Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitscyglem4 Structured version   Visualization version   GIF version

Theorem unitscyglem4 42174
Description: Lemma for unitscyg (Contributed by metakunt, 14-Jul-2025.)
Hypotheses
Ref Expression
unitscyglem1.1 𝐵 = (Base‘𝐺)
unitscyglem1.2 = (.g𝐺)
unitscyglem1.3 (𝜑𝐺 ∈ Grp)
unitscyglem1.4 (𝜑𝐵 ∈ Fin)
unitscyglem1.5 (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛)
unitscyglem4.1 (𝜑𝐷 ∈ ℕ)
unitscyglem4.2 (𝜑𝐷 ∥ (♯‘𝐵))
Assertion
Ref Expression
unitscyglem4 (𝜑 → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷))
Distinct variable groups:   𝑥, ,𝑛   𝑥,𝐵,𝑛   𝑦,𝐵,𝑥   𝑥,𝐷,𝑦   𝑥,𝐺,𝑛   𝑦,𝐺   𝜑,𝑥,𝑛
Allowed substitution hints:   𝜑(𝑦)   𝐷(𝑛)   (𝑦)

Proof of Theorem unitscyglem4
Dummy variables 𝑙 𝑎 𝑘 𝑚 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2891 . . . . . 6 𝑦𝐵
2 nfcv 2891 . . . . . 6 𝑥𝐵
3 nfv 1914 . . . . . 6 𝑥((od‘𝐺)‘𝑦) = 𝐷
4 nfv 1914 . . . . . 6 𝑦((od‘𝐺)‘𝑥) = 𝐷
5 fveqeq2 6835 . . . . . 6 (𝑦 = 𝑥 → (((od‘𝐺)‘𝑦) = 𝐷 ↔ ((od‘𝐺)‘𝑥) = 𝐷))
61, 2, 3, 4, 5cbvrabw 3432 . . . . 5 {𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}
76fveq2i 6829 . . . 4 (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})
87a1i 11 . . 3 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}))
9 unitscyglem4.2 . . . . . . . 8 (𝜑𝐷 ∥ (♯‘𝐵))
109adantr 480 . . . . . . 7 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → 𝐷 ∥ (♯‘𝐵))
1110ex 412 . . . . . 6 (𝜑 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅ → 𝐷 ∥ (♯‘𝐵)))
1211ancrd 551 . . . . 5 (𝜑 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅ → (𝐷 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)))
1312imdistani 568 . . . 4 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (𝜑 ∧ (𝐷 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)))
14 breq1 5098 . . . . . . . 8 (𝑚 = 𝐷 → (𝑚 ∥ (♯‘𝐵) ↔ 𝐷 ∥ (♯‘𝐵)))
15 eqeq2 2741 . . . . . . . . . 10 (𝑚 = 𝐷 → (((od‘𝐺)‘𝑥) = 𝑚 ↔ ((od‘𝐺)‘𝑥) = 𝐷))
1615rabbidv 3404 . . . . . . . . 9 (𝑚 = 𝐷 → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})
1716neeq1d 2984 . . . . . . . 8 (𝑚 = 𝐷 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅ ↔ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅))
1814, 17anbi12d 632 . . . . . . 7 (𝑚 = 𝐷 → ((𝑚 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅) ↔ (𝐷 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)))
1916fveq2d 6830 . . . . . . . 8 (𝑚 = 𝐷 → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}))
20 fveq2 6826 . . . . . . . 8 (𝑚 = 𝐷 → (ϕ‘𝑚) = (ϕ‘𝐷))
2119, 20eqeq12d 2745 . . . . . . 7 (𝑚 = 𝐷 → ((♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (ϕ‘𝑚) ↔ (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷)))
2218, 21imbi12d 344 . . . . . 6 (𝑚 = 𝐷 → (((𝑚 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (ϕ‘𝑚)) ↔ ((𝐷 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷))))
23 unitscyglem1.1 . . . . . . 7 𝐵 = (Base‘𝐺)
24 unitscyglem1.2 . . . . . . 7 = (.g𝐺)
25 unitscyglem1.3 . . . . . . 7 (𝜑𝐺 ∈ Grp)
26 unitscyglem1.4 . . . . . . 7 (𝜑𝐵 ∈ Fin)
27 unitscyglem1.5 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛)
2823, 24, 25, 26, 27unitscyglem3 42173 . . . . . 6 (𝜑 → ∀𝑚 ∈ ℕ ((𝑚 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (ϕ‘𝑚)))
29 unitscyglem4.1 . . . . . 6 (𝜑𝐷 ∈ ℕ)
3022, 28, 29rspcdva 3580 . . . . 5 (𝜑 → ((𝐷 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷)))
3130imp 406 . . . 4 ((𝜑 ∧ (𝐷 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷))
3213, 31syl 17 . . 3 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷))
338, 32eqtrd 2764 . 2 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷))
34 id 22 . . . . 5 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅ → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)
3534necon1bi 2953 . . . 4 (¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅ → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅)
3635adantl 481 . . 3 ((𝜑 ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅)
3725adantr 480 . . . . . . . . 9 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → 𝐺 ∈ Grp)
3826adantr 480 . . . . . . . . 9 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → 𝐵 ∈ Fin)
3923, 37, 38hashfingrpnn 18869 . . . . . . . . 9 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ ℕ)
4023, 24, 37, 38, 39grpods 42170 . . . . . . . 8 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘{𝑥𝐵 ∣ ((♯‘𝐵) 𝑥) = (0g𝐺)}))
41 simpr 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) ∧ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)) → (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵))
4241eqcomd 2735 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) ∧ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)) → (♯‘𝐵) = (𝑙 · ((od‘𝐺)‘𝑥)))
4342oveq1d 7368 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) ∧ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)) → ((♯‘𝐵) 𝑥) = ((𝑙 · ((od‘𝐺)‘𝑥)) 𝑥))
4425adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → 𝐺 ∈ Grp)
4544adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → 𝐺 ∈ Grp)
46 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → 𝑙 ∈ ℤ)
47 eqid 2729 . . . . . . . . . . . . . . . . . . . 20 (od‘𝐺) = (od‘𝐺)
48 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐵) → 𝑥𝐵)
4923, 47, 48odcld 19449 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐵) → ((od‘𝐺)‘𝑥) ∈ ℕ0)
5049adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → ((od‘𝐺)‘𝑥) ∈ ℕ0)
5150nn0zd 12515 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → ((od‘𝐺)‘𝑥) ∈ ℤ)
52 simplr 768 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → 𝑥𝐵)
5346, 51, 523jca 1128 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → (𝑙 ∈ ℤ ∧ ((od‘𝐺)‘𝑥) ∈ ℤ ∧ 𝑥𝐵))
5423, 24mulgass 19008 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ (𝑙 ∈ ℤ ∧ ((od‘𝐺)‘𝑥) ∈ ℤ ∧ 𝑥𝐵)) → ((𝑙 · ((od‘𝐺)‘𝑥)) 𝑥) = (𝑙 (((od‘𝐺)‘𝑥) 𝑥)))
5545, 53, 54syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → ((𝑙 · ((od‘𝐺)‘𝑥)) 𝑥) = (𝑙 (((od‘𝐺)‘𝑥) 𝑥)))
56 eqid 2729 . . . . . . . . . . . . . . . . . . 19 (0g𝐺) = (0g𝐺)
5723, 47, 24, 56odid 19435 . . . . . . . . . . . . . . . . . 18 (𝑥𝐵 → (((od‘𝐺)‘𝑥) 𝑥) = (0g𝐺))
5852, 57syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → (((od‘𝐺)‘𝑥) 𝑥) = (0g𝐺))
5958oveq2d 7369 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → (𝑙 (((od‘𝐺)‘𝑥) 𝑥)) = (𝑙 (0g𝐺)))
6023, 24, 56mulgz 18999 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝑙 ∈ ℤ) → (𝑙 (0g𝐺)) = (0g𝐺))
6144, 60sylan 580 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → (𝑙 (0g𝐺)) = (0g𝐺))
6259, 61eqtrd 2764 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → (𝑙 (((od‘𝐺)‘𝑥) 𝑥)) = (0g𝐺))
6355, 62eqtrd 2764 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → ((𝑙 · ((od‘𝐺)‘𝑥)) 𝑥) = (0g𝐺))
6463adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) ∧ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)) → ((𝑙 · ((od‘𝐺)‘𝑥)) 𝑥) = (0g𝐺))
6543, 64eqtrd 2764 . . . . . . . . . . . 12 ((((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) ∧ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)) → ((♯‘𝐵) 𝑥) = (0g𝐺))
6626adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐵) → 𝐵 ∈ Fin)
6723, 47oddvds2 19463 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥𝐵) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝐵))
6844, 66, 48, 67syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑥𝐵) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝐵))
6949nn0zd 12515 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐵) → ((od‘𝐺)‘𝑥) ∈ ℤ)
70 hashcl 14281 . . . . . . . . . . . . . . . 16 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
7166, 70syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐵) → (♯‘𝐵) ∈ ℕ0)
7271nn0zd 12515 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐵) → (♯‘𝐵) ∈ ℤ)
73 divides 16183 . . . . . . . . . . . . . 14 ((((od‘𝐺)‘𝑥) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) → (((od‘𝐺)‘𝑥) ∥ (♯‘𝐵) ↔ ∃𝑙 ∈ ℤ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)))
7469, 72, 73syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑥𝐵) → (((od‘𝐺)‘𝑥) ∥ (♯‘𝐵) ↔ ∃𝑙 ∈ ℤ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)))
7568, 74mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → ∃𝑙 ∈ ℤ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵))
7665, 75r19.29a 3137 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → ((♯‘𝐵) 𝑥) = (0g𝐺))
7776rabeqcda 3408 . . . . . . . . . 10 (𝜑 → {𝑥𝐵 ∣ ((♯‘𝐵) 𝑥) = (0g𝐺)} = 𝐵)
7877adantr 480 . . . . . . . . 9 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑥𝐵 ∣ ((♯‘𝐵) 𝑥) = (0g𝐺)} = 𝐵)
7978fveq2d 6830 . . . . . . . 8 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑥𝐵 ∣ ((♯‘𝐵) 𝑥) = (0g𝐺)}) = (♯‘𝐵))
8040, 79eqtr2d 2765 . . . . . . 7 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) = Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
81 nfv 1914 . . . . . . . . . . 11 𝑘(𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅)
82 nfcv 2891 . . . . . . . . . . 11 𝑘(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)})
83 fzfid 13898 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (1...(♯‘𝐵)) ∈ Fin)
84 ssrab2 4033 . . . . . . . . . . . . 13 {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ (1...(♯‘𝐵))
8584a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ (1...(♯‘𝐵)))
8683, 85ssfid 9170 . . . . . . . . . . 11 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∈ Fin)
8738adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝐵 ∈ Fin)
88 ssrab2 4033 . . . . . . . . . . . . . . 15 {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵
8988a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵)
9087, 89ssfid 9170 . . . . . . . . . . . . 13 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin)
91 hashcl 14281 . . . . . . . . . . . . 13 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℕ0)
9290, 91syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℕ0)
9392nn0cnd 12465 . . . . . . . . . . 11 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℂ)
94 breq1 5098 . . . . . . . . . . . 12 (𝑎 = (♯‘𝐵) → (𝑎 ∥ (♯‘𝐵) ↔ (♯‘𝐵) ∥ (♯‘𝐵)))
95 1zzd 12524 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → 1 ∈ ℤ)
9639nnzd 12516 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ ℤ)
9739nnge1d 12194 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → 1 ≤ (♯‘𝐵))
9839nnred 12161 . . . . . . . . . . . . . 14 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ ℝ)
9998leidd 11704 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ≤ (♯‘𝐵))
10095, 96, 96, 97, 99elfzd 13436 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ (1...(♯‘𝐵)))
101 iddvds 16198 . . . . . . . . . . . . 13 ((♯‘𝐵) ∈ ℤ → (♯‘𝐵) ∥ (♯‘𝐵))
10296, 101syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∥ (♯‘𝐵))
10394, 100, 102elrabd 3652 . . . . . . . . . . 11 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)})
104 eqeq2 2741 . . . . . . . . . . . . 13 (𝑘 = (♯‘𝐵) → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑥) = (♯‘𝐵)))
105104rabbidv 3404 . . . . . . . . . . . 12 (𝑘 = (♯‘𝐵) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)})
106105fveq2d 6830 . . . . . . . . . . 11 (𝑘 = (♯‘𝐵) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}))
10781, 82, 86, 93, 103, 106fsumsplit1 15670 . . . . . . . . . 10 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = ((♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) + Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})))
108 ssrab2 4033 . . . . . . . . . . . . . . . 16 {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ⊆ 𝐵
109108a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ⊆ 𝐵)
11038, 109ssfid 9170 . . . . . . . . . . . . . 14 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ∈ Fin)
111 hashcl 14281 . . . . . . . . . . . . . 14 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ∈ Fin → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) ∈ ℕ0)
112110, 111syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) ∈ ℕ0)
113112nn0red 12464 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) ∈ ℝ)
114 diffi 9099 . . . . . . . . . . . . . . 15 ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∈ Fin → ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) ∈ Fin)
11586, 114syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) ∈ Fin)
11638adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → 𝐵 ∈ Fin)
11788a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵)
118116, 117ssfid 9170 . . . . . . . . . . . . . . 15 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin)
119118, 91syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℕ0)
120115, 119fsumnn0cl 15661 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℕ0)
121120nn0red 12464 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℝ)
12239phicld 16701 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (ϕ‘(♯‘𝐵)) ∈ ℕ)
123122nnred 12161 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (ϕ‘(♯‘𝐵)) ∈ ℝ)
124 eldifi 4084 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) → 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)})
125 breq1 5098 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑘 → (𝑎 ∥ (♯‘𝐵) ↔ 𝑘 ∥ (♯‘𝐵)))
126125elrab 3650 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ↔ (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵)))
127126biimpi 216 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} → (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵)))
128 elfzelz 13445 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...(♯‘𝐵)) → 𝑘 ∈ ℤ)
129 elfzle1 13448 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...(♯‘𝐵)) → 1 ≤ 𝑘)
130128, 129jca 511 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...(♯‘𝐵)) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
131130adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵)) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
132127, 131syl 17 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
133124, 132syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
134133adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
135 elnnz1 12519 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
136134, 135sylibr 234 . . . . . . . . . . . . . . 15 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → 𝑘 ∈ ℕ)
137 phicl 16698 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (ϕ‘𝑘) ∈ ℕ)
138136, 137syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → (ϕ‘𝑘) ∈ ℕ)
139138nnred 12161 . . . . . . . . . . . . 13 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → (ϕ‘𝑘) ∈ ℝ)
140115, 139fsumrecl 15659 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘) ∈ ℝ)
141 simplll 774 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) ∧ 𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝜑)
142 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) ∧ 𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝑧𝐵)
143141, 142jca 511 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) ∧ 𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (𝜑𝑧𝐵))
144 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) ∧ 𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘𝑧) = (♯‘𝐵))
145143, 144jca 511 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) ∧ 𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)))
146 fveqeq2 6835 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (((♯‘𝐵) / 𝐷) 𝑧) → (((od‘𝐺)‘𝑥) = 𝐷 ↔ ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧)) = 𝐷))
14725ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐺 ∈ Grp)
1489ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 ∥ (♯‘𝐵))
14929ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 ∈ ℕ)
150149nnzd 12516 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 ∈ ℤ)
151149nnne0d 12196 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 ≠ 0)
15226ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐵 ∈ Fin)
153152, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) ∈ ℕ0)
154153nn0zd 12515 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) ∈ ℤ)
155 dvdsval2 16184 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0 ∧ (♯‘𝐵) ∈ ℤ) → (𝐷 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐷) ∈ ℤ))
156150, 151, 154, 155syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (𝐷 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐷) ∈ ℤ))
157148, 156mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / 𝐷) ∈ ℤ)
158 simplr 768 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝑧𝐵)
15923, 24, 147, 157, 158mulgcld 18993 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) 𝑧) ∈ 𝐵)
160153nn0cnd 12465 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) ∈ ℂ)
16129nncnd 12162 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐷 ∈ ℂ)
162161ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 ∈ ℂ)
16323, 147, 152hashfingrpnn 18869 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) ∈ ℕ)
164163nnne0d 12196 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) ≠ 0)
165160, 160, 162, 164, 151divdiv2d 11950 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / ((♯‘𝐵) / 𝐷)) = (((♯‘𝐵) · 𝐷) / (♯‘𝐵)))
166162, 160, 164divcan3d 11923 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) · 𝐷) / (♯‘𝐵)) = 𝐷)
167165, 166eqtr2d 2765 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 = ((♯‘𝐵) / ((♯‘𝐵) / 𝐷)))
168 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘𝑧) = (♯‘𝐵))
169168oveq2d 7369 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) = (((♯‘𝐵) / 𝐷) gcd (♯‘𝐵)))
17026, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → (♯‘𝐵) ∈ ℕ0)
171170nn0cnd 12465 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → (♯‘𝐵) ∈ ℂ)
17229nnne0d 12196 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝐷 ≠ 0)
173171, 161, 172divcan2d 11920 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝐷 · ((♯‘𝐵) / 𝐷)) = (♯‘𝐵))
174173eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (♯‘𝐵) = (𝐷 · ((♯‘𝐵) / 𝐷)))
175174adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧𝐵) → (♯‘𝐵) = (𝐷 · ((♯‘𝐵) / 𝐷)))
176175adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) = (𝐷 · ((♯‘𝐵) / 𝐷)))
177176oveq2d 7369 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd (♯‘𝐵)) = (((♯‘𝐵) / 𝐷) gcd (𝐷 · ((♯‘𝐵) / 𝐷))))
178 nndivdvds 16190 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((♯‘𝐵) ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐷 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐷) ∈ ℕ))
179163, 149, 178syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (𝐷 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐷) ∈ ℕ))
180148, 179mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / 𝐷) ∈ ℕ)
181180nnnn0d 12463 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / 𝐷) ∈ ℕ0)
182181, 150gcdmultipled 16463 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd (𝐷 · ((♯‘𝐵) / 𝐷))) = ((♯‘𝐵) / 𝐷))
183177, 182eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd (♯‘𝐵)) = ((♯‘𝐵) / 𝐷))
184169, 183eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) = ((♯‘𝐵) / 𝐷))
185184eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / 𝐷) = (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)))
186185oveq2d 7369 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / ((♯‘𝐵) / 𝐷)) = ((♯‘𝐵) / (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧))))
187167, 186eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 = ((♯‘𝐵) / (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧))))
188168eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) = ((od‘𝐺)‘𝑧))
18923, 47, 24odmulg 19453 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐺 ∈ Grp ∧ 𝑧𝐵 ∧ ((♯‘𝐵) / 𝐷) ∈ ℤ) → ((od‘𝐺)‘𝑧) = ((((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) · ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧))))
190147, 158, 157, 189syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘𝑧) = ((((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) · ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧))))
191188, 190eqtrd 2764 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) = ((((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) · ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧))))
192191eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) · ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧))) = (♯‘𝐵))
193157zcnd 12599 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / 𝐷) ∈ ℂ)
194184, 193eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) ∈ ℂ)
19523, 47, 159odcld 19449 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧)) ∈ ℕ0)
196195nn0cnd 12465 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧)) ∈ ℂ)
197168, 154eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘𝑧) ∈ ℤ)
198168, 164eqnetrd 2992 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘𝑧) ≠ 0)
199157, 197, 1983jca 1128 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) ∈ ℤ ∧ ((od‘𝐺)‘𝑧) ∈ ℤ ∧ ((od‘𝐺)‘𝑧) ≠ 0))
200 gcd2n0cl 16438 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((♯‘𝐵) / 𝐷) ∈ ℤ ∧ ((od‘𝐺)‘𝑧) ∈ ℤ ∧ ((od‘𝐺)‘𝑧) ≠ 0) → (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) ∈ ℕ)
201199, 200syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) ∈ ℕ)
202201nnne0d 12196 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) ≠ 0)
203160, 194, 196, 202divmuld 11940 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧))) = ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧)) ↔ ((((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) · ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧))) = (♯‘𝐵)))
204192, 203mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧))) = ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧)))
205187, 204eqtr2d 2765 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧)) = 𝐷)
206146, 159, 205elrabd 3652 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) 𝑧) ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})
207 ne0i 4294 . . . . . . . . . . . . . . . . . . . . 21 ((((♯‘𝐵) / 𝐷) 𝑧) ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)
208206, 207syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)
209145, 208syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) ∧ 𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)
210 rabn0 4342 . . . . . . . . . . . . . . . . . . . . . 22 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅ ↔ ∃𝑥𝐵 ((od‘𝐺)‘𝑥) = (♯‘𝐵))
211 nfv 1914 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧((od‘𝐺)‘𝑥) = (♯‘𝐵)
212 nfv 1914 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥((od‘𝐺)‘𝑧) = (♯‘𝐵)
213 fveqeq2 6835 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → (((od‘𝐺)‘𝑥) = (♯‘𝐵) ↔ ((od‘𝐺)‘𝑧) = (♯‘𝐵)))
214211, 212, 213cbvrexw 3273 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑥𝐵 ((od‘𝐺)‘𝑥) = (♯‘𝐵) ↔ ∃𝑧𝐵 ((od‘𝐺)‘𝑧) = (♯‘𝐵))
215210, 214bitri 275 . . . . . . . . . . . . . . . . . . . . 21 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅ ↔ ∃𝑧𝐵 ((od‘𝐺)‘𝑧) = (♯‘𝐵))
216215biimpi 216 . . . . . . . . . . . . . . . . . . . 20 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅ → ∃𝑧𝐵 ((od‘𝐺)‘𝑧) = (♯‘𝐵))
217216adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) → ∃𝑧𝐵 ((od‘𝐺)‘𝑧) = (♯‘𝐵))
218209, 217r19.29a 3137 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)
219218ex 412 . . . . . . . . . . . . . . . . 17 (𝜑 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅ → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅))
220219necon4d 2949 . . . . . . . . . . . . . . . 16 (𝜑 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅ → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} = ∅))
221220imp 406 . . . . . . . . . . . . . . 15 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} = ∅)
222221fveq2d 6830 . . . . . . . . . . . . . 14 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) = (♯‘∅))
223 hash0 14292 . . . . . . . . . . . . . . 15 (♯‘∅) = 0
224223a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘∅) = 0)
225222, 224eqtrd 2764 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) = 0)
226122nngt0d 12195 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → 0 < (ϕ‘(♯‘𝐵)))
227225, 226eqbrtrd 5117 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) < (ϕ‘(♯‘𝐵)))
228 eldif 3915 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) ↔ (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}))
229228biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) → (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}))
230229adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}))
231 breq1 5098 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = 𝑧 → (𝑎 ∥ (♯‘𝐵) ↔ 𝑧 ∥ (♯‘𝐵)))
232231elrab 3650 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ↔ (𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)))
233232biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} → (𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)))
234233adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}) → (𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)))
235 velsn 4595 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ {(♯‘𝐵)} ↔ 𝑧 = (♯‘𝐵))
236235bicomi 224 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = (♯‘𝐵) ↔ 𝑧 ∈ {(♯‘𝐵)})
237236biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = (♯‘𝐵) → 𝑧 ∈ {(♯‘𝐵)})
238237necon3bi 2951 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑧 ∈ {(♯‘𝐵)} → 𝑧 ≠ (♯‘𝐵))
239238adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}) → 𝑧 ≠ (♯‘𝐵))
240234, 239jca 511 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}) → ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)))
241240adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)})) → ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)))
242 1zzd 12524 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 1 ∈ ℤ)
24326adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝐵 ∈ Fin)
244243, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (♯‘𝐵) ∈ ℕ0)
245244nn0zd 12515 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (♯‘𝐵) ∈ ℤ)
246245, 242zsubcld 12603 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → ((♯‘𝐵) − 1) ∈ ℤ)
247 elfzelz 13445 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ (1...(♯‘𝐵)) → 𝑧 ∈ ℤ)
248247adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) → 𝑧 ∈ ℤ)
249248adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)) → 𝑧 ∈ ℤ)
250249adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ∈ ℤ)
251 elfzle1 13448 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ (1...(♯‘𝐵)) → 1 ≤ 𝑧)
252251adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) → 1 ≤ 𝑧)
253252adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)) → 1 ≤ 𝑧)
254253adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 1 ≤ 𝑧)
255 elfzle2 13449 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 ∈ (1...(♯‘𝐵)) → 𝑧 ≤ (♯‘𝐵))
256255adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) → 𝑧 ≤ (♯‘𝐵))
257256adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)) → 𝑧 ≤ (♯‘𝐵))
258257adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ≤ (♯‘𝐵))
259 simprr 772 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ≠ (♯‘𝐵))
260259necomd 2980 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (♯‘𝐵) ≠ 𝑧)
261258, 260jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (𝑧 ≤ (♯‘𝐵) ∧ (♯‘𝐵) ≠ 𝑧))
262250zred 12598 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ∈ ℝ)
263244nn0red 12464 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (♯‘𝐵) ∈ ℝ)
264262, 263ltlend 11279 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (𝑧 < (♯‘𝐵) ↔ (𝑧 ≤ (♯‘𝐵) ∧ (♯‘𝐵) ≠ 𝑧)))
265261, 264mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 < (♯‘𝐵))
266250, 245zltlem1d 12547 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (𝑧 < (♯‘𝐵) ↔ 𝑧 ≤ ((♯‘𝐵) − 1)))
267265, 266mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ≤ ((♯‘𝐵) − 1))
268242, 246, 250, 254, 267elfzd 13436 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ∈ (1...((♯‘𝐵) − 1)))
269 simprlr 779 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ∥ (♯‘𝐵))
270231, 268, 269elrabd 3652 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
271270ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}))
272271adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)})) → (((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}))
273241, 272mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)})) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
274273ex 412 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}))
275274adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → ((𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}))
276230, 275mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
277276ex 412 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}))
278277ssrdv 3943 . . . . . . . . . . . . . . . 16 (𝜑 → ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) ⊆ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
279 1zzd 12524 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 1 ∈ ℤ)
280170nn0zd 12515 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (♯‘𝐵) ∈ ℤ)
281280adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → (♯‘𝐵) ∈ ℤ)
282 elfzelz 13445 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ (1...((♯‘𝐵) − 1)) → 𝑧 ∈ ℤ)
283282adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 𝑧 ∈ ℤ)
284 elfzle1 13448 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ (1...((♯‘𝐵) − 1)) → 1 ≤ 𝑧)
285284adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 1 ≤ 𝑧)
286283zred 12598 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 𝑧 ∈ ℝ)
287281zred 12598 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → (♯‘𝐵) ∈ ℝ)
288 1red 11135 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 1 ∈ ℝ)
289287, 288resubcld 11566 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → ((♯‘𝐵) − 1) ∈ ℝ)
290 elfzle2 13449 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ (1...((♯‘𝐵) − 1)) → 𝑧 ≤ ((♯‘𝐵) − 1))
291290adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 𝑧 ≤ ((♯‘𝐵) − 1))
292287lem1d 12076 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → ((♯‘𝐵) − 1) ≤ (♯‘𝐵))
293286, 289, 287, 291, 292letrd 11291 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 𝑧 ≤ (♯‘𝐵))
294279, 281, 283, 285, 293elfzd 13436 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 𝑧 ∈ (1...(♯‘𝐵)))
295294ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑧 ∈ (1...((♯‘𝐵) − 1)) → 𝑧 ∈ (1...(♯‘𝐵))))
296295ssrdv 3943 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (1...((♯‘𝐵) − 1)) ⊆ (1...(♯‘𝐵)))
297 rabss2 4031 . . . . . . . . . . . . . . . . . . . . . 22 ((1...((♯‘𝐵) − 1)) ⊆ (1...(♯‘𝐵)) → {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)})
298296, 297syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)})
299298sseld 3936 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} → 𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}))
300299imp 406 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)})
301170ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → (♯‘𝐵) ∈ ℕ0)
302301nn0red 12464 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → (♯‘𝐵) ∈ ℝ)
303302leidd 11704 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → (♯‘𝐵) ≤ (♯‘𝐵))
304 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → 𝑧 = (♯‘𝐵))
305304eqcomd 2735 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → (♯‘𝐵) = 𝑧)
306231elrab 3650 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ↔ (𝑧 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑧 ∥ (♯‘𝐵)))
307306biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} → (𝑧 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑧 ∥ (♯‘𝐵)))
308307adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (𝑧 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑧 ∥ (♯‘𝐵)))
309291adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑧 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑧 ∥ (♯‘𝐵))) → 𝑧 ≤ ((♯‘𝐵) − 1))
310309ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((𝑧 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑧 ∥ (♯‘𝐵)) → 𝑧 ≤ ((♯‘𝐵) − 1)))
311310adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → ((𝑧 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑧 ∥ (♯‘𝐵)) → 𝑧 ≤ ((♯‘𝐵) − 1)))
312308, 311mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑧 ≤ ((♯‘𝐵) − 1))
313300, 233, 2483syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑧 ∈ ℤ)
314280adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (♯‘𝐵) ∈ ℤ)
315313, 314zltlem1d 12547 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (𝑧 < (♯‘𝐵) ↔ 𝑧 ≤ ((♯‘𝐵) − 1)))
316312, 315mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑧 < (♯‘𝐵))
317316adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → 𝑧 < (♯‘𝐵))
318305, 317eqbrtrd 5117 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → (♯‘𝐵) < (♯‘𝐵))
319302, 302ltnled 11281 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → ((♯‘𝐵) < (♯‘𝐵) ↔ ¬ (♯‘𝐵) ≤ (♯‘𝐵)))
320318, 319mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → ¬ (♯‘𝐵) ≤ (♯‘𝐵))
321303, 320pm2.21dd 195 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → 𝑧 ≠ (♯‘𝐵))
322 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 ≠ (♯‘𝐵)) → 𝑧 ≠ (♯‘𝐵))
323321, 322pm2.61dane 3012 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑧 ≠ (♯‘𝐵))
324300, 323eldifsnd 4741 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}))
325324ex 412 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} → 𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})))
326325ssrdv 3943 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}))
327278, 326eqssd 3955 . . . . . . . . . . . . . . 15 (𝜑 → ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) = {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
328327sumeq1d 15625 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = Σ𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
329 fzfid 13898 . . . . . . . . . . . . . . . . 17 (𝜑 → (1...((♯‘𝐵) − 1)) ∈ Fin)
330 ssrab2 4033 . . . . . . . . . . . . . . . . . 18 {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ (1...((♯‘𝐵) − 1))
331330a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ (1...((♯‘𝐵) − 1)))
332329, 331ssfid 9170 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ∈ Fin)
33326adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝐵 ∈ Fin)
33488a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵)
335333, 334ssfid 9170 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin)
336335, 91syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℕ0)
337336nn0red 12464 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℝ)
338125elrab 3650 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ↔ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)))
339338biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} → (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)))
340339adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)))
341 elfzelz 13445 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (1...((♯‘𝐵) − 1)) → 𝑘 ∈ ℤ)
342 elfzle1 13448 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (1...((♯‘𝐵) − 1)) → 1 ≤ 𝑘)
343341, 342jca 511 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (1...((♯‘𝐵) − 1)) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
344343adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
345344adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
346345, 135sylibr 234 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) → 𝑘 ∈ ℕ)
347346ex 412 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)) → 𝑘 ∈ ℕ))
348347adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → ((𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)) → 𝑘 ∈ ℕ))
349340, 348mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑘 ∈ ℕ)
350349phicld 16701 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (ϕ‘𝑘) ∈ ℕ)
351350nnred 12161 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (ϕ‘𝑘) ∈ ℝ)
352 simpll 766 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → 𝜑)
353338biimpri 228 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)) → 𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
354353adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) → 𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
355354adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → 𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
356352, 355jca 511 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}))
357356, 337syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℝ)
358 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)
359356, 358jca 511 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅))
360340simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑘 ∥ (♯‘𝐵))
361360adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → 𝑘 ∥ (♯‘𝐵))
362 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)
363361, 362jca 511 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅))
364 breq1 5098 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 = 𝑘 → (𝑚 ∥ (♯‘𝐵) ↔ 𝑘 ∥ (♯‘𝐵)))
365 eqeq2 2741 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑚 = 𝑘 → (((od‘𝐺)‘𝑥) = 𝑚 ↔ ((od‘𝐺)‘𝑥) = 𝑘))
366365rabbidv 3404 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 = 𝑘 → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
367366neeq1d 2984 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 = 𝑘 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅ ↔ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅))
368364, 367anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 = 𝑘 → ((𝑚 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅) ↔ (𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)))
369366fveq2d 6830 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 = 𝑘 → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
370 fveq2 6826 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 = 𝑘 → (ϕ‘𝑚) = (ϕ‘𝑘))
371369, 370eqeq12d 2745 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 = 𝑘 → ((♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (ϕ‘𝑚) ↔ (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘)))
372368, 371imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 = 𝑘 → (((𝑚 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (ϕ‘𝑚)) ↔ ((𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘))))
37328adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → ∀𝑚 ∈ ℕ ((𝑚 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (ϕ‘𝑚)))
374372, 373, 349rspcdva 3580 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → ((𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘)))
375374adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → ((𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘)))
376363, 375mpd 15 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘))
377359, 376syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘))
378357, 377eqled 11237 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ (ϕ‘𝑘))
379 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅ → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)
380379necon1bi 2953 . . . . . . . . . . . . . . . . . . . . . . . 24 (¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅ → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = ∅)
381380adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = ∅)
382381fveq2d 6830 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘∅))
383223a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘∅) = 0)
384382, 383eqtrd 2764 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = 0)
385346adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → 𝑘 ∈ ℕ)
386385phicld 16701 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (ϕ‘𝑘) ∈ ℕ)
387386nnnn0d 12463 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (ϕ‘𝑘) ∈ ℕ0)
388387nn0ge0d 12466 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → 0 ≤ (ϕ‘𝑘))
389384, 388eqbrtrd 5117 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ (ϕ‘𝑘))
390378, 389pm2.61dan 812 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ (ϕ‘𝑘))
391390ex 412 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ (ϕ‘𝑘)))
392391adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → ((𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ (ϕ‘𝑘)))
393340, 392mpd 15 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ (ϕ‘𝑘))
394332, 337, 351, 393fsumle 15724 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ Σ𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘))
395327sumeq1d 15625 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘) = Σ𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘))
396395eqcomd 2735 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘) = Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘))
397394, 396breqtrd 5121 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘))
398328, 397eqbrtrd 5117 . . . . . . . . . . . . 13 (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘))
399398adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘))
400113, 121, 123, 140, 227, 399ltleaddd 11759 . . . . . . . . . . 11 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → ((♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) + Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})) < ((ϕ‘(♯‘𝐵)) + Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘)))
401 nfcv 2891 . . . . . . . . . . . 12 𝑘(ϕ‘(♯‘𝐵))
402 simpll 766 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝜑)
403127adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵)))
404402, 403jca 511 . . . . . . . . . . . . . . 15 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (𝜑 ∧ (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵))))
405131adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
406405adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ (𝜑 ∧ (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵)))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
407406, 135sylibr 234 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ (𝜑 ∧ (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵)))) → 𝑘 ∈ ℕ)
408407ex 412 . . . . . . . . . . . . . . 15 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → ((𝜑 ∧ (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵))) → 𝑘 ∈ ℕ))
409404, 408mpd 15 . . . . . . . . . . . . . 14 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑘 ∈ ℕ)
410409phicld 16701 . . . . . . . . . . . . 13 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (ϕ‘𝑘) ∈ ℕ)
411410nncnd 12162 . . . . . . . . . . . 12 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (ϕ‘𝑘) ∈ ℂ)
412 fveq2 6826 . . . . . . . . . . . 12 (𝑘 = (♯‘𝐵) → (ϕ‘𝑘) = (ϕ‘(♯‘𝐵)))
41381, 401, 86, 411, 103, 412fsumsplit1 15670 . . . . . . . . . . 11 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘) = ((ϕ‘(♯‘𝐵)) + Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘)))
414400, 413breqtrrd 5123 . . . . . . . . . 10 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → ((♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) + Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})) < Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘))
415107, 414eqbrtrd 5117 . . . . . . . . 9 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) < Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘))
416 elfzelz 13445 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (1...(♯‘𝐵)) → 𝑎 ∈ ℤ)
417 elfzle1 13448 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (1...(♯‘𝐵)) → 1 ≤ 𝑎)
418416, 417jca 511 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (1...(♯‘𝐵)) → (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
419418adantr 480 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (1...(♯‘𝐵)) ∧ 𝑎 ∥ (♯‘𝐵)) → (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
420419adantl 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (1...(♯‘𝐵)) ∧ 𝑎 ∥ (♯‘𝐵))) → (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
421 elnnz1 12519 . . . . . . . . . . . . . 14 (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
422420, 421sylibr 234 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (1...(♯‘𝐵)) ∧ 𝑎 ∥ (♯‘𝐵))) → 𝑎 ∈ ℕ)
423422rabss3d 4034 . . . . . . . . . . . 12 (𝜑 → {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)})
424 simpl 482 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑎 ∥ (♯‘𝐵))) → 𝜑)
425 simprl 770 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑎 ∥ (♯‘𝐵))) → 𝑎 ∈ ℕ)
426424, 425jca 511 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑎 ∥ (♯‘𝐵))) → (𝜑𝑎 ∈ ℕ))
427 simprr 772 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑎 ∥ (♯‘𝐵))) → 𝑎 ∥ (♯‘𝐵))
428426, 427jca 511 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑎 ∥ (♯‘𝐵))) → ((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)))
429 1zzd 12524 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → 1 ∈ ℤ)
430280adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ ℕ) → (♯‘𝐵) ∈ ℤ)
431430adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → (♯‘𝐵) ∈ ℤ)
432425anassrs 467 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → 𝑎 ∈ ℕ)
433432nnzd 12516 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → 𝑎 ∈ ℤ)
434432nnge1d 12194 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → 1 ≤ 𝑎)
435 nnz 12510 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℕ → 𝑎 ∈ ℤ)
436435adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎 ∈ ℕ) → 𝑎 ∈ ℤ)
43723, 25, 26hashfingrpnn 18869 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘𝐵) ∈ ℕ)
438437adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎 ∈ ℕ) → (♯‘𝐵) ∈ ℕ)
439 dvdsle 16239 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (𝑎 ∥ (♯‘𝐵) → 𝑎 ≤ (♯‘𝐵)))
440436, 438, 439syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ ℕ) → (𝑎 ∥ (♯‘𝐵) → 𝑎 ≤ (♯‘𝐵)))
441440imp 406 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → 𝑎 ≤ (♯‘𝐵))
442429, 431, 433, 434, 441elfzd 13436 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → 𝑎 ∈ (1...(♯‘𝐵)))
443428, 442syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑎 ∥ (♯‘𝐵))) → 𝑎 ∈ (1...(♯‘𝐵)))
444443rabss3d 4034 . . . . . . . . . . . 12 (𝜑 → {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)})
445423, 444eqssd 3955 . . . . . . . . . . 11 (𝜑 → {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} = {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)})
446445adantr 480 . . . . . . . . . 10 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} = {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)})
447446sumeq1d 15625 . . . . . . . . 9 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘) = Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘))
448415, 447breqtrd 5121 . . . . . . . 8 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) < Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘))
449 phisum 16720 . . . . . . . . 9 ((♯‘𝐵) ∈ ℕ → Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘) = (♯‘𝐵))
45039, 449syl 17 . . . . . . . 8 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘) = (♯‘𝐵))
451448, 450breqtrd 5121 . . . . . . 7 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) < (♯‘𝐵))
45280, 451eqbrtrd 5117 . . . . . 6 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) < (♯‘𝐵))
453170adantr 480 . . . . . . . 8 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ ℕ0)
454453nn0red 12464 . . . . . . 7 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ ℝ)
455454ltnrd 11268 . . . . . 6 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → ¬ (♯‘𝐵) < (♯‘𝐵))
456452, 455pm2.21dd 195 . . . . 5 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷))
457456ex 412 . . . 4 (𝜑 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅ → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷)))
458457adantr 480 . . 3 ((𝜑 ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅ → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷)))
45936, 458mpd 15 . 2 ((𝜑 ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷))
46033, 459pm2.61dan 812 1 (𝜑 → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3396  cdif 3902  wss 3905  c0 4286  {csn 4579   class class class wbr 5095  cfv 6486  (class class class)co 7353  Fincfn 8879  cc 11026  cr 11027  0cc0 11028  1c1 11029   + caddc 11031   · cmul 11033   < clt 11168  cle 11169  cmin 11365   / cdiv 11795  cn 12146  0cn0 12402  cz 12489  ...cfz 13428  chash 14255  Σcsu 15611  cdvds 16181   gcd cgcd 16423  ϕcphi 16693  Basecbs 17138  0gc0g 17361  Grpcgrp 18830  .gcmg 18964  odcod 19421
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-disj 5063  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-oadd 8399  df-omul 8400  df-er 8632  df-ec 8634  df-qs 8638  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-n0 12403  df-xnn0 12476  df-z 12490  df-uz 12754  df-rp 12912  df-ico 13272  df-fz 13429  df-fzo 13576  df-fl 13714  df-mod 13792  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-sum 15612  df-dvds 16182  df-gcd 16424  df-phi 16695  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-0g 17363  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-grp 18833  df-minusg 18834  df-sbg 18835  df-mulg 18965  df-subg 19020  df-eqg 19022  df-od 19425
This theorem is referenced by:  unitscyglem5  42175
  Copyright terms: Public domain W3C validator