Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitscyglem4 Structured version   Visualization version   GIF version

Theorem unitscyglem4 42193
Description: Lemma for unitscyg (Contributed by metakunt, 14-Jul-2025.)
Hypotheses
Ref Expression
unitscyglem1.1 𝐵 = (Base‘𝐺)
unitscyglem1.2 = (.g𝐺)
unitscyglem1.3 (𝜑𝐺 ∈ Grp)
unitscyglem1.4 (𝜑𝐵 ∈ Fin)
unitscyglem1.5 (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛)
unitscyglem4.1 (𝜑𝐷 ∈ ℕ)
unitscyglem4.2 (𝜑𝐷 ∥ (♯‘𝐵))
Assertion
Ref Expression
unitscyglem4 (𝜑 → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷))
Distinct variable groups:   𝑥, ,𝑛   𝑥,𝐵,𝑛   𝑦,𝐵,𝑥   𝑥,𝐷,𝑦   𝑥,𝐺,𝑛   𝑦,𝐺   𝜑,𝑥,𝑛
Allowed substitution hints:   𝜑(𝑦)   𝐷(𝑛)   (𝑦)

Proof of Theorem unitscyglem4
Dummy variables 𝑙 𝑎 𝑘 𝑚 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2892 . . . . . 6 𝑦𝐵
2 nfcv 2892 . . . . . 6 𝑥𝐵
3 nfv 1914 . . . . . 6 𝑥((od‘𝐺)‘𝑦) = 𝐷
4 nfv 1914 . . . . . 6 𝑦((od‘𝐺)‘𝑥) = 𝐷
5 fveqeq2 6870 . . . . . 6 (𝑦 = 𝑥 → (((od‘𝐺)‘𝑦) = 𝐷 ↔ ((od‘𝐺)‘𝑥) = 𝐷))
61, 2, 3, 4, 5cbvrabw 3444 . . . . 5 {𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}
76fveq2i 6864 . . . 4 (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})
87a1i 11 . . 3 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}))
9 unitscyglem4.2 . . . . . . . 8 (𝜑𝐷 ∥ (♯‘𝐵))
109adantr 480 . . . . . . 7 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → 𝐷 ∥ (♯‘𝐵))
1110ex 412 . . . . . 6 (𝜑 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅ → 𝐷 ∥ (♯‘𝐵)))
1211ancrd 551 . . . . 5 (𝜑 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅ → (𝐷 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)))
1312imdistani 568 . . . 4 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (𝜑 ∧ (𝐷 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)))
14 breq1 5113 . . . . . . . 8 (𝑚 = 𝐷 → (𝑚 ∥ (♯‘𝐵) ↔ 𝐷 ∥ (♯‘𝐵)))
15 eqeq2 2742 . . . . . . . . . 10 (𝑚 = 𝐷 → (((od‘𝐺)‘𝑥) = 𝑚 ↔ ((od‘𝐺)‘𝑥) = 𝐷))
1615rabbidv 3416 . . . . . . . . 9 (𝑚 = 𝐷 → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})
1716neeq1d 2985 . . . . . . . 8 (𝑚 = 𝐷 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅ ↔ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅))
1814, 17anbi12d 632 . . . . . . 7 (𝑚 = 𝐷 → ((𝑚 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅) ↔ (𝐷 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)))
1916fveq2d 6865 . . . . . . . 8 (𝑚 = 𝐷 → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}))
20 fveq2 6861 . . . . . . . 8 (𝑚 = 𝐷 → (ϕ‘𝑚) = (ϕ‘𝐷))
2119, 20eqeq12d 2746 . . . . . . 7 (𝑚 = 𝐷 → ((♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (ϕ‘𝑚) ↔ (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷)))
2218, 21imbi12d 344 . . . . . 6 (𝑚 = 𝐷 → (((𝑚 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (ϕ‘𝑚)) ↔ ((𝐷 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷))))
23 unitscyglem1.1 . . . . . . 7 𝐵 = (Base‘𝐺)
24 unitscyglem1.2 . . . . . . 7 = (.g𝐺)
25 unitscyglem1.3 . . . . . . 7 (𝜑𝐺 ∈ Grp)
26 unitscyglem1.4 . . . . . . 7 (𝜑𝐵 ∈ Fin)
27 unitscyglem1.5 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛)
2823, 24, 25, 26, 27unitscyglem3 42192 . . . . . 6 (𝜑 → ∀𝑚 ∈ ℕ ((𝑚 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (ϕ‘𝑚)))
29 unitscyglem4.1 . . . . . 6 (𝜑𝐷 ∈ ℕ)
3022, 28, 29rspcdva 3592 . . . . 5 (𝜑 → ((𝐷 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷)))
3130imp 406 . . . 4 ((𝜑 ∧ (𝐷 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷))
3213, 31syl 17 . . 3 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷))
338, 32eqtrd 2765 . 2 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷))
34 id 22 . . . . 5 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅ → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)
3534necon1bi 2954 . . . 4 (¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅ → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅)
3635adantl 481 . . 3 ((𝜑 ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅)
3725adantr 480 . . . . . . . . 9 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → 𝐺 ∈ Grp)
3826adantr 480 . . . . . . . . 9 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → 𝐵 ∈ Fin)
3923, 37, 38hashfingrpnn 18911 . . . . . . . . 9 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ ℕ)
4023, 24, 37, 38, 39grpods 42189 . . . . . . . 8 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘{𝑥𝐵 ∣ ((♯‘𝐵) 𝑥) = (0g𝐺)}))
41 simpr 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) ∧ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)) → (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵))
4241eqcomd 2736 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) ∧ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)) → (♯‘𝐵) = (𝑙 · ((od‘𝐺)‘𝑥)))
4342oveq1d 7405 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) ∧ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)) → ((♯‘𝐵) 𝑥) = ((𝑙 · ((od‘𝐺)‘𝑥)) 𝑥))
4425adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → 𝐺 ∈ Grp)
4544adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → 𝐺 ∈ Grp)
46 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → 𝑙 ∈ ℤ)
47 eqid 2730 . . . . . . . . . . . . . . . . . . . 20 (od‘𝐺) = (od‘𝐺)
48 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐵) → 𝑥𝐵)
4923, 47, 48odcld 19489 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐵) → ((od‘𝐺)‘𝑥) ∈ ℕ0)
5049adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → ((od‘𝐺)‘𝑥) ∈ ℕ0)
5150nn0zd 12562 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → ((od‘𝐺)‘𝑥) ∈ ℤ)
52 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → 𝑥𝐵)
5346, 51, 523jca 1128 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → (𝑙 ∈ ℤ ∧ ((od‘𝐺)‘𝑥) ∈ ℤ ∧ 𝑥𝐵))
5423, 24mulgass 19050 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ (𝑙 ∈ ℤ ∧ ((od‘𝐺)‘𝑥) ∈ ℤ ∧ 𝑥𝐵)) → ((𝑙 · ((od‘𝐺)‘𝑥)) 𝑥) = (𝑙 (((od‘𝐺)‘𝑥) 𝑥)))
5545, 53, 54syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → ((𝑙 · ((od‘𝐺)‘𝑥)) 𝑥) = (𝑙 (((od‘𝐺)‘𝑥) 𝑥)))
56 eqid 2730 . . . . . . . . . . . . . . . . . . 19 (0g𝐺) = (0g𝐺)
5723, 47, 24, 56odid 19475 . . . . . . . . . . . . . . . . . 18 (𝑥𝐵 → (((od‘𝐺)‘𝑥) 𝑥) = (0g𝐺))
5852, 57syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → (((od‘𝐺)‘𝑥) 𝑥) = (0g𝐺))
5958oveq2d 7406 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → (𝑙 (((od‘𝐺)‘𝑥) 𝑥)) = (𝑙 (0g𝐺)))
6023, 24, 56mulgz 19041 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝑙 ∈ ℤ) → (𝑙 (0g𝐺)) = (0g𝐺))
6144, 60sylan 580 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → (𝑙 (0g𝐺)) = (0g𝐺))
6259, 61eqtrd 2765 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → (𝑙 (((od‘𝐺)‘𝑥) 𝑥)) = (0g𝐺))
6355, 62eqtrd 2765 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → ((𝑙 · ((od‘𝐺)‘𝑥)) 𝑥) = (0g𝐺))
6463adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) ∧ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)) → ((𝑙 · ((od‘𝐺)‘𝑥)) 𝑥) = (0g𝐺))
6543, 64eqtrd 2765 . . . . . . . . . . . 12 ((((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) ∧ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)) → ((♯‘𝐵) 𝑥) = (0g𝐺))
6626adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐵) → 𝐵 ∈ Fin)
6723, 47oddvds2 19503 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥𝐵) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝐵))
6844, 66, 48, 67syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑥𝐵) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝐵))
6949nn0zd 12562 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐵) → ((od‘𝐺)‘𝑥) ∈ ℤ)
70 hashcl 14328 . . . . . . . . . . . . . . . 16 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
7166, 70syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐵) → (♯‘𝐵) ∈ ℕ0)
7271nn0zd 12562 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐵) → (♯‘𝐵) ∈ ℤ)
73 divides 16231 . . . . . . . . . . . . . 14 ((((od‘𝐺)‘𝑥) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) → (((od‘𝐺)‘𝑥) ∥ (♯‘𝐵) ↔ ∃𝑙 ∈ ℤ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)))
7469, 72, 73syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑥𝐵) → (((od‘𝐺)‘𝑥) ∥ (♯‘𝐵) ↔ ∃𝑙 ∈ ℤ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)))
7568, 74mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → ∃𝑙 ∈ ℤ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵))
7665, 75r19.29a 3142 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → ((♯‘𝐵) 𝑥) = (0g𝐺))
7776rabeqcda 3420 . . . . . . . . . 10 (𝜑 → {𝑥𝐵 ∣ ((♯‘𝐵) 𝑥) = (0g𝐺)} = 𝐵)
7877adantr 480 . . . . . . . . 9 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑥𝐵 ∣ ((♯‘𝐵) 𝑥) = (0g𝐺)} = 𝐵)
7978fveq2d 6865 . . . . . . . 8 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑥𝐵 ∣ ((♯‘𝐵) 𝑥) = (0g𝐺)}) = (♯‘𝐵))
8040, 79eqtr2d 2766 . . . . . . 7 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) = Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
81 nfv 1914 . . . . . . . . . . 11 𝑘(𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅)
82 nfcv 2892 . . . . . . . . . . 11 𝑘(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)})
83 fzfid 13945 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (1...(♯‘𝐵)) ∈ Fin)
84 ssrab2 4046 . . . . . . . . . . . . 13 {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ (1...(♯‘𝐵))
8584a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ (1...(♯‘𝐵)))
8683, 85ssfid 9219 . . . . . . . . . . 11 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∈ Fin)
8738adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝐵 ∈ Fin)
88 ssrab2 4046 . . . . . . . . . . . . . . 15 {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵
8988a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵)
9087, 89ssfid 9219 . . . . . . . . . . . . 13 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin)
91 hashcl 14328 . . . . . . . . . . . . 13 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℕ0)
9290, 91syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℕ0)
9392nn0cnd 12512 . . . . . . . . . . 11 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℂ)
94 breq1 5113 . . . . . . . . . . . 12 (𝑎 = (♯‘𝐵) → (𝑎 ∥ (♯‘𝐵) ↔ (♯‘𝐵) ∥ (♯‘𝐵)))
95 1zzd 12571 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → 1 ∈ ℤ)
9639nnzd 12563 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ ℤ)
9739nnge1d 12241 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → 1 ≤ (♯‘𝐵))
9839nnred 12208 . . . . . . . . . . . . . 14 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ ℝ)
9998leidd 11751 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ≤ (♯‘𝐵))
10095, 96, 96, 97, 99elfzd 13483 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ (1...(♯‘𝐵)))
101 iddvds 16246 . . . . . . . . . . . . 13 ((♯‘𝐵) ∈ ℤ → (♯‘𝐵) ∥ (♯‘𝐵))
10296, 101syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∥ (♯‘𝐵))
10394, 100, 102elrabd 3664 . . . . . . . . . . 11 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)})
104 eqeq2 2742 . . . . . . . . . . . . 13 (𝑘 = (♯‘𝐵) → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑥) = (♯‘𝐵)))
105104rabbidv 3416 . . . . . . . . . . . 12 (𝑘 = (♯‘𝐵) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)})
106105fveq2d 6865 . . . . . . . . . . 11 (𝑘 = (♯‘𝐵) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}))
10781, 82, 86, 93, 103, 106fsumsplit1 15718 . . . . . . . . . 10 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = ((♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) + Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})))
108 ssrab2 4046 . . . . . . . . . . . . . . . 16 {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ⊆ 𝐵
109108a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ⊆ 𝐵)
11038, 109ssfid 9219 . . . . . . . . . . . . . 14 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ∈ Fin)
111 hashcl 14328 . . . . . . . . . . . . . 14 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ∈ Fin → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) ∈ ℕ0)
112110, 111syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) ∈ ℕ0)
113112nn0red 12511 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) ∈ ℝ)
114 diffi 9145 . . . . . . . . . . . . . . 15 ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∈ Fin → ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) ∈ Fin)
11586, 114syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) ∈ Fin)
11638adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → 𝐵 ∈ Fin)
11788a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵)
118116, 117ssfid 9219 . . . . . . . . . . . . . . 15 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin)
119118, 91syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℕ0)
120115, 119fsumnn0cl 15709 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℕ0)
121120nn0red 12511 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℝ)
12239phicld 16749 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (ϕ‘(♯‘𝐵)) ∈ ℕ)
123122nnred 12208 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (ϕ‘(♯‘𝐵)) ∈ ℝ)
124 eldifi 4097 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) → 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)})
125 breq1 5113 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑘 → (𝑎 ∥ (♯‘𝐵) ↔ 𝑘 ∥ (♯‘𝐵)))
126125elrab 3662 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ↔ (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵)))
127126biimpi 216 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} → (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵)))
128 elfzelz 13492 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...(♯‘𝐵)) → 𝑘 ∈ ℤ)
129 elfzle1 13495 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...(♯‘𝐵)) → 1 ≤ 𝑘)
130128, 129jca 511 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...(♯‘𝐵)) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
131130adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵)) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
132127, 131syl 17 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
133124, 132syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
134133adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
135 elnnz1 12566 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
136134, 135sylibr 234 . . . . . . . . . . . . . . 15 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → 𝑘 ∈ ℕ)
137 phicl 16746 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (ϕ‘𝑘) ∈ ℕ)
138136, 137syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → (ϕ‘𝑘) ∈ ℕ)
139138nnred 12208 . . . . . . . . . . . . 13 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → (ϕ‘𝑘) ∈ ℝ)
140115, 139fsumrecl 15707 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘) ∈ ℝ)
141 simplll 774 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) ∧ 𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝜑)
142 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) ∧ 𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝑧𝐵)
143141, 142jca 511 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) ∧ 𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (𝜑𝑧𝐵))
144 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) ∧ 𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘𝑧) = (♯‘𝐵))
145143, 144jca 511 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) ∧ 𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)))
146 fveqeq2 6870 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (((♯‘𝐵) / 𝐷) 𝑧) → (((od‘𝐺)‘𝑥) = 𝐷 ↔ ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧)) = 𝐷))
14725ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐺 ∈ Grp)
1489ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 ∥ (♯‘𝐵))
14929ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 ∈ ℕ)
150149nnzd 12563 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 ∈ ℤ)
151149nnne0d 12243 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 ≠ 0)
15226ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐵 ∈ Fin)
153152, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) ∈ ℕ0)
154153nn0zd 12562 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) ∈ ℤ)
155 dvdsval2 16232 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0 ∧ (♯‘𝐵) ∈ ℤ) → (𝐷 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐷) ∈ ℤ))
156150, 151, 154, 155syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (𝐷 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐷) ∈ ℤ))
157148, 156mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / 𝐷) ∈ ℤ)
158 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝑧𝐵)
15923, 24, 147, 157, 158mulgcld 19035 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) 𝑧) ∈ 𝐵)
160153nn0cnd 12512 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) ∈ ℂ)
16129nncnd 12209 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐷 ∈ ℂ)
162161ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 ∈ ℂ)
16323, 147, 152hashfingrpnn 18911 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) ∈ ℕ)
164163nnne0d 12243 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) ≠ 0)
165160, 160, 162, 164, 151divdiv2d 11997 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / ((♯‘𝐵) / 𝐷)) = (((♯‘𝐵) · 𝐷) / (♯‘𝐵)))
166162, 160, 164divcan3d 11970 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) · 𝐷) / (♯‘𝐵)) = 𝐷)
167165, 166eqtr2d 2766 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 = ((♯‘𝐵) / ((♯‘𝐵) / 𝐷)))
168 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘𝑧) = (♯‘𝐵))
169168oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) = (((♯‘𝐵) / 𝐷) gcd (♯‘𝐵)))
17026, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → (♯‘𝐵) ∈ ℕ0)
171170nn0cnd 12512 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → (♯‘𝐵) ∈ ℂ)
17229nnne0d 12243 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝐷 ≠ 0)
173171, 161, 172divcan2d 11967 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝐷 · ((♯‘𝐵) / 𝐷)) = (♯‘𝐵))
174173eqcomd 2736 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (♯‘𝐵) = (𝐷 · ((♯‘𝐵) / 𝐷)))
175174adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧𝐵) → (♯‘𝐵) = (𝐷 · ((♯‘𝐵) / 𝐷)))
176175adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) = (𝐷 · ((♯‘𝐵) / 𝐷)))
177176oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd (♯‘𝐵)) = (((♯‘𝐵) / 𝐷) gcd (𝐷 · ((♯‘𝐵) / 𝐷))))
178 nndivdvds 16238 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((♯‘𝐵) ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐷 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐷) ∈ ℕ))
179163, 149, 178syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (𝐷 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐷) ∈ ℕ))
180148, 179mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / 𝐷) ∈ ℕ)
181180nnnn0d 12510 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / 𝐷) ∈ ℕ0)
182181, 150gcdmultipled 16511 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd (𝐷 · ((♯‘𝐵) / 𝐷))) = ((♯‘𝐵) / 𝐷))
183177, 182eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd (♯‘𝐵)) = ((♯‘𝐵) / 𝐷))
184169, 183eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) = ((♯‘𝐵) / 𝐷))
185184eqcomd 2736 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / 𝐷) = (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)))
186185oveq2d 7406 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / ((♯‘𝐵) / 𝐷)) = ((♯‘𝐵) / (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧))))
187167, 186eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 = ((♯‘𝐵) / (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧))))
188168eqcomd 2736 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) = ((od‘𝐺)‘𝑧))
18923, 47, 24odmulg 19493 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐺 ∈ Grp ∧ 𝑧𝐵 ∧ ((♯‘𝐵) / 𝐷) ∈ ℤ) → ((od‘𝐺)‘𝑧) = ((((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) · ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧))))
190147, 158, 157, 189syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘𝑧) = ((((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) · ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧))))
191188, 190eqtrd 2765 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) = ((((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) · ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧))))
192191eqcomd 2736 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) · ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧))) = (♯‘𝐵))
193157zcnd 12646 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / 𝐷) ∈ ℂ)
194184, 193eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) ∈ ℂ)
19523, 47, 159odcld 19489 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧)) ∈ ℕ0)
196195nn0cnd 12512 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧)) ∈ ℂ)
197168, 154eqeltrd 2829 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘𝑧) ∈ ℤ)
198168, 164eqnetrd 2993 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘𝑧) ≠ 0)
199157, 197, 1983jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) ∈ ℤ ∧ ((od‘𝐺)‘𝑧) ∈ ℤ ∧ ((od‘𝐺)‘𝑧) ≠ 0))
200 gcd2n0cl 16486 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((♯‘𝐵) / 𝐷) ∈ ℤ ∧ ((od‘𝐺)‘𝑧) ∈ ℤ ∧ ((od‘𝐺)‘𝑧) ≠ 0) → (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) ∈ ℕ)
201199, 200syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) ∈ ℕ)
202201nnne0d 12243 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) ≠ 0)
203160, 194, 196, 202divmuld 11987 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧))) = ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧)) ↔ ((((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) · ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧))) = (♯‘𝐵)))
204192, 203mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧))) = ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧)))
205187, 204eqtr2d 2766 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧)) = 𝐷)
206146, 159, 205elrabd 3664 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) 𝑧) ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})
207 ne0i 4307 . . . . . . . . . . . . . . . . . . . . 21 ((((♯‘𝐵) / 𝐷) 𝑧) ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)
208206, 207syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)
209145, 208syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) ∧ 𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)
210 rabn0 4355 . . . . . . . . . . . . . . . . . . . . . 22 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅ ↔ ∃𝑥𝐵 ((od‘𝐺)‘𝑥) = (♯‘𝐵))
211 nfv 1914 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧((od‘𝐺)‘𝑥) = (♯‘𝐵)
212 nfv 1914 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥((od‘𝐺)‘𝑧) = (♯‘𝐵)
213 fveqeq2 6870 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → (((od‘𝐺)‘𝑥) = (♯‘𝐵) ↔ ((od‘𝐺)‘𝑧) = (♯‘𝐵)))
214211, 212, 213cbvrexw 3283 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑥𝐵 ((od‘𝐺)‘𝑥) = (♯‘𝐵) ↔ ∃𝑧𝐵 ((od‘𝐺)‘𝑧) = (♯‘𝐵))
215210, 214bitri 275 . . . . . . . . . . . . . . . . . . . . 21 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅ ↔ ∃𝑧𝐵 ((od‘𝐺)‘𝑧) = (♯‘𝐵))
216215biimpi 216 . . . . . . . . . . . . . . . . . . . 20 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅ → ∃𝑧𝐵 ((od‘𝐺)‘𝑧) = (♯‘𝐵))
217216adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) → ∃𝑧𝐵 ((od‘𝐺)‘𝑧) = (♯‘𝐵))
218209, 217r19.29a 3142 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)
219218ex 412 . . . . . . . . . . . . . . . . 17 (𝜑 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅ → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅))
220219necon4d 2950 . . . . . . . . . . . . . . . 16 (𝜑 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅ → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} = ∅))
221220imp 406 . . . . . . . . . . . . . . 15 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} = ∅)
222221fveq2d 6865 . . . . . . . . . . . . . 14 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) = (♯‘∅))
223 hash0 14339 . . . . . . . . . . . . . . 15 (♯‘∅) = 0
224223a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘∅) = 0)
225222, 224eqtrd 2765 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) = 0)
226122nngt0d 12242 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → 0 < (ϕ‘(♯‘𝐵)))
227225, 226eqbrtrd 5132 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) < (ϕ‘(♯‘𝐵)))
228 eldif 3927 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) ↔ (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}))
229228biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) → (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}))
230229adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}))
231 breq1 5113 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = 𝑧 → (𝑎 ∥ (♯‘𝐵) ↔ 𝑧 ∥ (♯‘𝐵)))
232231elrab 3662 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ↔ (𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)))
233232biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} → (𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)))
234233adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}) → (𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)))
235 velsn 4608 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ {(♯‘𝐵)} ↔ 𝑧 = (♯‘𝐵))
236235bicomi 224 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = (♯‘𝐵) ↔ 𝑧 ∈ {(♯‘𝐵)})
237236biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = (♯‘𝐵) → 𝑧 ∈ {(♯‘𝐵)})
238237necon3bi 2952 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑧 ∈ {(♯‘𝐵)} → 𝑧 ≠ (♯‘𝐵))
239238adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}) → 𝑧 ≠ (♯‘𝐵))
240234, 239jca 511 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}) → ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)))
241240adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)})) → ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)))
242 1zzd 12571 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 1 ∈ ℤ)
24326adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝐵 ∈ Fin)
244243, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (♯‘𝐵) ∈ ℕ0)
245244nn0zd 12562 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (♯‘𝐵) ∈ ℤ)
246245, 242zsubcld 12650 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → ((♯‘𝐵) − 1) ∈ ℤ)
247 elfzelz 13492 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ (1...(♯‘𝐵)) → 𝑧 ∈ ℤ)
248247adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) → 𝑧 ∈ ℤ)
249248adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)) → 𝑧 ∈ ℤ)
250249adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ∈ ℤ)
251 elfzle1 13495 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ (1...(♯‘𝐵)) → 1 ≤ 𝑧)
252251adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) → 1 ≤ 𝑧)
253252adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)) → 1 ≤ 𝑧)
254253adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 1 ≤ 𝑧)
255 elfzle2 13496 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 ∈ (1...(♯‘𝐵)) → 𝑧 ≤ (♯‘𝐵))
256255adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) → 𝑧 ≤ (♯‘𝐵))
257256adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)) → 𝑧 ≤ (♯‘𝐵))
258257adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ≤ (♯‘𝐵))
259 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ≠ (♯‘𝐵))
260259necomd 2981 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (♯‘𝐵) ≠ 𝑧)
261258, 260jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (𝑧 ≤ (♯‘𝐵) ∧ (♯‘𝐵) ≠ 𝑧))
262250zred 12645 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ∈ ℝ)
263244nn0red 12511 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (♯‘𝐵) ∈ ℝ)
264262, 263ltlend 11326 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (𝑧 < (♯‘𝐵) ↔ (𝑧 ≤ (♯‘𝐵) ∧ (♯‘𝐵) ≠ 𝑧)))
265261, 264mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 < (♯‘𝐵))
266250, 245zltlem1d 12594 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (𝑧 < (♯‘𝐵) ↔ 𝑧 ≤ ((♯‘𝐵) − 1)))
267265, 266mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ≤ ((♯‘𝐵) − 1))
268242, 246, 250, 254, 267elfzd 13483 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ∈ (1...((♯‘𝐵) − 1)))
269 simprlr 779 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ∥ (♯‘𝐵))
270231, 268, 269elrabd 3664 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
271270ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}))
272271adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)})) → (((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}))
273241, 272mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)})) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
274273ex 412 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}))
275274adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → ((𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}))
276230, 275mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
277276ex 412 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}))
278277ssrdv 3955 . . . . . . . . . . . . . . . 16 (𝜑 → ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) ⊆ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
279 1zzd 12571 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 1 ∈ ℤ)
280170nn0zd 12562 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (♯‘𝐵) ∈ ℤ)
281280adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → (♯‘𝐵) ∈ ℤ)
282 elfzelz 13492 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ (1...((♯‘𝐵) − 1)) → 𝑧 ∈ ℤ)
283282adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 𝑧 ∈ ℤ)
284 elfzle1 13495 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ (1...((♯‘𝐵) − 1)) → 1 ≤ 𝑧)
285284adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 1 ≤ 𝑧)
286283zred 12645 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 𝑧 ∈ ℝ)
287281zred 12645 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → (♯‘𝐵) ∈ ℝ)
288 1red 11182 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 1 ∈ ℝ)
289287, 288resubcld 11613 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → ((♯‘𝐵) − 1) ∈ ℝ)
290 elfzle2 13496 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ (1...((♯‘𝐵) − 1)) → 𝑧 ≤ ((♯‘𝐵) − 1))
291290adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 𝑧 ≤ ((♯‘𝐵) − 1))
292287lem1d 12123 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → ((♯‘𝐵) − 1) ≤ (♯‘𝐵))
293286, 289, 287, 291, 292letrd 11338 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 𝑧 ≤ (♯‘𝐵))
294279, 281, 283, 285, 293elfzd 13483 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 𝑧 ∈ (1...(♯‘𝐵)))
295294ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑧 ∈ (1...((♯‘𝐵) − 1)) → 𝑧 ∈ (1...(♯‘𝐵))))
296295ssrdv 3955 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (1...((♯‘𝐵) − 1)) ⊆ (1...(♯‘𝐵)))
297 rabss2 4044 . . . . . . . . . . . . . . . . . . . . . 22 ((1...((♯‘𝐵) − 1)) ⊆ (1...(♯‘𝐵)) → {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)})
298296, 297syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)})
299298sseld 3948 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} → 𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}))
300299imp 406 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)})
301170ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → (♯‘𝐵) ∈ ℕ0)
302301nn0red 12511 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → (♯‘𝐵) ∈ ℝ)
303302leidd 11751 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → (♯‘𝐵) ≤ (♯‘𝐵))
304 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → 𝑧 = (♯‘𝐵))
305304eqcomd 2736 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → (♯‘𝐵) = 𝑧)
306231elrab 3662 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ↔ (𝑧 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑧 ∥ (♯‘𝐵)))
307306biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} → (𝑧 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑧 ∥ (♯‘𝐵)))
308307adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (𝑧 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑧 ∥ (♯‘𝐵)))
309291adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑧 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑧 ∥ (♯‘𝐵))) → 𝑧 ≤ ((♯‘𝐵) − 1))
310309ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((𝑧 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑧 ∥ (♯‘𝐵)) → 𝑧 ≤ ((♯‘𝐵) − 1)))
311310adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → ((𝑧 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑧 ∥ (♯‘𝐵)) → 𝑧 ≤ ((♯‘𝐵) − 1)))
312308, 311mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑧 ≤ ((♯‘𝐵) − 1))
313300, 233, 2483syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑧 ∈ ℤ)
314280adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (♯‘𝐵) ∈ ℤ)
315313, 314zltlem1d 12594 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (𝑧 < (♯‘𝐵) ↔ 𝑧 ≤ ((♯‘𝐵) − 1)))
316312, 315mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑧 < (♯‘𝐵))
317316adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → 𝑧 < (♯‘𝐵))
318305, 317eqbrtrd 5132 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → (♯‘𝐵) < (♯‘𝐵))
319302, 302ltnled 11328 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → ((♯‘𝐵) < (♯‘𝐵) ↔ ¬ (♯‘𝐵) ≤ (♯‘𝐵)))
320318, 319mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → ¬ (♯‘𝐵) ≤ (♯‘𝐵))
321303, 320pm2.21dd 195 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → 𝑧 ≠ (♯‘𝐵))
322 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 ≠ (♯‘𝐵)) → 𝑧 ≠ (♯‘𝐵))
323321, 322pm2.61dane 3013 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑧 ≠ (♯‘𝐵))
324300, 323eldifsnd 4754 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}))
325324ex 412 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} → 𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})))
326325ssrdv 3955 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}))
327278, 326eqssd 3967 . . . . . . . . . . . . . . 15 (𝜑 → ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) = {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
328327sumeq1d 15673 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = Σ𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
329 fzfid 13945 . . . . . . . . . . . . . . . . 17 (𝜑 → (1...((♯‘𝐵) − 1)) ∈ Fin)
330 ssrab2 4046 . . . . . . . . . . . . . . . . . 18 {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ (1...((♯‘𝐵) − 1))
331330a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ (1...((♯‘𝐵) − 1)))
332329, 331ssfid 9219 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ∈ Fin)
33326adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝐵 ∈ Fin)
33488a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵)
335333, 334ssfid 9219 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin)
336335, 91syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℕ0)
337336nn0red 12511 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℝ)
338125elrab 3662 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ↔ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)))
339338biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} → (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)))
340339adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)))
341 elfzelz 13492 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (1...((♯‘𝐵) − 1)) → 𝑘 ∈ ℤ)
342 elfzle1 13495 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (1...((♯‘𝐵) − 1)) → 1 ≤ 𝑘)
343341, 342jca 511 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (1...((♯‘𝐵) − 1)) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
344343adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
345344adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
346345, 135sylibr 234 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) → 𝑘 ∈ ℕ)
347346ex 412 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)) → 𝑘 ∈ ℕ))
348347adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → ((𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)) → 𝑘 ∈ ℕ))
349340, 348mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑘 ∈ ℕ)
350349phicld 16749 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (ϕ‘𝑘) ∈ ℕ)
351350nnred 12208 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (ϕ‘𝑘) ∈ ℝ)
352 simpll 766 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → 𝜑)
353338biimpri 228 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)) → 𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
354353adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) → 𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
355354adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → 𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
356352, 355jca 511 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}))
357356, 337syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℝ)
358 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)
359356, 358jca 511 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅))
360340simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑘 ∥ (♯‘𝐵))
361360adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → 𝑘 ∥ (♯‘𝐵))
362 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)
363361, 362jca 511 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅))
364 breq1 5113 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 = 𝑘 → (𝑚 ∥ (♯‘𝐵) ↔ 𝑘 ∥ (♯‘𝐵)))
365 eqeq2 2742 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑚 = 𝑘 → (((od‘𝐺)‘𝑥) = 𝑚 ↔ ((od‘𝐺)‘𝑥) = 𝑘))
366365rabbidv 3416 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 = 𝑘 → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
367366neeq1d 2985 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 = 𝑘 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅ ↔ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅))
368364, 367anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 = 𝑘 → ((𝑚 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅) ↔ (𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)))
369366fveq2d 6865 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 = 𝑘 → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
370 fveq2 6861 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 = 𝑘 → (ϕ‘𝑚) = (ϕ‘𝑘))
371369, 370eqeq12d 2746 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 = 𝑘 → ((♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (ϕ‘𝑚) ↔ (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘)))
372368, 371imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 = 𝑘 → (((𝑚 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (ϕ‘𝑚)) ↔ ((𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘))))
37328adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → ∀𝑚 ∈ ℕ ((𝑚 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (ϕ‘𝑚)))
374372, 373, 349rspcdva 3592 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → ((𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘)))
375374adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → ((𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘)))
376363, 375mpd 15 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘))
377359, 376syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘))
378357, 377eqled 11284 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ (ϕ‘𝑘))
379 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅ → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)
380379necon1bi 2954 . . . . . . . . . . . . . . . . . . . . . . . 24 (¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅ → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = ∅)
381380adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = ∅)
382381fveq2d 6865 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘∅))
383223a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘∅) = 0)
384382, 383eqtrd 2765 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = 0)
385346adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → 𝑘 ∈ ℕ)
386385phicld 16749 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (ϕ‘𝑘) ∈ ℕ)
387386nnnn0d 12510 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (ϕ‘𝑘) ∈ ℕ0)
388387nn0ge0d 12513 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → 0 ≤ (ϕ‘𝑘))
389384, 388eqbrtrd 5132 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ (ϕ‘𝑘))
390378, 389pm2.61dan 812 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ (ϕ‘𝑘))
391390ex 412 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ (ϕ‘𝑘)))
392391adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → ((𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ (ϕ‘𝑘)))
393340, 392mpd 15 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ (ϕ‘𝑘))
394332, 337, 351, 393fsumle 15772 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ Σ𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘))
395327sumeq1d 15673 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘) = Σ𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘))
396395eqcomd 2736 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘) = Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘))
397394, 396breqtrd 5136 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘))
398328, 397eqbrtrd 5132 . . . . . . . . . . . . 13 (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘))
399398adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘))
400113, 121, 123, 140, 227, 399ltleaddd 11806 . . . . . . . . . . 11 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → ((♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) + Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})) < ((ϕ‘(♯‘𝐵)) + Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘)))
401 nfcv 2892 . . . . . . . . . . . 12 𝑘(ϕ‘(♯‘𝐵))
402 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝜑)
403127adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵)))
404402, 403jca 511 . . . . . . . . . . . . . . 15 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (𝜑 ∧ (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵))))
405131adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
406405adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ (𝜑 ∧ (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵)))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
407406, 135sylibr 234 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ (𝜑 ∧ (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵)))) → 𝑘 ∈ ℕ)
408407ex 412 . . . . . . . . . . . . . . 15 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → ((𝜑 ∧ (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵))) → 𝑘 ∈ ℕ))
409404, 408mpd 15 . . . . . . . . . . . . . 14 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑘 ∈ ℕ)
410409phicld 16749 . . . . . . . . . . . . 13 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (ϕ‘𝑘) ∈ ℕ)
411410nncnd 12209 . . . . . . . . . . . 12 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (ϕ‘𝑘) ∈ ℂ)
412 fveq2 6861 . . . . . . . . . . . 12 (𝑘 = (♯‘𝐵) → (ϕ‘𝑘) = (ϕ‘(♯‘𝐵)))
41381, 401, 86, 411, 103, 412fsumsplit1 15718 . . . . . . . . . . 11 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘) = ((ϕ‘(♯‘𝐵)) + Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘)))
414400, 413breqtrrd 5138 . . . . . . . . . 10 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → ((♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) + Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})) < Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘))
415107, 414eqbrtrd 5132 . . . . . . . . 9 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) < Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘))
416 elfzelz 13492 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (1...(♯‘𝐵)) → 𝑎 ∈ ℤ)
417 elfzle1 13495 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (1...(♯‘𝐵)) → 1 ≤ 𝑎)
418416, 417jca 511 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (1...(♯‘𝐵)) → (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
419418adantr 480 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (1...(♯‘𝐵)) ∧ 𝑎 ∥ (♯‘𝐵)) → (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
420419adantl 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (1...(♯‘𝐵)) ∧ 𝑎 ∥ (♯‘𝐵))) → (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
421 elnnz1 12566 . . . . . . . . . . . . . 14 (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
422420, 421sylibr 234 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (1...(♯‘𝐵)) ∧ 𝑎 ∥ (♯‘𝐵))) → 𝑎 ∈ ℕ)
423422rabss3d 4047 . . . . . . . . . . . 12 (𝜑 → {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)})
424 simpl 482 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑎 ∥ (♯‘𝐵))) → 𝜑)
425 simprl 770 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑎 ∥ (♯‘𝐵))) → 𝑎 ∈ ℕ)
426424, 425jca 511 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑎 ∥ (♯‘𝐵))) → (𝜑𝑎 ∈ ℕ))
427 simprr 772 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑎 ∥ (♯‘𝐵))) → 𝑎 ∥ (♯‘𝐵))
428426, 427jca 511 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑎 ∥ (♯‘𝐵))) → ((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)))
429 1zzd 12571 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → 1 ∈ ℤ)
430280adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ ℕ) → (♯‘𝐵) ∈ ℤ)
431430adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → (♯‘𝐵) ∈ ℤ)
432425anassrs 467 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → 𝑎 ∈ ℕ)
433432nnzd 12563 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → 𝑎 ∈ ℤ)
434432nnge1d 12241 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → 1 ≤ 𝑎)
435 nnz 12557 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℕ → 𝑎 ∈ ℤ)
436435adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎 ∈ ℕ) → 𝑎 ∈ ℤ)
43723, 25, 26hashfingrpnn 18911 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘𝐵) ∈ ℕ)
438437adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎 ∈ ℕ) → (♯‘𝐵) ∈ ℕ)
439 dvdsle 16287 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (𝑎 ∥ (♯‘𝐵) → 𝑎 ≤ (♯‘𝐵)))
440436, 438, 439syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ ℕ) → (𝑎 ∥ (♯‘𝐵) → 𝑎 ≤ (♯‘𝐵)))
441440imp 406 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → 𝑎 ≤ (♯‘𝐵))
442429, 431, 433, 434, 441elfzd 13483 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → 𝑎 ∈ (1...(♯‘𝐵)))
443428, 442syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑎 ∥ (♯‘𝐵))) → 𝑎 ∈ (1...(♯‘𝐵)))
444443rabss3d 4047 . . . . . . . . . . . 12 (𝜑 → {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)})
445423, 444eqssd 3967 . . . . . . . . . . 11 (𝜑 → {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} = {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)})
446445adantr 480 . . . . . . . . . 10 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} = {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)})
447446sumeq1d 15673 . . . . . . . . 9 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘) = Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘))
448415, 447breqtrd 5136 . . . . . . . 8 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) < Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘))
449 phisum 16768 . . . . . . . . 9 ((♯‘𝐵) ∈ ℕ → Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘) = (♯‘𝐵))
45039, 449syl 17 . . . . . . . 8 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘) = (♯‘𝐵))
451448, 450breqtrd 5136 . . . . . . 7 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) < (♯‘𝐵))
45280, 451eqbrtrd 5132 . . . . . 6 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) < (♯‘𝐵))
453170adantr 480 . . . . . . . 8 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ ℕ0)
454453nn0red 12511 . . . . . . 7 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ ℝ)
455454ltnrd 11315 . . . . . 6 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → ¬ (♯‘𝐵) < (♯‘𝐵))
456452, 455pm2.21dd 195 . . . . 5 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷))
457456ex 412 . . . 4 (𝜑 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅ → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷)))
458457adantr 480 . . 3 ((𝜑 ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅ → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷)))
45936, 458mpd 15 . 2 ((𝜑 ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷))
46033, 459pm2.61dan 812 1 (𝜑 → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  cdif 3914  wss 3917  c0 4299  {csn 4592   class class class wbr 5110  cfv 6514  (class class class)co 7390  Fincfn 8921  cc 11073  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cmin 11412   / cdiv 11842  cn 12193  0cn0 12449  cz 12536  ...cfz 13475  chash 14302  Σcsu 15659  cdvds 16229   gcd cgcd 16471  ϕcphi 16741  Basecbs 17186  0gc0g 17409  Grpcgrp 18872  .gcmg 19006  odcod 19461
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-disj 5078  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-oadd 8441  df-omul 8442  df-er 8674  df-ec 8676  df-qs 8680  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-oi 9470  df-card 9899  df-acn 9902  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-n0 12450  df-xnn0 12523  df-z 12537  df-uz 12801  df-rp 12959  df-ico 13319  df-fz 13476  df-fzo 13623  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-hash 14303  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-clim 15461  df-sum 15660  df-dvds 16230  df-gcd 16472  df-phi 16743  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-eqg 19064  df-od 19465
This theorem is referenced by:  unitscyglem5  42194
  Copyright terms: Public domain W3C validator