1 15659 . . . . . . . . . 10 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = ((♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) + Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})))
108 ssrab2 4029 . . . . . . . . . . . . . . . 16 {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ⊆ 𝐵
109108a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ⊆ 𝐵)
11038, 109ssfid 9164 . . . . . . . . . . . . . 14 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ∈ Fin)
111 hashcl 14270 . . . . . . . . . . . . . 14 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ∈ Fin → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) ∈ ℕ0)
112110, 111syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) ∈ ℕ0)
113112nn0red 12454 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) ∈ ℝ)
114 diffi 9095 . . . . . . . . . . . . . . 15 ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∈ Fin → ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) ∈ Fin)
11586, 114syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) ∈ Fin)
11638adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → 𝐵 ∈ Fin)
11788a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵)
118116, 117ssfid 9164 . . . . . . . . . . . . . . 15 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin)
119118, 91syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℕ0)
120115, 119fsumnn0cl 15650 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℕ0)
121120nn0red 12454 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℝ)
12239phicld 16690 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (ϕ‘(♯‘𝐵)) ∈ ℕ)
123122nnred 12151 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (ϕ‘(♯‘𝐵)) ∈ ℝ)
124 eldifi 4080 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) → 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)})
125 breq1 5098 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑘 → (𝑎 ∥ (♯‘𝐵) ↔ 𝑘 ∥ (♯‘𝐵)))
126125elrab 3643 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ↔ (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵)))
127126biimpi 216 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} → (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵)))
128 elfzelz 13431 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...(♯‘𝐵)) → 𝑘 ∈ ℤ)
129 elfzle1 13434 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...(♯‘𝐵)) → 1 ≤ 𝑘)
130128, 129jca 511 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...(♯‘𝐵)) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
131130adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵)) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
132127, 131syl 17 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
133124, 132syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
134133adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
135 elnnz1 12508 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
136134, 135sylibr 234 . . . . . . . . . . . . . . 15 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → 𝑘 ∈ ℕ)
137 phicl 16687 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (ϕ‘𝑘) ∈ ℕ)
138136, 137syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → (ϕ‘𝑘) ∈ ℕ)
139138nnred 12151 . . . . . . . . . . . . 13 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → (ϕ‘𝑘) ∈ ℝ)
140115, 139fsumrecl 15648 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘) ∈ ℝ)
141 simplll 774 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) ∧ 𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝜑)
142 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) ∧ 𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝑧𝐵)
143141, 142jca 511 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) ∧ 𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (𝜑𝑧𝐵))
144 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) ∧ 𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘𝑧) = (♯‘𝐵))
145143, 144jca 511 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) ∧ 𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)))
146 fveqeq2 6840 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (((♯‘𝐵) / 𝐷) 𝑧) → (((od‘𝐺)‘𝑥) = 𝐷 ↔ ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧)) = 𝐷))
14725ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐺 ∈ Grp)
1489ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 ∥ (♯‘𝐵))
14929ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 ∈ ℕ)
150149nnzd 12505 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 ∈ ℤ)
151149nnne0d 12186 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 ≠ 0)
15226ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐵 ∈ Fin)
153152, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) ∈ ℕ0)
154153nn0zd 12504 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) ∈ ℤ)
155 dvdsval2 16173 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0 ∧ (♯‘𝐵) ∈ ℤ) → (𝐷 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐷) ∈ ℤ))
156150, 151, 154, 155syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (𝐷 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐷) ∈ ℤ))
157148, 156mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / 𝐷) ∈ ℤ)
158 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝑧𝐵)
15923, 24, 147, 157, 158mulgcld 19017 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) 𝑧) ∈ 𝐵)
160153nn0cnd 12455 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) ∈ ℂ)
16129nncnd 12152 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐷 ∈ ℂ)
162161ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 ∈ ℂ)
16323, 147, 152hashfingrpnn 18893 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) ∈ ℕ)
164163nnne0d 12186 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) ≠ 0)
165160, 160, 162, 164, 151divdiv2d 11940 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / ((♯‘𝐵) / 𝐷)) = (((♯‘𝐵) · 𝐷) / (♯‘𝐵)))
166162, 160, 164divcan3d 11913 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) · 𝐷) / (♯‘𝐵)) = 𝐷)
167165, 166eqtr2d 2769 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 = ((♯‘𝐵) / ((♯‘𝐵) / 𝐷)))
168 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘𝑧) = (♯‘𝐵))
169168oveq2d 7371 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) = (((♯‘𝐵) / 𝐷) gcd (♯‘𝐵)))
17026, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → (♯‘𝐵) ∈ ℕ0)
171170nn0cnd 12455 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → (♯‘𝐵) ∈ ℂ)
17229nnne0d 12186 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝐷 ≠ 0)
173171, 161, 172divcan2d 11910 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝐷 · ((♯‘𝐵) / 𝐷)) = (♯‘𝐵))
174173eqcomd 2739 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (♯‘𝐵) = (𝐷 · ((♯‘𝐵) / 𝐷)))
175174adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧𝐵) → (♯‘𝐵) = (𝐷 · ((♯‘𝐵) / 𝐷)))
176175adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) = (𝐷 · ((♯‘𝐵) / 𝐷)))
177176oveq2d 7371 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd (♯‘𝐵)) = (((♯‘𝐵) / 𝐷) gcd (𝐷 · ((♯‘𝐵) / 𝐷))))
178 nndivdvds 16179 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((♯‘𝐵) ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐷 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐷) ∈ ℕ))
179163, 149, 178syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (𝐷 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐷) ∈ ℕ))
180148, 179mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / 𝐷) ∈ ℕ)
181180nnnn0d 12453 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / 𝐷) ∈ ℕ0)
182181, 150gcdmultipled 16452 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd (𝐷 · ((♯‘𝐵) / 𝐷))) = ((♯‘𝐵) / 𝐷))
183177, 182eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd (♯‘𝐵)) = ((♯‘𝐵) / 𝐷))
184169, 183eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) = ((♯‘𝐵) / 𝐷))
185184eqcomd 2739 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / 𝐷) = (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)))
186185oveq2d 7371 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / ((♯‘𝐵) / 𝐷)) = ((♯‘𝐵) / (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧))))
187167, 186eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 = ((♯‘𝐵) / (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧))))
188168eqcomd 2739 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) = ((od‘𝐺)‘𝑧))
18923, 47, 24odmulg 19476 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐺 ∈ Grp ∧ 𝑧𝐵 ∧ ((♯‘𝐵) / 𝐷) ∈ ℤ) → ((od‘𝐺)‘𝑧) = ((((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) · ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧))))
190147, 158, 157, 189syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘𝑧) = ((((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) · ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧))))
191188, 190eqtrd 2768 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) = ((((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) · ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧))))
192191eqcomd 2739 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) · ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧))) = (♯‘𝐵))
193157zcnd 12588 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / 𝐷) ∈ ℂ)
194184, 193eqeltrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) ∈ ℂ)
19523, 47, 159odcld 19472 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧)) ∈ ℕ0)
196195nn0cnd 12455 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧)) ∈ ℂ)
197168, 154eqeltrd 2833 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘𝑧) ∈ ℤ)
198168, 164eqnetrd 2996 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘𝑧) ≠ 0)
199157, 197, 1983jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) ∈ ℤ ∧ ((od‘𝐺)‘𝑧) ∈ ℤ ∧ ((od‘𝐺)‘𝑧) ≠ 0))
200 gcd2n0cl 16427 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((♯‘𝐵) / 𝐷) ∈ ℤ ∧ ((od‘𝐺)‘𝑧) ∈ ℤ ∧ ((od‘𝐺)‘𝑧) ≠ 0) → (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) ∈ ℕ)
201199, 200syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) ∈ ℕ)
202201nnne0d 12186 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) ≠ 0)
203160, 194, 196, 202divmuld 11930 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧))) = ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧)) ↔ ((((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) · ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧))) = (♯‘𝐵)))
204192, 203mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧))) = ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧)))
205187, 204eqtr2d 2769 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧)) = 𝐷)
206146, 159, 205elrabd 3645 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) 𝑧) ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})
207 ne0i 4290 . . . . . . . . . . . . . . . . . . . . 21 ((((♯‘𝐵) / 𝐷) 𝑧) ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)
208206, 207syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)
209145, 208syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) ∧ 𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)
210 rabn0 4338 . . . . . . . . . . . . . . . . . . . . . 22 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅ ↔ ∃𝑥𝐵 ((od‘𝐺)‘𝑥) = (♯‘𝐵))
211 nfv 1915 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧((od‘𝐺)‘𝑥) = (♯‘𝐵)
212 nfv 1915 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥((od‘𝐺)‘𝑧) = (♯‘𝐵)
213 fveqeq2 6840 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → (((od‘𝐺)‘𝑥) = (♯‘𝐵) ↔ ((od‘𝐺)‘𝑧) = (♯‘𝐵)))
214211, 212, 213cbvrexw 3276 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑥𝐵 ((od‘𝐺)‘𝑥) = (♯‘𝐵) ↔ ∃𝑧𝐵 ((od‘𝐺)‘𝑧) = (♯‘𝐵))
215210, 214bitri 275 . . . . . . . . . . . . . . . . . . . . 21 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅ ↔ ∃𝑧𝐵 ((od‘𝐺)‘𝑧) = (♯‘𝐵))
216215biimpi 216 . . . . . . . . . . . . . . . . . . . 20 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅ → ∃𝑧𝐵 ((od‘𝐺)‘𝑧) = (♯‘𝐵))
217216adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) → ∃𝑧𝐵 ((od‘𝐺)‘𝑧) = (♯‘𝐵))
218209, 217r19.29a 3141 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)
219218ex 412 . . . . . . . . . . . . . . . . 17 (𝜑 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅ → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅))
220219necon4d 2953 . . . . . . . . . . . . . . . 16 (𝜑 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅ → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} = ∅))
221220imp 406 . . . . . . . . . . . . . . 15 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} = ∅)
222221fveq2d 6835 . . . . . . . . . . . . . 14 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) = (♯‘∅))
223 hash0 14281 . . . . . . . . . . . . . . 15 (♯‘∅) = 0
224223a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘∅) = 0)
225222, 224eqtrd 2768 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) = 0)
226122nngt0d 12185 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → 0 < (ϕ‘(♯‘𝐵)))
227225, 226eqbrtrd 5117 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) < (ϕ‘(♯‘𝐵)))
228 eldif 3908 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) ↔ (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}))
229228biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) → (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}))
230229adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}))
231 breq1 5098 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = 𝑧 → (𝑎 ∥ (♯‘𝐵) ↔ 𝑧 ∥ (♯‘𝐵)))
232231elrab 3643 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ↔ (𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)))
233232biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} → (𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)))
234233adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}) → (𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)))
235 velsn 4593 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ {(♯‘𝐵)} ↔ 𝑧 = (♯‘𝐵))
236235bicomi 224 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = (♯‘𝐵) ↔ 𝑧 ∈ {(♯‘𝐵)})
237236biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = (♯‘𝐵) → 𝑧 ∈ {(♯‘𝐵)})
238237necon3bi 2955 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑧 ∈ {(♯‘𝐵)} → 𝑧 ≠ (♯‘𝐵))
239238adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}) → 𝑧 ≠ (♯‘𝐵))
240234, 239jca 511 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}) → ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)))
241240adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)})) → ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)))
242 1zzd 12513 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 1 ∈ ℤ)
24326adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝐵 ∈ Fin)
244243, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (♯‘𝐵) ∈ ℕ0)
245244nn0zd 12504 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (♯‘𝐵) ∈ ℤ)
246245, 242zsubcld 12592 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → ((♯‘𝐵) − 1) ∈ ℤ)
247 elfzelz 13431 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ (1...(♯‘𝐵)) → 𝑧 ∈ ℤ)
248247adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) → 𝑧 ∈ ℤ)
249248adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)) → 𝑧 ∈ ℤ)
250249adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ∈ ℤ)
251 elfzle1 13434 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ (1...(♯‘𝐵)) → 1 ≤ 𝑧)
252251adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) → 1 ≤ 𝑧)
253252adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)) → 1 ≤ 𝑧)
254253adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 1 ≤ 𝑧)
255 elfzle2 13435 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 ∈ (1...(♯‘𝐵)) → 𝑧 ≤ (♯‘𝐵))
256255adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) → 𝑧 ≤ (♯‘𝐵))
257256adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)) → 𝑧 ≤ (♯‘𝐵))
258257adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ≤ (♯‘𝐵))
259 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ≠ (♯‘𝐵))
260259necomd 2984 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (♯‘𝐵) ≠ 𝑧)
261258, 260jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (𝑧 ≤ (♯‘𝐵) ∧ (♯‘𝐵) ≠ 𝑧))
262250zred 12587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ∈ ℝ)
263244nn0red 12454 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (♯‘𝐵) ∈ ℝ)
264262, 263ltlend 11269 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (𝑧 < (♯‘𝐵) ↔ (𝑧 ≤ (♯‘𝐵) ∧ (♯‘𝐵) ≠ 𝑧)))
265261, 264mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 < (♯‘𝐵))
266250, 245zltlem1d 12536 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (𝑧 < (♯‘𝐵) ↔ 𝑧 ≤ ((♯‘𝐵) − 1)))
267265, 266mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ≤ ((♯‘𝐵) − 1))
268242, 246, 250, 254, 267elfzd 13422 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ∈ (1...((♯‘𝐵) − 1)))
269 simprlr 779 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ∥ (♯‘𝐵))
270231, 268, 269elrabd 3645 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
271270ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}))
272271adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)})) → (((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}))
273241, 272mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)})) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
274273ex 412 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}))
275274adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → ((𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}))
276230, 275mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
277276ex 412 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}))
278277ssrdv 3936 . . . . . . . . . . . . . . . 16 (𝜑 → ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) ⊆ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
279 1zzd 12513 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 1 ∈ ℤ)
280170nn0zd 12504 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (♯‘𝐵) ∈ ℤ)
281280adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → (♯‘𝐵) ∈ ℤ)
282 elfzelz 13431 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ (1...((♯‘𝐵) − 1)) → 𝑧 ∈ ℤ)
283282adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 𝑧 ∈ ℤ)
284 elfzle1 13434 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ (1...((♯‘𝐵) − 1)) → 1 ≤ 𝑧)
285284adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 1 ≤ 𝑧)
286283zred 12587 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 𝑧 ∈ ℝ)
287281zred 12587 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → (♯‘𝐵) ∈ ℝ)
288 1red 11124 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 1 ∈ ℝ)
289287, 288resubcld 11556 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → ((♯‘𝐵) − 1) ∈ ℝ)
290 elfzle2 13435 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ (1...((♯‘𝐵) − 1)) → 𝑧 ≤ ((♯‘𝐵) − 1))
291290adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 𝑧 ≤ ((♯‘𝐵) − 1))
292287lem1d 12066 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → ((♯‘𝐵) − 1) ≤ (♯‘𝐵))
293286, 289, 287, 291, 292letrd 11281 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 𝑧 ≤ (♯‘𝐵))
294279, 281, 283, 285, 293elfzd 13422 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 𝑧 ∈ (1...(♯‘𝐵)))
295294ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑧 ∈ (1...((♯‘𝐵) − 1)) → 𝑧 ∈ (1...(♯‘𝐵))))
296295ssrdv 3936 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (1...((♯‘𝐵) − 1)) ⊆ (1...(♯‘𝐵)))
297 rabss2 4026 . . . . . . . . . . . . . . . . . . . . . 22 ((1...((♯‘𝐵) − 1)) ⊆ (1...(♯‘𝐵)) → {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)})
298296, 297syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)})
299298sseld 3929 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} → 𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}))
300299imp 406 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)})
301170ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → (♯‘𝐵) ∈ ℕ0)
302301nn0red 12454 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → (♯‘𝐵) ∈ ℝ)
303302leidd 11694 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → (♯‘𝐵) ≤ (♯‘𝐵))
304 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → 𝑧 = (♯‘𝐵))
305304eqcomd 2739 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → (♯‘𝐵) = 𝑧)
306231elrab 3643 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ↔ (𝑧 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑧 ∥ (♯‘𝐵)))
307306biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} → (𝑧 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑧 ∥ (♯‘𝐵)))
308307adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (𝑧 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑧 ∥ (♯‘𝐵)))
309291adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑧 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑧 ∥ (♯‘𝐵))) → 𝑧 ≤ ((♯‘𝐵) − 1))
310309ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((𝑧 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑧 ∥ (♯‘𝐵)) → 𝑧 ≤ ((♯‘𝐵) − 1)))
311310adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → ((𝑧 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑧 ∥ (♯‘𝐵)) → 𝑧 ≤ ((♯‘𝐵) − 1)))
312308, 311mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑧 ≤ ((♯‘𝐵) − 1))
313300, 233, 2483syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑧 ∈ ℤ)
314280adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (♯‘𝐵) ∈ ℤ)
315313, 314zltlem1d 12536 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (𝑧 < (♯‘𝐵) ↔ 𝑧 ≤ ((♯‘𝐵) − 1)))
316312, 315mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑧 < (♯‘𝐵))
317316adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → 𝑧 < (♯‘𝐵))
318305, 317eqbrtrd 5117 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → (♯‘𝐵) < (♯‘𝐵))
319302, 302ltnled 11271 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → ((♯‘𝐵) < (♯‘𝐵) ↔ ¬ (♯‘𝐵) ≤ (♯‘𝐵)))
320318, 319mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → ¬ (♯‘𝐵) ≤ (♯‘𝐵))
321303, 320pm2.21dd 195 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → 𝑧 ≠ (♯‘𝐵))
322 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 ≠ (♯‘𝐵)) → 𝑧 ≠ (♯‘𝐵))
323321, 322pm2.61dane 3016 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑧 ≠ (♯‘𝐵))
324300, 323eldifsnd 4740 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}))
325324ex 412 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} → 𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})))
326325ssrdv 3936 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}))
327278, 326eqssd 3948 . . . . . . . . . . . . . . 15 (𝜑 → ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) = {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
328327sumeq1d 15614 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = Σ𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
329 fzfid 13887 . . . . . . . . . . . . . . . . 17 (𝜑 → (1...((♯‘𝐵) − 1)) ∈ Fin)
330 ssrab2 4029 . . . . . . . . . . . . . . . . . 18 {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ (1...((♯‘𝐵) − 1))
331330a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ (1...((♯‘𝐵) − 1)))
332329, 331ssfid 9164 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ∈ Fin)
33326adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝐵 ∈ Fin)
33488a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵)
335333, 334ssfid 9164 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin)
336335, 91syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℕ0)
337336nn0red 12454 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℝ)
338125elrab 3643 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ↔ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)))
339338biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} → (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)))
340339adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)))
341 elfzelz 13431 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (1...((♯‘𝐵) − 1)) → 𝑘 ∈ ℤ)
342 elfzle1 13434 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (1...((♯‘𝐵) − 1)) → 1 ≤ 𝑘)
343341, 342jca 511 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (1...((♯‘𝐵) − 1)) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
344343adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
345344adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
346345, 135sylibr 234 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) → 𝑘 ∈ ℕ)
347346ex 412 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)) → 𝑘 ∈ ℕ))
348347adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → ((𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)) → 𝑘 ∈ ℕ))
349340, 348mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑘 ∈ ℕ)
350349phicld 16690 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (ϕ‘𝑘) ∈ ℕ)
351350nnred 12151 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (ϕ‘𝑘) ∈ ℝ)
352 simpll 766 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → 𝜑)
353338biimpri 228 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)) → 𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
354353adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) → 𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
355354adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → 𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
356352, 355jca 511 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}))
357356, 337syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℝ)
358 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)
359356, 358jca 511 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅))
360340simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑘 ∥ (♯‘𝐵))
361360adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → 𝑘 ∥ (♯‘𝐵))
362 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)
363361, 362jca 511 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅))
364 breq1 5098 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 = 𝑘 → (𝑚 ∥ (♯‘𝐵) ↔ 𝑘 ∥ (♯‘𝐵)))
365 eqeq2 2745 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑚 = 𝑘 → (((od‘𝐺)‘𝑥) = 𝑚 ↔ ((od‘𝐺)‘𝑥) = 𝑘))
366365rabbidv 3403 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 = 𝑘 → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
367366neeq1d 2988 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 = 𝑘 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅ ↔ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅))
368364, 367anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 = 𝑘 → ((𝑚 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅) ↔ (𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)))
369366fveq2d 6835 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 = 𝑘 → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
370 fveq2 6831 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 = 𝑘 → (ϕ‘𝑚) = (ϕ‘𝑘))
371369, 370eqeq12d 2749 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 = 𝑘 → ((♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (ϕ‘𝑚) ↔ (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘)))
372368, 371imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 = 𝑘 → (((𝑚 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (ϕ‘𝑚)) ↔ ((𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘))))
37328adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → ∀𝑚 ∈ ℕ ((𝑚 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (ϕ‘𝑚)))
374372, 373, 349rspcdva 3574 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → ((𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘)))
375374adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → ((𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘)))
376363, 375mpd 15 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘))
377359, 376syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘))
378357, 377eqled 11227 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ (ϕ‘𝑘))
379 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅ → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)
380379necon1bi 2957 . . . . . . . . . . . . . . . . . . . . . . . 24 (¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅ → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = ∅)
381380adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = ∅)
382381fveq2d 6835 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘∅))
383223a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘∅) = 0)
384382, 383eqtrd 2768 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = 0)
385346adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → 𝑘 ∈ ℕ)
386385phicld 16690 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (ϕ‘𝑘) ∈ ℕ)
387386nnnn0d 12453 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (ϕ‘𝑘) ∈ ℕ0)
388387nn0ge0d 12456 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → 0 ≤ (ϕ‘𝑘))
389384, 388eqbrtrd 5117 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ (ϕ‘𝑘))
390378, 389pm2.61dan 812 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ (ϕ‘𝑘))
391390ex 412 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ (ϕ‘𝑘)))
392391adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → ((𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ (ϕ‘𝑘)))
393340, 392mpd 15 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ (ϕ‘𝑘))
394332, 337, 351, 393fsumle 15713 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ Σ𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘))
395327sumeq1d 15614 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘) = Σ𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘))
396395eqcomd 2739 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘) = Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘))
397394, 396breqtrd 5121 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘))
398328, 397eqbrtrd 5117 . . . . . . . . . . . . 13 (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘))
399398adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘))
400113, 121, 123, 140, 227, 399ltleaddd 11749 . . . . . . . . . . 11 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → ((♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) + Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})) < ((ϕ‘(♯‘𝐵)) + Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘)))
401 nfcv 2895 . . . . . . . . . . . 12 𝑘(ϕ‘(♯‘𝐵))
402 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝜑)
403127adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵)))
404402, 403jca 511 . . . . . . . . . . . . . . 15 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (𝜑 ∧ (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵))))
405131adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
406405adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ (𝜑 ∧ (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵)))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
407406, 135sylibr 234 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ (𝜑 ∧ (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵)))) → 𝑘 ∈ ℕ)
408407ex 412 . . . . . . . . . . . . . . 15 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → ((𝜑 ∧ (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵))) → 𝑘 ∈ ℕ))
409404, 408mpd 15 . . . . . . . . . . . . . 14 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑘 ∈ ℕ)
410409phicld 16690 . . . . . . . . . . . . 13 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (ϕ‘𝑘) ∈ ℕ)
411410nncnd 12152 . . . . . . . . . . . 12 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (ϕ‘𝑘) ∈ ℂ)
412 fveq2 6831 . . . . . . . . . . . 12 (𝑘 = (♯‘𝐵) → (ϕ‘𝑘) = (ϕ‘(♯‘𝐵)))
41381, 401, 86, 411, 103, 412fsumsplit1 15659 . . . . . . . . . . 11 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘) = ((ϕ‘(♯‘𝐵)) + Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘)))
414400, 413breqtrrd 5123 . . . . . . . . . 10 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → ((♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) + Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})) < Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘))
415107, 414eqbrtrd 5117 . . . . . . . . 9 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) < Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘))
416 elfzelz 13431 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (1...(♯‘𝐵)) → 𝑎 ∈ ℤ)
417 elfzle1 13434 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (1...(♯‘𝐵)) → 1 ≤ 𝑎)
418416, 417jca 511 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (1...(♯‘𝐵)) → (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
419418adantr 480 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (1...(♯‘𝐵)) ∧ 𝑎 ∥ (♯‘𝐵)) → (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
420419adantl 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (1...(♯‘𝐵)) ∧ 𝑎 ∥ (♯‘𝐵))) → (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
421 elnnz1 12508 . . . . . . . . . . . . . 14 (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
422420, 421sylibr 234 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (1...(♯‘𝐵)) ∧ 𝑎 ∥ (♯‘𝐵))) → 𝑎 ∈ ℕ)
423422rabss3d 4030 . . . . . . . . . . . 12 (𝜑 → {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)})
424 simpl 482 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑎 ∥ (♯‘𝐵))) → 𝜑)
425 simprl 770 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑎 ∥ (♯‘𝐵))) → 𝑎 ∈ ℕ)
426424, 425jca 511 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑎 ∥ (♯‘𝐵))) → (𝜑𝑎 ∈ ℕ))
427 simprr 772 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑎 ∥ (♯‘𝐵))) → 𝑎 ∥ (♯‘𝐵))
428426, 427jca 511 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑎 ∥ (♯‘𝐵))) → ((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)))
429 1zzd 12513 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → 1 ∈ ℤ)
430280adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ ℕ) → (♯‘𝐵) ∈ ℤ)
431430adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → (♯‘𝐵) ∈ ℤ)
432425anassrs 467 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → 𝑎 ∈ ℕ)
433432nnzd 12505 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → 𝑎 ∈ ℤ)
434432nnge1d 12184 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → 1 ≤ 𝑎)
435 nnz 12500 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℕ → 𝑎 ∈ ℤ)
436435adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎 ∈ ℕ) → 𝑎 ∈ ℤ)
43723, 25, 26hashfingrpnn 18893 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘𝐵) ∈ ℕ)
438437adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎 ∈ ℕ) → (♯‘𝐵) ∈ ℕ)
439 dvdsle 16228 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (𝑎 ∥ (♯‘𝐵) → 𝑎 ≤ (♯‘𝐵)))
440436, 438, 439syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ ℕ) → (𝑎 ∥ (♯‘𝐵) → 𝑎 ≤ (♯‘𝐵)))
441440imp 406 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → 𝑎 ≤ (♯‘𝐵))
442429, 431, 433, 434, 441elfzd 13422 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → 𝑎 ∈ (1...(♯‘𝐵)))
443428, 442syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑎 ∥ (♯‘𝐵))) → 𝑎 ∈ (1...(♯‘𝐵)))
444443rabss3d 4030 . . . . . . . . . . . 12 (𝜑 → {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)})
445423, 444eqssd 3948 . . . . . . . . . . 11 (𝜑 → {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} = {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)})
446445adantr 480 . . . . . . . . . 10 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} = {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)})
447446sumeq1d 15614 . . . . . . . . 9 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘) = Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘))
448415, 447breqtrd 5121 . . . . . . . 8 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) < Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘))
449 phisum 16709 . . . . . . . . 9 ((♯‘𝐵) ∈ ℕ → Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘) = (♯‘𝐵))
45039, 449syl 17 . . . . . . . 8 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘) = (♯‘𝐵))
451448, 450breqtrd 5121 . . . . . . 7 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) < (♯‘𝐵))
45280, 451eqbrtrd 5117 . . . . . 6 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) < (♯‘𝐵))
453170adantr 480 . . . . . . . 8 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ ℕ0)
454453nn0red 12454 . . . . . . 7 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ ℝ)
455454ltnrd 11258 . . . . . 6 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → ¬ (♯‘𝐵) < (♯‘𝐵))
456452, 455pm2.21dd 195 . . . . 5 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷))
457456ex 412 . . . 4 (𝜑 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅ → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷)))
458457adantr 480 . . 3 ((𝜑 ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅ → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷)))
45936, 458mpd 15 . 2 ((𝜑 ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷))
46033, 459pm2.61dan 812 1 (𝜑 → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2113  wne 2929  wral 3048  wrex 3057  {crab 3396  cdif 3895  wss 3898  c0 4282  {csn 4577   class class class wbr 5095  cfv 6489  (class class class)co 7355  Fincfn 8879  cc 11015  cr 11016  0cc0 11017  1c1 11018   + caddc 11020   · cmul 11022   < clt 11157  cle 11158  cmin 11355   / cdiv 11785  cn 12136  0cn0 12392  cz 12479  ...cfz 13414  chash 14244  Σcsu 15600  cdvds 16170   gcd cgcd 16412  ϕcphi 16682  Basecbs 17127  0gc0g 17350  Grpcgrp 18854  .gcmg 18988  odcod 19444
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542  ax-cnex 11073  ax-resscn 11074  ax-1cn 11075  ax-icn 11076  ax-addcl 11077  ax-addrcl 11078  ax-mulcl 11079  ax-mulrcl 11080  ax-mulcom 11081  ax-addass 11082  ax-mulass 11083  ax-distr 11084  ax-i2m1 11085  ax-1ne0 11086  ax-1rid 11087  ax-rnegex 11088  ax-rrecex 11089  ax-cnre 11090  ax-pre-lttri 11091  ax-pre-lttrn 11092  ax-pre-ltadd 11093  ax-pre-mulgt0 11094  ax-pre-sup 11095
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-oadd 8398  df-omul 8399  df-er 8631  df-ec 8633  df-qs 8637  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9337  df-inf 9338  df-oi 9407  df-card 9843  df-acn 9846  df-pnf 11159  df-mnf 11160  df-xr 11161  df-ltxr 11162  df-le 11163  df-sub 11357  df-neg 11358  df-div 11786  df-nn 12137  df-2 12199  df-3 12200  df-n0 12393  df-xnn0 12466  df-z 12480  df-uz 12743  df-rp 12897  df-ico 13258  df-fz 13415  df-fzo 13562  df-fl 13703  df-mod 13781  df-seq 13916  df-exp 13976  df-hash 14245  df-cj 15013  df-re 15014  df-im 15015  df-sqrt 15149  df-abs 15150  df-clim 15402  df-sum 15601  df-dvds 16171  df-gcd 16413  df-phi 16684  df-sets 17082  df-slot 17100  df-ndx 17112  df-base 17128  df-ress 17149  df-plusg 17181  df-0g 17352  df-mgm 18556  df-sgrp 18635  df-mnd 18651  df-grp 18857  df-minusg 18858  df-sbg 18859  df-mulg 18989  df-subg 19044  df-eqg 19046  df-od 19448
This theorem is referenced by:  unitscyglem5  42365
  Copyright terms: Public domain W3C validator