![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > drngmullcan | Structured version Visualization version GIF version |
Description: Cancellation of a nonzero factor on the left for multiplication. (mulcanad 11890 analog). (Contributed by SN, 14-Aug-2024.) (Proof shortened by SN, 25-Jun-2025.) |
Ref | Expression |
---|---|
drngmullcan.b | ⊢ 𝐵 = (Base‘𝑅) |
drngmullcan.0 | ⊢ 0 = (0g‘𝑅) |
drngmullcan.t | ⊢ · = (.r‘𝑅) |
drngmullcan.r | ⊢ (𝜑 → 𝑅 ∈ DivRing) |
drngmullcan.x | ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
drngmullcan.y | ⊢ (𝜑 → 𝑌 ∈ 𝐵) |
drngmullcan.z | ⊢ (𝜑 → 𝑍 ∈ 𝐵) |
drngmullcan.1 | ⊢ (𝜑 → 𝑍 ≠ 0 ) |
drngmullcan.2 | ⊢ (𝜑 → (𝑍 · 𝑋) = (𝑍 · 𝑌)) |
Ref | Expression |
---|---|
drngmullcan | ⊢ (𝜑 → 𝑋 = 𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | drngmullcan.b | . 2 ⊢ 𝐵 = (Base‘𝑅) | |
2 | drngmullcan.0 | . 2 ⊢ 0 = (0g‘𝑅) | |
3 | drngmullcan.t | . 2 ⊢ · = (.r‘𝑅) | |
4 | drngmullcan.z | . . 3 ⊢ (𝜑 → 𝑍 ∈ 𝐵) | |
5 | drngmullcan.1 | . . 3 ⊢ (𝜑 → 𝑍 ≠ 0 ) | |
6 | 4, 5 | eldifsnd 4786 | . 2 ⊢ (𝜑 → 𝑍 ∈ (𝐵 ∖ { 0 })) |
7 | drngmullcan.x | . 2 ⊢ (𝜑 → 𝑋 ∈ 𝐵) | |
8 | drngmullcan.y | . 2 ⊢ (𝜑 → 𝑌 ∈ 𝐵) | |
9 | drngmullcan.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ DivRing) | |
10 | drngdomn 20723 | . . 3 ⊢ (𝑅 ∈ DivRing → 𝑅 ∈ Domn) | |
11 | 9, 10 | syl 17 | . 2 ⊢ (𝜑 → 𝑅 ∈ Domn) |
12 | drngmullcan.2 | . 2 ⊢ (𝜑 → (𝑍 · 𝑋) = (𝑍 · 𝑌)) | |
13 | 1, 2, 3, 6, 7, 8, 11, 12 | domnlcan 20695 | 1 ⊢ (𝜑 → 𝑋 = 𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∈ wcel 2099 ≠ wne 2930 ‘cfv 6546 (class class class)co 7416 Basecbs 17208 .rcmulr 17262 0gc0g 17449 Domncdomn 20666 DivRingcdr 20703 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7738 ax-cnex 11205 ax-resscn 11206 ax-1cn 11207 ax-icn 11208 ax-addcl 11209 ax-addrcl 11210 ax-mulcl 11211 ax-mulrcl 11212 ax-mulcom 11213 ax-addass 11214 ax-mulass 11215 ax-distr 11216 ax-i2m1 11217 ax-1ne0 11218 ax-1rid 11219 ax-rnegex 11220 ax-rrecex 11221 ax-cnre 11222 ax-pre-lttri 11223 ax-pre-lttrn 11224 ax-pre-ltadd 11225 ax-pre-mulgt0 11226 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4906 df-iun 4995 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6371 df-on 6372 df-lim 6373 df-suc 6374 df-iota 6498 df-fun 6548 df-fn 6549 df-f 6550 df-f1 6551 df-fo 6552 df-f1o 6553 df-fv 6554 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7995 df-2nd 7996 df-tpos 8233 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-er 8726 df-en 8967 df-dom 8968 df-sdom 8969 df-pnf 11291 df-mnf 11292 df-xr 11293 df-ltxr 11294 df-le 11295 df-sub 11487 df-neg 11488 df-nn 12259 df-2 12321 df-3 12322 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-ress 17238 df-plusg 17274 df-mulr 17275 df-0g 17451 df-mgm 18628 df-sgrp 18707 df-mnd 18723 df-grp 18926 df-minusg 18927 df-sbg 18928 df-cmn 19776 df-abl 19777 df-mgp 20114 df-rng 20132 df-ur 20161 df-ring 20214 df-oppr 20312 df-dvdsr 20335 df-unit 20336 df-invr 20366 df-nzr 20491 df-rlreg 20668 df-domn 20669 df-drng 20705 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |