Users' Mathboxes Mathbox for metakunt < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unitscyglem4 Structured version   Visualization version   GIF version

Theorem unitscyglem4 42199
Description: Lemma for unitscyg (Contributed by metakunt, 14-Jul-2025.)
Hypotheses
Ref Expression
unitscyglem1.1 𝐵 = (Base‘𝐺)
unitscyglem1.2 = (.g𝐺)
unitscyglem1.3 (𝜑𝐺 ∈ Grp)
unitscyglem1.4 (𝜑𝐵 ∈ Fin)
unitscyglem1.5 (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛)
unitscyglem4.1 (𝜑𝐷 ∈ ℕ)
unitscyglem4.2 (𝜑𝐷 ∥ (♯‘𝐵))
Assertion
Ref Expression
unitscyglem4 (𝜑 → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷))
Distinct variable groups:   𝑥, ,𝑛   𝑥,𝐵,𝑛   𝑦,𝐵,𝑥   𝑥,𝐷,𝑦   𝑥,𝐺,𝑛   𝑦,𝐺   𝜑,𝑥,𝑛
Allowed substitution hints:   𝜑(𝑦)   𝐷(𝑛)   (𝑦)

Proof of Theorem unitscyglem4
Dummy variables 𝑙 𝑎 𝑘 𝑚 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfcv 2905 . . . . . 6 𝑦𝐵
2 nfcv 2905 . . . . . 6 𝑥𝐵
3 nfv 1914 . . . . . 6 𝑥((od‘𝐺)‘𝑦) = 𝐷
4 nfv 1914 . . . . . 6 𝑦((od‘𝐺)‘𝑥) = 𝐷
5 fveqeq2 6915 . . . . . 6 (𝑦 = 𝑥 → (((od‘𝐺)‘𝑦) = 𝐷 ↔ ((od‘𝐺)‘𝑥) = 𝐷))
61, 2, 3, 4, 5cbvrabw 3473 . . . . 5 {𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}
76fveq2i 6909 . . . 4 (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})
87a1i 11 . . 3 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}))
9 unitscyglem4.2 . . . . . . . 8 (𝜑𝐷 ∥ (♯‘𝐵))
109adantr 480 . . . . . . 7 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → 𝐷 ∥ (♯‘𝐵))
1110ex 412 . . . . . 6 (𝜑 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅ → 𝐷 ∥ (♯‘𝐵)))
1211ancrd 551 . . . . 5 (𝜑 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅ → (𝐷 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)))
1312imdistani 568 . . . 4 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (𝜑 ∧ (𝐷 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)))
14 breq1 5146 . . . . . . . 8 (𝑚 = 𝐷 → (𝑚 ∥ (♯‘𝐵) ↔ 𝐷 ∥ (♯‘𝐵)))
15 eqeq2 2749 . . . . . . . . . 10 (𝑚 = 𝐷 → (((od‘𝐺)‘𝑥) = 𝑚 ↔ ((od‘𝐺)‘𝑥) = 𝐷))
1615rabbidv 3444 . . . . . . . . 9 (𝑚 = 𝐷 → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})
1716neeq1d 3000 . . . . . . . 8 (𝑚 = 𝐷 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅ ↔ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅))
1814, 17anbi12d 632 . . . . . . 7 (𝑚 = 𝐷 → ((𝑚 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅) ↔ (𝐷 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)))
1916fveq2d 6910 . . . . . . . 8 (𝑚 = 𝐷 → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}))
20 fveq2 6906 . . . . . . . 8 (𝑚 = 𝐷 → (ϕ‘𝑚) = (ϕ‘𝐷))
2119, 20eqeq12d 2753 . . . . . . 7 (𝑚 = 𝐷 → ((♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (ϕ‘𝑚) ↔ (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷)))
2218, 21imbi12d 344 . . . . . 6 (𝑚 = 𝐷 → (((𝑚 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (ϕ‘𝑚)) ↔ ((𝐷 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷))))
23 unitscyglem1.1 . . . . . . 7 𝐵 = (Base‘𝐺)
24 unitscyglem1.2 . . . . . . 7 = (.g𝐺)
25 unitscyglem1.3 . . . . . . 7 (𝜑𝐺 ∈ Grp)
26 unitscyglem1.4 . . . . . . 7 (𝜑𝐵 ∈ Fin)
27 unitscyglem1.5 . . . . . . 7 (𝜑 → ∀𝑛 ∈ ℕ (♯‘{𝑥𝐵 ∣ (𝑛 𝑥) = (0g𝐺)}) ≤ 𝑛)
2823, 24, 25, 26, 27unitscyglem3 42198 . . . . . 6 (𝜑 → ∀𝑚 ∈ ℕ ((𝑚 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (ϕ‘𝑚)))
29 unitscyglem4.1 . . . . . 6 (𝜑𝐷 ∈ ℕ)
3022, 28, 29rspcdva 3623 . . . . 5 (𝜑 → ((𝐷 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷)))
3130imp 406 . . . 4 ((𝜑 ∧ (𝐷 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷))
3213, 31syl 17 . . 3 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷}) = (ϕ‘𝐷))
338, 32eqtrd 2777 . 2 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷))
34 id 22 . . . . 5 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅ → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)
3534necon1bi 2969 . . . 4 (¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅ → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅)
3635adantl 481 . . 3 ((𝜑 ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅)
3725adantr 480 . . . . . . . . 9 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → 𝐺 ∈ Grp)
3826adantr 480 . . . . . . . . 9 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → 𝐵 ∈ Fin)
3923, 37, 38hashfingrpnn 18990 . . . . . . . . 9 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ ℕ)
4023, 24, 37, 38, 39grpods 42195 . . . . . . . 8 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘{𝑥𝐵 ∣ ((♯‘𝐵) 𝑥) = (0g𝐺)}))
41 simpr 484 . . . . . . . . . . . . . . 15 ((((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) ∧ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)) → (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵))
4241eqcomd 2743 . . . . . . . . . . . . . 14 ((((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) ∧ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)) → (♯‘𝐵) = (𝑙 · ((od‘𝐺)‘𝑥)))
4342oveq1d 7446 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) ∧ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)) → ((♯‘𝐵) 𝑥) = ((𝑙 · ((od‘𝐺)‘𝑥)) 𝑥))
4425adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑥𝐵) → 𝐺 ∈ Grp)
4544adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → 𝐺 ∈ Grp)
46 simpr 484 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → 𝑙 ∈ ℤ)
47 eqid 2737 . . . . . . . . . . . . . . . . . . . 20 (od‘𝐺) = (od‘𝐺)
48 simpr 484 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑥𝐵) → 𝑥𝐵)
4923, 47, 48odcld 19570 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑥𝐵) → ((od‘𝐺)‘𝑥) ∈ ℕ0)
5049adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → ((od‘𝐺)‘𝑥) ∈ ℕ0)
5150nn0zd 12639 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → ((od‘𝐺)‘𝑥) ∈ ℤ)
52 simplr 769 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → 𝑥𝐵)
5346, 51, 523jca 1129 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → (𝑙 ∈ ℤ ∧ ((od‘𝐺)‘𝑥) ∈ ℤ ∧ 𝑥𝐵))
5423, 24mulgass 19129 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Grp ∧ (𝑙 ∈ ℤ ∧ ((od‘𝐺)‘𝑥) ∈ ℤ ∧ 𝑥𝐵)) → ((𝑙 · ((od‘𝐺)‘𝑥)) 𝑥) = (𝑙 (((od‘𝐺)‘𝑥) 𝑥)))
5545, 53, 54syl2anc 584 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → ((𝑙 · ((od‘𝐺)‘𝑥)) 𝑥) = (𝑙 (((od‘𝐺)‘𝑥) 𝑥)))
56 eqid 2737 . . . . . . . . . . . . . . . . . . 19 (0g𝐺) = (0g𝐺)
5723, 47, 24, 56odid 19556 . . . . . . . . . . . . . . . . . 18 (𝑥𝐵 → (((od‘𝐺)‘𝑥) 𝑥) = (0g𝐺))
5852, 57syl 17 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → (((od‘𝐺)‘𝑥) 𝑥) = (0g𝐺))
5958oveq2d 7447 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → (𝑙 (((od‘𝐺)‘𝑥) 𝑥)) = (𝑙 (0g𝐺)))
6023, 24, 56mulgz 19120 . . . . . . . . . . . . . . . . 17 ((𝐺 ∈ Grp ∧ 𝑙 ∈ ℤ) → (𝑙 (0g𝐺)) = (0g𝐺))
6144, 60sylan 580 . . . . . . . . . . . . . . . 16 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → (𝑙 (0g𝐺)) = (0g𝐺))
6259, 61eqtrd 2777 . . . . . . . . . . . . . . 15 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → (𝑙 (((od‘𝐺)‘𝑥) 𝑥)) = (0g𝐺))
6355, 62eqtrd 2777 . . . . . . . . . . . . . 14 (((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) → ((𝑙 · ((od‘𝐺)‘𝑥)) 𝑥) = (0g𝐺))
6463adantr 480 . . . . . . . . . . . . 13 ((((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) ∧ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)) → ((𝑙 · ((od‘𝐺)‘𝑥)) 𝑥) = (0g𝐺))
6543, 64eqtrd 2777 . . . . . . . . . . . 12 ((((𝜑𝑥𝐵) ∧ 𝑙 ∈ ℤ) ∧ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)) → ((♯‘𝐵) 𝑥) = (0g𝐺))
6626adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐵) → 𝐵 ∈ Fin)
6723, 47oddvds2 19584 . . . . . . . . . . . . . 14 ((𝐺 ∈ Grp ∧ 𝐵 ∈ Fin ∧ 𝑥𝐵) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝐵))
6844, 66, 48, 67syl3anc 1373 . . . . . . . . . . . . 13 ((𝜑𝑥𝐵) → ((od‘𝐺)‘𝑥) ∥ (♯‘𝐵))
6949nn0zd 12639 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐵) → ((od‘𝐺)‘𝑥) ∈ ℤ)
70 hashcl 14395 . . . . . . . . . . . . . . . 16 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
7166, 70syl 17 . . . . . . . . . . . . . . 15 ((𝜑𝑥𝐵) → (♯‘𝐵) ∈ ℕ0)
7271nn0zd 12639 . . . . . . . . . . . . . 14 ((𝜑𝑥𝐵) → (♯‘𝐵) ∈ ℤ)
73 divides 16292 . . . . . . . . . . . . . 14 ((((od‘𝐺)‘𝑥) ∈ ℤ ∧ (♯‘𝐵) ∈ ℤ) → (((od‘𝐺)‘𝑥) ∥ (♯‘𝐵) ↔ ∃𝑙 ∈ ℤ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)))
7469, 72, 73syl2anc 584 . . . . . . . . . . . . 13 ((𝜑𝑥𝐵) → (((od‘𝐺)‘𝑥) ∥ (♯‘𝐵) ↔ ∃𝑙 ∈ ℤ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵)))
7568, 74mpbid 232 . . . . . . . . . . . 12 ((𝜑𝑥𝐵) → ∃𝑙 ∈ ℤ (𝑙 · ((od‘𝐺)‘𝑥)) = (♯‘𝐵))
7665, 75r19.29a 3162 . . . . . . . . . . 11 ((𝜑𝑥𝐵) → ((♯‘𝐵) 𝑥) = (0g𝐺))
7776rabeqcda 3448 . . . . . . . . . 10 (𝜑 → {𝑥𝐵 ∣ ((♯‘𝐵) 𝑥) = (0g𝐺)} = 𝐵)
7877adantr 480 . . . . . . . . 9 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑥𝐵 ∣ ((♯‘𝐵) 𝑥) = (0g𝐺)} = 𝐵)
7978fveq2d 6910 . . . . . . . 8 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑥𝐵 ∣ ((♯‘𝐵) 𝑥) = (0g𝐺)}) = (♯‘𝐵))
8040, 79eqtr2d 2778 . . . . . . 7 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) = Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
81 nfv 1914 . . . . . . . . . . 11 𝑘(𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅)
82 nfcv 2905 . . . . . . . . . . 11 𝑘(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)})
83 fzfid 14014 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (1...(♯‘𝐵)) ∈ Fin)
84 ssrab2 4080 . . . . . . . . . . . . 13 {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ (1...(♯‘𝐵))
8584a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ (1...(♯‘𝐵)))
8683, 85ssfid 9301 . . . . . . . . . . 11 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∈ Fin)
8738adantr 480 . . . . . . . . . . . . . 14 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝐵 ∈ Fin)
88 ssrab2 4080 . . . . . . . . . . . . . . 15 {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵
8988a1i 11 . . . . . . . . . . . . . 14 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵)
9087, 89ssfid 9301 . . . . . . . . . . . . 13 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin)
91 hashcl 14395 . . . . . . . . . . . . 13 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℕ0)
9290, 91syl 17 . . . . . . . . . . . 12 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℕ0)
9392nn0cnd 12589 . . . . . . . . . . 11 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℂ)
94 breq1 5146 . . . . . . . . . . . 12 (𝑎 = (♯‘𝐵) → (𝑎 ∥ (♯‘𝐵) ↔ (♯‘𝐵) ∥ (♯‘𝐵)))
95 1zzd 12648 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → 1 ∈ ℤ)
9639nnzd 12640 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ ℤ)
9739nnge1d 12314 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → 1 ≤ (♯‘𝐵))
9839nnred 12281 . . . . . . . . . . . . . 14 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ ℝ)
9998leidd 11829 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ≤ (♯‘𝐵))
10095, 96, 96, 97, 99elfzd 13555 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ (1...(♯‘𝐵)))
101 iddvds 16307 . . . . . . . . . . . . 13 ((♯‘𝐵) ∈ ℤ → (♯‘𝐵) ∥ (♯‘𝐵))
10296, 101syl 17 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∥ (♯‘𝐵))
10394, 100, 102elrabd 3694 . . . . . . . . . . 11 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)})
104 eqeq2 2749 . . . . . . . . . . . . 13 (𝑘 = (♯‘𝐵) → (((od‘𝐺)‘𝑥) = 𝑘 ↔ ((od‘𝐺)‘𝑥) = (♯‘𝐵)))
105104rabbidv 3444 . . . . . . . . . . . 12 (𝑘 = (♯‘𝐵) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)})
106105fveq2d 6910 . . . . . . . . . . 11 (𝑘 = (♯‘𝐵) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}))
10781, 82, 86, 93, 103, 106fsumsplit1 15781 . . . . . . . . . 10 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = ((♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) + Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})))
108 ssrab2 4080 . . . . . . . . . . . . . . . 16 {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ⊆ 𝐵
109108a1i 11 . . . . . . . . . . . . . . 15 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ⊆ 𝐵)
11038, 109ssfid 9301 . . . . . . . . . . . . . 14 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ∈ Fin)
111 hashcl 14395 . . . . . . . . . . . . . 14 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ∈ Fin → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) ∈ ℕ0)
112110, 111syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) ∈ ℕ0)
113112nn0red 12588 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) ∈ ℝ)
114 diffi 9215 . . . . . . . . . . . . . . 15 ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∈ Fin → ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) ∈ Fin)
11586, 114syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) ∈ Fin)
11638adantr 480 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → 𝐵 ∈ Fin)
11788a1i 11 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵)
118116, 117ssfid 9301 . . . . . . . . . . . . . . 15 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin)
119118, 91syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℕ0)
120115, 119fsumnn0cl 15772 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℕ0)
121120nn0red 12588 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℝ)
12239phicld 16809 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (ϕ‘(♯‘𝐵)) ∈ ℕ)
123122nnred 12281 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (ϕ‘(♯‘𝐵)) ∈ ℝ)
124 eldifi 4131 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) → 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)})
125 breq1 5146 . . . . . . . . . . . . . . . . . . . . 21 (𝑎 = 𝑘 → (𝑎 ∥ (♯‘𝐵) ↔ 𝑘 ∥ (♯‘𝐵)))
126125elrab 3692 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ↔ (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵)))
127126biimpi 216 . . . . . . . . . . . . . . . . . . 19 (𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} → (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵)))
128 elfzelz 13564 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...(♯‘𝐵)) → 𝑘 ∈ ℤ)
129 elfzle1 13567 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ (1...(♯‘𝐵)) → 1 ≤ 𝑘)
130128, 129jca 511 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ (1...(♯‘𝐵)) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
131130adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵)) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
132127, 131syl 17 . . . . . . . . . . . . . . . . . 18 (𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
133124, 132syl 17 . . . . . . . . . . . . . . . . 17 (𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
134133adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
135 elnnz1 12643 . . . . . . . . . . . . . . . 16 (𝑘 ∈ ℕ ↔ (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
136134, 135sylibr 234 . . . . . . . . . . . . . . 15 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → 𝑘 ∈ ℕ)
137 phicl 16806 . . . . . . . . . . . . . . 15 (𝑘 ∈ ℕ → (ϕ‘𝑘) ∈ ℕ)
138136, 137syl 17 . . . . . . . . . . . . . 14 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → (ϕ‘𝑘) ∈ ℕ)
139138nnred 12281 . . . . . . . . . . . . 13 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → (ϕ‘𝑘) ∈ ℝ)
140115, 139fsumrecl 15770 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘) ∈ ℝ)
141 simplll 775 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) ∧ 𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝜑)
142 simplr 769 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) ∧ 𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝑧𝐵)
143141, 142jca 511 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) ∧ 𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (𝜑𝑧𝐵))
144 simpr 484 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) ∧ 𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘𝑧) = (♯‘𝐵))
145143, 144jca 511 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) ∧ 𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)))
146 fveqeq2 6915 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = (((♯‘𝐵) / 𝐷) 𝑧) → (((od‘𝐺)‘𝑥) = 𝐷 ↔ ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧)) = 𝐷))
14725ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐺 ∈ Grp)
1489ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 ∥ (♯‘𝐵))
14929ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 ∈ ℕ)
150149nnzd 12640 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 ∈ ℤ)
151149nnne0d 12316 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 ≠ 0)
15226ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐵 ∈ Fin)
153152, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) ∈ ℕ0)
154153nn0zd 12639 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) ∈ ℤ)
155 dvdsval2 16293 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝐷 ∈ ℤ ∧ 𝐷 ≠ 0 ∧ (♯‘𝐵) ∈ ℤ) → (𝐷 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐷) ∈ ℤ))
156150, 151, 154, 155syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (𝐷 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐷) ∈ ℤ))
157148, 156mpbid 232 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / 𝐷) ∈ ℤ)
158 simplr 769 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝑧𝐵)
15923, 24, 147, 157, 158mulgcld 19114 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) 𝑧) ∈ 𝐵)
160153nn0cnd 12589 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) ∈ ℂ)
16129nncnd 12282 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑𝐷 ∈ ℂ)
162161ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 ∈ ℂ)
16323, 147, 152hashfingrpnn 18990 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) ∈ ℕ)
164163nnne0d 12316 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) ≠ 0)
165160, 160, 162, 164, 151divdiv2d 12075 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / ((♯‘𝐵) / 𝐷)) = (((♯‘𝐵) · 𝐷) / (♯‘𝐵)))
166162, 160, 164divcan3d 12048 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) · 𝐷) / (♯‘𝐵)) = 𝐷)
167165, 166eqtr2d 2778 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 = ((♯‘𝐵) / ((♯‘𝐵) / 𝐷)))
168 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘𝑧) = (♯‘𝐵))
169168oveq2d 7447 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) = (((♯‘𝐵) / 𝐷) gcd (♯‘𝐵)))
17026, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 (𝜑 → (♯‘𝐵) ∈ ℕ0)
171170nn0cnd 12589 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑 → (♯‘𝐵) ∈ ℂ)
17229nnne0d 12316 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 (𝜑𝐷 ≠ 0)
173171, 161, 172divcan2d 12045 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝜑 → (𝐷 · ((♯‘𝐵) / 𝐷)) = (♯‘𝐵))
174173eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (𝜑 → (♯‘𝐵) = (𝐷 · ((♯‘𝐵) / 𝐷)))
175174adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑𝑧𝐵) → (♯‘𝐵) = (𝐷 · ((♯‘𝐵) / 𝐷)))
176175adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) = (𝐷 · ((♯‘𝐵) / 𝐷)))
177176oveq2d 7447 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd (♯‘𝐵)) = (((♯‘𝐵) / 𝐷) gcd (𝐷 · ((♯‘𝐵) / 𝐷))))
178 nndivdvds 16299 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (((♯‘𝐵) ∈ ℕ ∧ 𝐷 ∈ ℕ) → (𝐷 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐷) ∈ ℕ))
179163, 149, 178syl2anc 584 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (𝐷 ∥ (♯‘𝐵) ↔ ((♯‘𝐵) / 𝐷) ∈ ℕ))
180148, 179mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / 𝐷) ∈ ℕ)
181180nnnn0d 12587 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / 𝐷) ∈ ℕ0)
182181, 150gcdmultipled 16571 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd (𝐷 · ((♯‘𝐵) / 𝐷))) = ((♯‘𝐵) / 𝐷))
183177, 182eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd (♯‘𝐵)) = ((♯‘𝐵) / 𝐷))
184169, 183eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) = ((♯‘𝐵) / 𝐷))
185184eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / 𝐷) = (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)))
186185oveq2d 7447 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / ((♯‘𝐵) / 𝐷)) = ((♯‘𝐵) / (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧))))
187167, 186eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → 𝐷 = ((♯‘𝐵) / (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧))))
188168eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) = ((od‘𝐺)‘𝑧))
18923, 47, 24odmulg 19574 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝐺 ∈ Grp ∧ 𝑧𝐵 ∧ ((♯‘𝐵) / 𝐷) ∈ ℤ) → ((od‘𝐺)‘𝑧) = ((((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) · ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧))))
190147, 158, 157, 189syl3anc 1373 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘𝑧) = ((((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) · ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧))))
191188, 190eqtrd 2777 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (♯‘𝐵) = ((((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) · ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧))))
192191eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) · ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧))) = (♯‘𝐵))
193157zcnd 12723 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / 𝐷) ∈ ℂ)
194184, 193eqeltrd 2841 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) ∈ ℂ)
19523, 47, 159odcld 19570 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧)) ∈ ℕ0)
196195nn0cnd 12589 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧)) ∈ ℂ)
197168, 154eqeltrd 2841 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘𝑧) ∈ ℤ)
198168, 164eqnetrd 3008 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘𝑧) ≠ 0)
199157, 197, 1983jca 1129 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) ∈ ℤ ∧ ((od‘𝐺)‘𝑧) ∈ ℤ ∧ ((od‘𝐺)‘𝑧) ≠ 0))
200 gcd2n0cl 16546 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((((♯‘𝐵) / 𝐷) ∈ ℤ ∧ ((od‘𝐺)‘𝑧) ∈ ℤ ∧ ((od‘𝐺)‘𝑧) ≠ 0) → (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) ∈ ℕ)
201199, 200syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) ∈ ℕ)
202201nnne0d 12316 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) ≠ 0)
203160, 194, 196, 202divmuld 12065 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧))) = ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧)) ↔ ((((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧)) · ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧))) = (♯‘𝐵)))
204192, 203mpbird 257 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((♯‘𝐵) / (((♯‘𝐵) / 𝐷) gcd ((od‘𝐺)‘𝑧))) = ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧)))
205187, 204eqtr2d 2778 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → ((od‘𝐺)‘(((♯‘𝐵) / 𝐷) 𝑧)) = 𝐷)
206146, 159, 205elrabd 3694 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → (((♯‘𝐵) / 𝐷) 𝑧) ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷})
207 ne0i 4341 . . . . . . . . . . . . . . . . . . . . 21 ((((♯‘𝐵) / 𝐷) 𝑧) ∈ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)
208206, 207syl 17 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)
209145, 208syl 17 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) ∧ 𝑧𝐵) ∧ ((od‘𝐺)‘𝑧) = (♯‘𝐵)) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)
210 rabn0 4389 . . . . . . . . . . . . . . . . . . . . . 22 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅ ↔ ∃𝑥𝐵 ((od‘𝐺)‘𝑥) = (♯‘𝐵))
211 nfv 1914 . . . . . . . . . . . . . . . . . . . . . . 23 𝑧((od‘𝐺)‘𝑥) = (♯‘𝐵)
212 nfv 1914 . . . . . . . . . . . . . . . . . . . . . . 23 𝑥((od‘𝐺)‘𝑧) = (♯‘𝐵)
213 fveqeq2 6915 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑧 → (((od‘𝐺)‘𝑥) = (♯‘𝐵) ↔ ((od‘𝐺)‘𝑧) = (♯‘𝐵)))
214211, 212, 213cbvrexw 3307 . . . . . . . . . . . . . . . . . . . . . 22 (∃𝑥𝐵 ((od‘𝐺)‘𝑥) = (♯‘𝐵) ↔ ∃𝑧𝐵 ((od‘𝐺)‘𝑧) = (♯‘𝐵))
215210, 214bitri 275 . . . . . . . . . . . . . . . . . . . . 21 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅ ↔ ∃𝑧𝐵 ((od‘𝐺)‘𝑧) = (♯‘𝐵))
216215biimpi 216 . . . . . . . . . . . . . . . . . . . 20 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅ → ∃𝑧𝐵 ((od‘𝐺)‘𝑧) = (♯‘𝐵))
217216adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) → ∃𝑧𝐵 ((od‘𝐺)‘𝑧) = (♯‘𝐵))
218209, 217r19.29a 3162 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅)
219218ex 412 . . . . . . . . . . . . . . . . 17 (𝜑 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} ≠ ∅ → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅))
220219necon4d 2964 . . . . . . . . . . . . . . . 16 (𝜑 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅ → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} = ∅))
221220imp 406 . . . . . . . . . . . . . . 15 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)} = ∅)
222221fveq2d 6910 . . . . . . . . . . . . . 14 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) = (♯‘∅))
223 hash0 14406 . . . . . . . . . . . . . . 15 (♯‘∅) = 0
224223a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘∅) = 0)
225222, 224eqtrd 2777 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) = 0)
226122nngt0d 12315 . . . . . . . . . . . . 13 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → 0 < (ϕ‘(♯‘𝐵)))
227225, 226eqbrtrd 5165 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) < (ϕ‘(♯‘𝐵)))
228 eldif 3961 . . . . . . . . . . . . . . . . . . . . 21 (𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) ↔ (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}))
229228biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) → (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}))
230229adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}))
231 breq1 5146 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑎 = 𝑧 → (𝑎 ∥ (♯‘𝐵) ↔ 𝑧 ∥ (♯‘𝐵)))
232231elrab 3692 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ↔ (𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)))
233232biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} → (𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)))
234233adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}) → (𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)))
235 velsn 4642 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ {(♯‘𝐵)} ↔ 𝑧 = (♯‘𝐵))
236235bicomi 224 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 = (♯‘𝐵) ↔ 𝑧 ∈ {(♯‘𝐵)})
237236biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 = (♯‘𝐵) → 𝑧 ∈ {(♯‘𝐵)})
238237necon3bi 2967 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑧 ∈ {(♯‘𝐵)} → 𝑧 ≠ (♯‘𝐵))
239238adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}) → 𝑧 ≠ (♯‘𝐵))
240234, 239jca 511 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}) → ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)))
241240adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)})) → ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)))
242 1zzd 12648 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 1 ∈ ℤ)
24326adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝐵 ∈ Fin)
244243, 70syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (♯‘𝐵) ∈ ℕ0)
245244nn0zd 12639 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (♯‘𝐵) ∈ ℤ)
246245, 242zsubcld 12727 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → ((♯‘𝐵) − 1) ∈ ℤ)
247 elfzelz 13564 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ (1...(♯‘𝐵)) → 𝑧 ∈ ℤ)
248247adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) → 𝑧 ∈ ℤ)
249248adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)) → 𝑧 ∈ ℤ)
250249adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ∈ ℤ)
251 elfzle1 13567 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑧 ∈ (1...(♯‘𝐵)) → 1 ≤ 𝑧)
252251adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) → 1 ≤ 𝑧)
253252adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)) → 1 ≤ 𝑧)
254253adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 1 ≤ 𝑧)
255 elfzle2 13568 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 (𝑧 ∈ (1...(♯‘𝐵)) → 𝑧 ≤ (♯‘𝐵))
256255adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) → 𝑧 ≤ (♯‘𝐵))
257256adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 (((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)) → 𝑧 ≤ (♯‘𝐵))
258257adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ≤ (♯‘𝐵))
259 simprr 773 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ≠ (♯‘𝐵))
260259necomd 2996 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (♯‘𝐵) ≠ 𝑧)
261258, 260jca 511 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (𝑧 ≤ (♯‘𝐵) ∧ (♯‘𝐵) ≠ 𝑧))
262250zred 12722 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ∈ ℝ)
263244nn0red 12588 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (♯‘𝐵) ∈ ℝ)
264262, 263ltlend 11406 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (𝑧 < (♯‘𝐵) ↔ (𝑧 ≤ (♯‘𝐵) ∧ (♯‘𝐵) ≠ 𝑧)))
265261, 264mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 < (♯‘𝐵))
266250, 245zltlem1d 12671 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → (𝑧 < (♯‘𝐵) ↔ 𝑧 ≤ ((♯‘𝐵) − 1)))
267265, 266mpbid 232 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ≤ ((♯‘𝐵) − 1))
268242, 246, 250, 254, 267elfzd 13555 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ∈ (1...((♯‘𝐵) − 1)))
269 simprlr 780 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ∥ (♯‘𝐵))
270231, 268, 269elrabd 3694 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ ((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵))) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
271270ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}))
272271adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)})) → (((𝑧 ∈ (1...(♯‘𝐵)) ∧ 𝑧 ∥ (♯‘𝐵)) ∧ 𝑧 ≠ (♯‘𝐵)) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}))
273241, 272mpd 15 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)})) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
274273ex 412 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}))
275274adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → ((𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∧ ¬ 𝑧 ∈ {(♯‘𝐵)}) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}))
276230, 275mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
277276ex 412 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) → 𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}))
278277ssrdv 3989 . . . . . . . . . . . . . . . 16 (𝜑 → ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) ⊆ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
279 1zzd 12648 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 1 ∈ ℤ)
280170nn0zd 12639 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝜑 → (♯‘𝐵) ∈ ℤ)
281280adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → (♯‘𝐵) ∈ ℤ)
282 elfzelz 13564 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ (1...((♯‘𝐵) − 1)) → 𝑧 ∈ ℤ)
283282adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 𝑧 ∈ ℤ)
284 elfzle1 13567 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ (1...((♯‘𝐵) − 1)) → 1 ≤ 𝑧)
285284adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 1 ≤ 𝑧)
286283zred 12722 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 𝑧 ∈ ℝ)
287281zred 12722 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → (♯‘𝐵) ∈ ℝ)
288 1red 11262 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 1 ∈ ℝ)
289287, 288resubcld 11691 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → ((♯‘𝐵) − 1) ∈ ℝ)
290 elfzle2 13568 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ (1...((♯‘𝐵) − 1)) → 𝑧 ≤ ((♯‘𝐵) − 1))
291290adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 𝑧 ≤ ((♯‘𝐵) − 1))
292287lem1d 12201 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → ((♯‘𝐵) − 1) ≤ (♯‘𝐵))
293286, 289, 287, 291, 292letrd 11418 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 𝑧 ≤ (♯‘𝐵))
294279, 281, 283, 285, 293elfzd 13555 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ (1...((♯‘𝐵) − 1))) → 𝑧 ∈ (1...(♯‘𝐵)))
295294ex 412 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → (𝑧 ∈ (1...((♯‘𝐵) − 1)) → 𝑧 ∈ (1...(♯‘𝐵))))
296295ssrdv 3989 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑 → (1...((♯‘𝐵) − 1)) ⊆ (1...(♯‘𝐵)))
297 rabss2 4078 . . . . . . . . . . . . . . . . . . . . . 22 ((1...((♯‘𝐵) − 1)) ⊆ (1...(♯‘𝐵)) → {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)})
298296, 297syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)})
299298sseld 3982 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} → 𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}))
300299imp 406 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑧 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)})
301170ad2antrr 726 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → (♯‘𝐵) ∈ ℕ0)
302301nn0red 12588 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → (♯‘𝐵) ∈ ℝ)
303302leidd 11829 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → (♯‘𝐵) ≤ (♯‘𝐵))
304 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → 𝑧 = (♯‘𝐵))
305304eqcomd 2743 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → (♯‘𝐵) = 𝑧)
306231elrab 3692 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ↔ (𝑧 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑧 ∥ (♯‘𝐵)))
307306biimpi 216 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} → (𝑧 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑧 ∥ (♯‘𝐵)))
308307adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (𝑧 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑧 ∥ (♯‘𝐵)))
309291adantrr 717 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 ((𝜑 ∧ (𝑧 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑧 ∥ (♯‘𝐵))) → 𝑧 ≤ ((♯‘𝐵) − 1))
310309ex 412 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝜑 → ((𝑧 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑧 ∥ (♯‘𝐵)) → 𝑧 ≤ ((♯‘𝐵) − 1)))
311310adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → ((𝑧 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑧 ∥ (♯‘𝐵)) → 𝑧 ≤ ((♯‘𝐵) − 1)))
312308, 311mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑧 ≤ ((♯‘𝐵) − 1))
313300, 233, 2483syl 18 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑧 ∈ ℤ)
314280adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (♯‘𝐵) ∈ ℤ)
315313, 314zltlem1d 12671 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (𝑧 < (♯‘𝐵) ↔ 𝑧 ≤ ((♯‘𝐵) − 1)))
316312, 315mpbird 257 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑧 < (♯‘𝐵))
317316adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → 𝑧 < (♯‘𝐵))
318305, 317eqbrtrd 5165 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → (♯‘𝐵) < (♯‘𝐵))
319302, 302ltnled 11408 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → ((♯‘𝐵) < (♯‘𝐵) ↔ ¬ (♯‘𝐵) ≤ (♯‘𝐵)))
320318, 319mpbid 232 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → ¬ (♯‘𝐵) ≤ (♯‘𝐵))
321303, 320pm2.21dd 195 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 = (♯‘𝐵)) → 𝑧 ≠ (♯‘𝐵))
322 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ 𝑧 ≠ (♯‘𝐵)) → 𝑧 ≠ (♯‘𝐵))
323321, 322pm2.61dane 3029 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑧 ≠ (♯‘𝐵))
324300, 323eldifsnd 4787 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}))
325324ex 412 . . . . . . . . . . . . . . . . 17 (𝜑 → (𝑧 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} → 𝑧 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})))
326325ssrdv 3989 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}))
327278, 326eqssd 4001 . . . . . . . . . . . . . . 15 (𝜑 → ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)}) = {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
328327sumeq1d 15736 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = Σ𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
329 fzfid 14014 . . . . . . . . . . . . . . . . 17 (𝜑 → (1...((♯‘𝐵) − 1)) ∈ Fin)
330 ssrab2 4080 . . . . . . . . . . . . . . . . . 18 {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ (1...((♯‘𝐵) − 1))
331330a1i 11 . . . . . . . . . . . . . . . . 17 (𝜑 → {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ (1...((♯‘𝐵) − 1)))
332329, 331ssfid 9301 . . . . . . . . . . . . . . . 16 (𝜑 → {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ∈ Fin)
33326adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝐵 ∈ Fin)
33488a1i 11 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ⊆ 𝐵)
335333, 334ssfid 9301 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ∈ Fin)
336335, 91syl 17 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℕ0)
337336nn0red 12588 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℝ)
338125elrab 3692 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} ↔ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)))
339338biimpi 216 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} → (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)))
340339adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)))
341 elfzelz 13564 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (1...((♯‘𝐵) − 1)) → 𝑘 ∈ ℤ)
342 elfzle1 13567 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑘 ∈ (1...((♯‘𝐵) − 1)) → 1 ≤ 𝑘)
343341, 342jca 511 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ (1...((♯‘𝐵) − 1)) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
344343adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
345344adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
346345, 135sylibr 234 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) → 𝑘 ∈ ℕ)
347346ex 412 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → ((𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)) → 𝑘 ∈ ℕ))
348347adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → ((𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)) → 𝑘 ∈ ℕ))
349340, 348mpd 15 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑘 ∈ ℕ)
350349phicld 16809 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (ϕ‘𝑘) ∈ ℕ)
351350nnred 12281 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (ϕ‘𝑘) ∈ ℝ)
352 simpll 767 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → 𝜑)
353338biimpri 228 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)) → 𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
354353adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) → 𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
355354adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → 𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)})
356352, 355jca 511 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}))
357356, 337syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ∈ ℝ)
358 simpr 484 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)
359356, 358jca 511 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅))
360340simprd 495 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑘 ∥ (♯‘𝐵))
361360adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → 𝑘 ∥ (♯‘𝐵))
362 simpr 484 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)
363361, 362jca 511 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅))
364 breq1 5146 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 = 𝑘 → (𝑚 ∥ (♯‘𝐵) ↔ 𝑘 ∥ (♯‘𝐵)))
365 eqeq2 2749 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 (𝑚 = 𝑘 → (((od‘𝐺)‘𝑥) = 𝑚 ↔ ((od‘𝐺)‘𝑥) = 𝑘))
366365rabbidv 3444 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 (𝑚 = 𝑘 → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} = {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})
367366neeq1d 3000 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 = 𝑘 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅ ↔ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅))
368364, 367anbi12d 632 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 = 𝑘 → ((𝑚 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅) ↔ (𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)))
369366fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 = 𝑘 → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}))
370 fveq2 6906 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑚 = 𝑘 → (ϕ‘𝑚) = (ϕ‘𝑘))
371369, 370eqeq12d 2753 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑚 = 𝑘 → ((♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (ϕ‘𝑚) ↔ (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘)))
372368, 371imbi12d 344 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑚 = 𝑘 → (((𝑚 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (ϕ‘𝑚)) ↔ ((𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘))))
37328adantr 480 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → ∀𝑚 ∈ ℕ ((𝑚 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑚}) = (ϕ‘𝑚)))
374372, 373, 349rspcdva 3623 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → ((𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘)))
375374adantr 480 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → ((𝑘 ∥ (♯‘𝐵) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘)))
376363, 375mpd 15 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘))
377359, 376syl 17 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (ϕ‘𝑘))
378357, 377eqled 11364 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ (ϕ‘𝑘))
379 id 22 . . . . . . . . . . . . . . . . . . . . . . . . 25 ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅ → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅)
380379necon1bi 2969 . . . . . . . . . . . . . . . . . . . . . . . 24 (¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅ → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = ∅)
381380adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} = ∅)
382381fveq2d 6910 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = (♯‘∅))
383223a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘∅) = 0)
384382, 383eqtrd 2777 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) = 0)
385346adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → 𝑘 ∈ ℕ)
386385phicld 16809 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (ϕ‘𝑘) ∈ ℕ)
387386nnnn0d 12587 . . . . . . . . . . . . . . . . . . . . . 22 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (ϕ‘𝑘) ∈ ℕ0)
388387nn0ge0d 12590 . . . . . . . . . . . . . . . . . . . . 21 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → 0 ≤ (ϕ‘𝑘))
389384, 388eqbrtrd 5165 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘} ≠ ∅) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ (ϕ‘𝑘))
390378, 389pm2.61dan 813 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵))) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ (ϕ‘𝑘))
391390ex 412 . . . . . . . . . . . . . . . . . 18 (𝜑 → ((𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ (ϕ‘𝑘)))
392391adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → ((𝑘 ∈ (1...((♯‘𝐵) − 1)) ∧ 𝑘 ∥ (♯‘𝐵)) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ (ϕ‘𝑘)))
393340, 392mpd 15 . . . . . . . . . . . . . . . 16 ((𝜑𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ (ϕ‘𝑘))
394332, 337, 351, 393fsumle 15835 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ Σ𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘))
395327sumeq1d 15736 . . . . . . . . . . . . . . . 16 (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘) = Σ𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘))
396395eqcomd 2743 . . . . . . . . . . . . . . 15 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘) = Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘))
397394, 396breqtrd 5169 . . . . . . . . . . . . . 14 (𝜑 → Σ𝑘 ∈ {𝑎 ∈ (1...((♯‘𝐵) − 1)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘))
398328, 397eqbrtrd 5165 . . . . . . . . . . . . 13 (𝜑 → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘))
399398adantr 480 . . . . . . . . . . . 12 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) ≤ Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘))
400113, 121, 123, 140, 227, 399ltleaddd 11884 . . . . . . . . . . 11 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → ((♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) + Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})) < ((ϕ‘(♯‘𝐵)) + Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘)))
401 nfcv 2905 . . . . . . . . . . . 12 𝑘(ϕ‘(♯‘𝐵))
402 simpll 767 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝜑)
403127adantl 481 . . . . . . . . . . . . . . . 16 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵)))
404402, 403jca 511 . . . . . . . . . . . . . . 15 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (𝜑 ∧ (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵))))
405131adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
406405adantl 481 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ (𝜑 ∧ (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵)))) → (𝑘 ∈ ℤ ∧ 1 ≤ 𝑘))
407406, 135sylibr 234 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) ∧ (𝜑 ∧ (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵)))) → 𝑘 ∈ ℕ)
408407ex 412 . . . . . . . . . . . . . . 15 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → ((𝜑 ∧ (𝑘 ∈ (1...(♯‘𝐵)) ∧ 𝑘 ∥ (♯‘𝐵))) → 𝑘 ∈ ℕ))
409404, 408mpd 15 . . . . . . . . . . . . . 14 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → 𝑘 ∈ ℕ)
410409phicld 16809 . . . . . . . . . . . . 13 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (ϕ‘𝑘) ∈ ℕ)
411410nncnd 12282 . . . . . . . . . . . 12 (((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) ∧ 𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)}) → (ϕ‘𝑘) ∈ ℂ)
412 fveq2 6906 . . . . . . . . . . . 12 (𝑘 = (♯‘𝐵) → (ϕ‘𝑘) = (ϕ‘(♯‘𝐵)))
41381, 401, 86, 411, 103, 412fsumsplit1 15781 . . . . . . . . . . 11 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘) = ((ϕ‘(♯‘𝐵)) + Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(ϕ‘𝑘)))
414400, 413breqtrrd 5171 . . . . . . . . . 10 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → ((♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = (♯‘𝐵)}) + Σ𝑘 ∈ ({𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ∖ {(♯‘𝐵)})(♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘})) < Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘))
415107, 414eqbrtrd 5165 . . . . . . . . 9 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) < Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘))
416 elfzelz 13564 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (1...(♯‘𝐵)) → 𝑎 ∈ ℤ)
417 elfzle1 13567 . . . . . . . . . . . . . . . . 17 (𝑎 ∈ (1...(♯‘𝐵)) → 1 ≤ 𝑎)
418416, 417jca 511 . . . . . . . . . . . . . . . 16 (𝑎 ∈ (1...(♯‘𝐵)) → (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
419418adantr 480 . . . . . . . . . . . . . . 15 ((𝑎 ∈ (1...(♯‘𝐵)) ∧ 𝑎 ∥ (♯‘𝐵)) → (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
420419adantl 481 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ (1...(♯‘𝐵)) ∧ 𝑎 ∥ (♯‘𝐵))) → (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
421 elnnz1 12643 . . . . . . . . . . . . . 14 (𝑎 ∈ ℕ ↔ (𝑎 ∈ ℤ ∧ 1 ≤ 𝑎))
422420, 421sylibr 234 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ (1...(♯‘𝐵)) ∧ 𝑎 ∥ (♯‘𝐵))) → 𝑎 ∈ ℕ)
423422rabss3d 4081 . . . . . . . . . . . 12 (𝜑 → {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)})
424 simpl 482 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑎 ∥ (♯‘𝐵))) → 𝜑)
425 simprl 771 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑎 ∥ (♯‘𝐵))) → 𝑎 ∈ ℕ)
426424, 425jca 511 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑎 ∥ (♯‘𝐵))) → (𝜑𝑎 ∈ ℕ))
427 simprr 773 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑎 ∥ (♯‘𝐵))) → 𝑎 ∥ (♯‘𝐵))
428426, 427jca 511 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑎 ∥ (♯‘𝐵))) → ((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)))
429 1zzd 12648 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → 1 ∈ ℤ)
430280adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ ℕ) → (♯‘𝐵) ∈ ℤ)
431430adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → (♯‘𝐵) ∈ ℤ)
432425anassrs 467 . . . . . . . . . . . . . . . 16 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → 𝑎 ∈ ℕ)
433432nnzd 12640 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → 𝑎 ∈ ℤ)
434432nnge1d 12314 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → 1 ≤ 𝑎)
435 nnz 12634 . . . . . . . . . . . . . . . . . 18 (𝑎 ∈ ℕ → 𝑎 ∈ ℤ)
436435adantl 481 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎 ∈ ℕ) → 𝑎 ∈ ℤ)
43723, 25, 26hashfingrpnn 18990 . . . . . . . . . . . . . . . . . 18 (𝜑 → (♯‘𝐵) ∈ ℕ)
438437adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑎 ∈ ℕ) → (♯‘𝐵) ∈ ℕ)
439 dvdsle 16347 . . . . . . . . . . . . . . . . 17 ((𝑎 ∈ ℤ ∧ (♯‘𝐵) ∈ ℕ) → (𝑎 ∥ (♯‘𝐵) → 𝑎 ≤ (♯‘𝐵)))
440436, 438, 439syl2anc 584 . . . . . . . . . . . . . . . 16 ((𝜑𝑎 ∈ ℕ) → (𝑎 ∥ (♯‘𝐵) → 𝑎 ≤ (♯‘𝐵)))
441440imp 406 . . . . . . . . . . . . . . 15 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → 𝑎 ≤ (♯‘𝐵))
442429, 431, 433, 434, 441elfzd 13555 . . . . . . . . . . . . . 14 (((𝜑𝑎 ∈ ℕ) ∧ 𝑎 ∥ (♯‘𝐵)) → 𝑎 ∈ (1...(♯‘𝐵)))
443428, 442syl 17 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑎 ∈ ℕ ∧ 𝑎 ∥ (♯‘𝐵))) → 𝑎 ∈ (1...(♯‘𝐵)))
444443rabss3d 4081 . . . . . . . . . . . 12 (𝜑 → {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)} ⊆ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)})
445423, 444eqssd 4001 . . . . . . . . . . 11 (𝜑 → {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} = {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)})
446445adantr 480 . . . . . . . . . 10 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} = {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)})
447446sumeq1d 15736 . . . . . . . . 9 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘) = Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘))
448415, 447breqtrd 5169 . . . . . . . 8 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) < Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘))
449 phisum 16828 . . . . . . . . 9 ((♯‘𝐵) ∈ ℕ → Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘) = (♯‘𝐵))
45039, 449syl 17 . . . . . . . 8 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ ℕ ∣ 𝑎 ∥ (♯‘𝐵)} (ϕ‘𝑘) = (♯‘𝐵))
451448, 450breqtrd 5169 . . . . . . 7 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → Σ𝑘 ∈ {𝑎 ∈ (1...(♯‘𝐵)) ∣ 𝑎 ∥ (♯‘𝐵)} (♯‘{𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝑘}) < (♯‘𝐵))
45280, 451eqbrtrd 5165 . . . . . 6 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) < (♯‘𝐵))
453170adantr 480 . . . . . . . 8 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ ℕ0)
454453nn0red 12588 . . . . . . 7 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘𝐵) ∈ ℝ)
455454ltnrd 11395 . . . . . 6 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → ¬ (♯‘𝐵) < (♯‘𝐵))
456452, 455pm2.21dd 195 . . . . 5 ((𝜑 ∧ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅) → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷))
457456ex 412 . . . 4 (𝜑 → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅ → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷)))
458457adantr 480 . . 3 ((𝜑 ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → ({𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} = ∅ → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷)))
45936, 458mpd 15 . 2 ((𝜑 ∧ ¬ {𝑥𝐵 ∣ ((od‘𝐺)‘𝑥) = 𝐷} ≠ ∅) → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷))
46033, 459pm2.61dan 813 1 (𝜑 → (♯‘{𝑦𝐵 ∣ ((od‘𝐺)‘𝑦) = 𝐷}) = (ϕ‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108  wne 2940  wral 3061  wrex 3070  {crab 3436  cdif 3948  wss 3951  c0 4333  {csn 4626   class class class wbr 5143  cfv 6561  (class class class)co 7431  Fincfn 8985  cc 11153  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cmin 11492   / cdiv 11920  cn 12266  0cn0 12526  cz 12613  ...cfz 13547  chash 14369  Σcsu 15722  cdvds 16290   gcd cgcd 16531  ϕcphi 16801  Basecbs 17247  0gc0g 17484  Grpcgrp 18951  .gcmg 19085  odcod 19542
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-inf2 9681  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-int 4947  df-iun 4993  df-disj 5111  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-oadd 8510  df-omul 8511  df-er 8745  df-ec 8747  df-qs 8751  df-map 8868  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-oi 9550  df-card 9979  df-acn 9982  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-n0 12527  df-xnn0 12600  df-z 12614  df-uz 12879  df-rp 13035  df-ico 13393  df-fz 13548  df-fzo 13695  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-hash 14370  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-clim 15524  df-sum 15723  df-dvds 16291  df-gcd 16532  df-phi 16803  df-sets 17201  df-slot 17219  df-ndx 17231  df-base 17248  df-ress 17275  df-plusg 17310  df-0g 17486  df-mgm 18653  df-sgrp 18732  df-mnd 18748  df-grp 18954  df-minusg 18955  df-sbg 18956  df-mulg 19086  df-subg 19141  df-eqg 19143  df-od 19546
This theorem is referenced by:  unitscyglem5  42200
  Copyright terms: Public domain W3C validator