Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domnexpgn0cl Structured version   Visualization version   GIF version

Theorem domnexpgn0cl 42518
Description: In a domain, a (nonnegative) power of a nonzero element is nonzero. (Contributed by SN, 6-Jul-2024.)
Hypotheses
Ref Expression
domnexpgn0cl.b 𝐵 = (Base‘𝑅)
domnexpgn0cl.0 0 = (0g𝑅)
domnexpgn0cl.e = (.g‘(mulGrp‘𝑅))
domnexpgn0cl.r (𝜑𝑅 ∈ Domn)
domnexpgn0cl.n (𝜑𝑁 ∈ ℕ0)
domnexpgn0cl.x (𝜑𝑋 ∈ (𝐵 ∖ { 0 }))
Assertion
Ref Expression
domnexpgn0cl (𝜑 → (𝑁 𝑋) ∈ (𝐵 ∖ { 0 }))

Proof of Theorem domnexpgn0cl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2730 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2 domnexpgn0cl.b . . . 4 𝐵 = (Base‘𝑅)
31, 2mgpbas 20061 . . 3 𝐵 = (Base‘(mulGrp‘𝑅))
4 domnexpgn0cl.e . . 3 = (.g‘(mulGrp‘𝑅))
5 domnexpgn0cl.r . . . 4 (𝜑𝑅 ∈ Domn)
6 domnring 20623 . . . 4 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
71ringmgp 20155 . . . 4 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
85, 6, 73syl 18 . . 3 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
9 domnexpgn0cl.n . . 3 (𝜑𝑁 ∈ ℕ0)
10 domnexpgn0cl.x . . . 4 (𝜑𝑋 ∈ (𝐵 ∖ { 0 }))
1110eldifad 3929 . . 3 (𝜑𝑋𝐵)
123, 4, 8, 9, 11mulgnn0cld 19034 . 2 (𝜑 → (𝑁 𝑋) ∈ 𝐵)
13 oveq1 7397 . . . . 5 (𝑥 = 0 → (𝑥 𝑋) = (0 𝑋))
1413neeq1d 2985 . . . 4 (𝑥 = 0 → ((𝑥 𝑋) ≠ 0 ↔ (0 𝑋) ≠ 0 ))
15 oveq1 7397 . . . . 5 (𝑥 = 𝑦 → (𝑥 𝑋) = (𝑦 𝑋))
1615neeq1d 2985 . . . 4 (𝑥 = 𝑦 → ((𝑥 𝑋) ≠ 0 ↔ (𝑦 𝑋) ≠ 0 ))
17 oveq1 7397 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑥 𝑋) = ((𝑦 + 1) 𝑋))
1817neeq1d 2985 . . . 4 (𝑥 = (𝑦 + 1) → ((𝑥 𝑋) ≠ 0 ↔ ((𝑦 + 1) 𝑋) ≠ 0 ))
19 oveq1 7397 . . . . 5 (𝑥 = 𝑁 → (𝑥 𝑋) = (𝑁 𝑋))
2019neeq1d 2985 . . . 4 (𝑥 = 𝑁 → ((𝑥 𝑋) ≠ 0 ↔ (𝑁 𝑋) ≠ 0 ))
21 eqid 2730 . . . . . . . 8 (1r𝑅) = (1r𝑅)
221, 21ringidval 20099 . . . . . . 7 (1r𝑅) = (0g‘(mulGrp‘𝑅))
233, 22, 4mulg0 19013 . . . . . 6 (𝑋𝐵 → (0 𝑋) = (1r𝑅))
2411, 23syl 17 . . . . 5 (𝜑 → (0 𝑋) = (1r𝑅))
25 domnnzr 20622 . . . . . 6 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
26 domnexpgn0cl.0 . . . . . . 7 0 = (0g𝑅)
2721, 26nzrnz 20431 . . . . . 6 (𝑅 ∈ NzRing → (1r𝑅) ≠ 0 )
285, 25, 273syl 18 . . . . 5 (𝜑 → (1r𝑅) ≠ 0 )
2924, 28eqnetrd 2993 . . . 4 (𝜑 → (0 𝑋) ≠ 0 )
308ad2antrr 726 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ≠ 0 ) → (mulGrp‘𝑅) ∈ Mnd)
31 simplr 768 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ≠ 0 ) → 𝑦 ∈ ℕ0)
3211ad2antrr 726 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ≠ 0 ) → 𝑋𝐵)
33 eqid 2730 . . . . . . . 8 (.r𝑅) = (.r𝑅)
341, 33mgpplusg 20060 . . . . . . 7 (.r𝑅) = (+g‘(mulGrp‘𝑅))
353, 4, 34mulgnn0p1 19024 . . . . . 6 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) 𝑋) = ((𝑦 𝑋)(.r𝑅)𝑋))
3630, 31, 32, 35syl3anc 1373 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ≠ 0 ) → ((𝑦 + 1) 𝑋) = ((𝑦 𝑋)(.r𝑅)𝑋))
375ad2antrr 726 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ≠ 0 ) → 𝑅 ∈ Domn)
383, 4, 30, 31, 32mulgnn0cld 19034 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ≠ 0 ) → (𝑦 𝑋) ∈ 𝐵)
39 simpr 484 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ≠ 0 ) → (𝑦 𝑋) ≠ 0 )
40 eldifsni 4757 . . . . . . . 8 (𝑋 ∈ (𝐵 ∖ { 0 }) → 𝑋0 )
4110, 40syl 17 . . . . . . 7 (𝜑𝑋0 )
4241ad2antrr 726 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ≠ 0 ) → 𝑋0 )
432, 33, 26domnmuln0 20625 . . . . . 6 ((𝑅 ∈ Domn ∧ ((𝑦 𝑋) ∈ 𝐵 ∧ (𝑦 𝑋) ≠ 0 ) ∧ (𝑋𝐵𝑋0 )) → ((𝑦 𝑋)(.r𝑅)𝑋) ≠ 0 )
4437, 38, 39, 32, 42, 43syl122anc 1381 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ≠ 0 ) → ((𝑦 𝑋)(.r𝑅)𝑋) ≠ 0 )
4536, 44eqnetrd 2993 . . . 4 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ≠ 0 ) → ((𝑦 + 1) 𝑋) ≠ 0 )
4614, 16, 18, 20, 29, 45nn0indd 12638 . . 3 ((𝜑𝑁 ∈ ℕ0) → (𝑁 𝑋) ≠ 0 )
479, 46mpdan 687 . 2 (𝜑 → (𝑁 𝑋) ≠ 0 )
4812, 47eldifsnd 4754 1 (𝜑 → (𝑁 𝑋) ∈ (𝐵 ∖ { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2926  cdif 3914  {csn 4592  cfv 6514  (class class class)co 7390  0cc0 11075  1c1 11076   + caddc 11078  0cn0 12449  Basecbs 17186  .rcmulr 17228  0gc0g 17409  Mndcmnd 18668  .gcmg 19006  mulGrpcmgp 20056  1rcur 20097  Ringcrg 20149  NzRingcnzr 20428  Domncdomn 20608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-seq 13974  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-plusg 17240  df-0g 17411  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-grp 18875  df-minusg 18876  df-mulg 19007  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-nzr 20429  df-domn 20611
This theorem is referenced by:  fidomncyc  42530
  Copyright terms: Public domain W3C validator