![]() |
Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > domnexpgn0cl | Structured version Visualization version GIF version |
Description: In a domain, a (nonnegative) power of a nonzero element is nonzero. (Contributed by SN, 6-Jul-2024.) |
Ref | Expression |
---|---|
domnexpgn0cl.b | ⊢ 𝐵 = (Base‘𝑅) |
domnexpgn0cl.0 | ⊢ 0 = (0g‘𝑅) |
domnexpgn0cl.e | ⊢ ↑ = (.g‘(mulGrp‘𝑅)) |
domnexpgn0cl.r | ⊢ (𝜑 → 𝑅 ∈ Domn) |
domnexpgn0cl.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
domnexpgn0cl.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) |
Ref | Expression |
---|---|
domnexpgn0cl | ⊢ (𝜑 → (𝑁 ↑ 𝑋) ∈ (𝐵 ∖ { 0 })) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
2 | domnexpgn0cl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
3 | 1, 2 | mgpbas 20167 | . . 3 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
4 | domnexpgn0cl.e | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑅)) | |
5 | domnexpgn0cl.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Domn) | |
6 | domnring 20729 | . . . 4 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) | |
7 | 1 | ringmgp 20266 | . . . 4 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
9 | domnexpgn0cl.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
10 | domnexpgn0cl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) | |
11 | 10 | eldifad 3988 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
12 | 3, 4, 8, 9, 11 | mulgnn0cld 19135 | . 2 ⊢ (𝜑 → (𝑁 ↑ 𝑋) ∈ 𝐵) |
13 | oveq1 7455 | . . . . 5 ⊢ (𝑥 = 0 → (𝑥 ↑ 𝑋) = (0 ↑ 𝑋)) | |
14 | 13 | neeq1d 3006 | . . . 4 ⊢ (𝑥 = 0 → ((𝑥 ↑ 𝑋) ≠ 0 ↔ (0 ↑ 𝑋) ≠ 0 )) |
15 | oveq1 7455 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ↑ 𝑋) = (𝑦 ↑ 𝑋)) | |
16 | 15 | neeq1d 3006 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥 ↑ 𝑋) ≠ 0 ↔ (𝑦 ↑ 𝑋) ≠ 0 )) |
17 | oveq1 7455 | . . . . 5 ⊢ (𝑥 = (𝑦 + 1) → (𝑥 ↑ 𝑋) = ((𝑦 + 1) ↑ 𝑋)) | |
18 | 17 | neeq1d 3006 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → ((𝑥 ↑ 𝑋) ≠ 0 ↔ ((𝑦 + 1) ↑ 𝑋) ≠ 0 )) |
19 | oveq1 7455 | . . . . 5 ⊢ (𝑥 = 𝑁 → (𝑥 ↑ 𝑋) = (𝑁 ↑ 𝑋)) | |
20 | 19 | neeq1d 3006 | . . . 4 ⊢ (𝑥 = 𝑁 → ((𝑥 ↑ 𝑋) ≠ 0 ↔ (𝑁 ↑ 𝑋) ≠ 0 )) |
21 | eqid 2740 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
22 | 1, 21 | ringidval 20210 | . . . . . . 7 ⊢ (1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
23 | 3, 22, 4 | mulg0 19114 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (0 ↑ 𝑋) = (1r‘𝑅)) |
24 | 11, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → (0 ↑ 𝑋) = (1r‘𝑅)) |
25 | domnnzr 20728 | . . . . . 6 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) | |
26 | domnexpgn0cl.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
27 | 21, 26 | nzrnz 20541 | . . . . . 6 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ 0 ) |
28 | 5, 25, 27 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (1r‘𝑅) ≠ 0 ) |
29 | 24, 28 | eqnetrd 3014 | . . . 4 ⊢ (𝜑 → (0 ↑ 𝑋) ≠ 0 ) |
30 | 8 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ≠ 0 ) → (mulGrp‘𝑅) ∈ Mnd) |
31 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ≠ 0 ) → 𝑦 ∈ ℕ0) | |
32 | 11 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ≠ 0 ) → 𝑋 ∈ 𝐵) |
33 | eqid 2740 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
34 | 1, 33 | mgpplusg 20165 | . . . . . . 7 ⊢ (.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
35 | 3, 4, 34 | mulgnn0p1 19125 | . . . . . 6 ⊢ (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → ((𝑦 + 1) ↑ 𝑋) = ((𝑦 ↑ 𝑋)(.r‘𝑅)𝑋)) |
36 | 30, 31, 32, 35 | syl3anc 1371 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ≠ 0 ) → ((𝑦 + 1) ↑ 𝑋) = ((𝑦 ↑ 𝑋)(.r‘𝑅)𝑋)) |
37 | 5 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ≠ 0 ) → 𝑅 ∈ Domn) |
38 | 3, 4, 30, 31, 32 | mulgnn0cld 19135 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ≠ 0 ) → (𝑦 ↑ 𝑋) ∈ 𝐵) |
39 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ≠ 0 ) → (𝑦 ↑ 𝑋) ≠ 0 ) | |
40 | eldifsni 4815 | . . . . . . . 8 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) → 𝑋 ≠ 0 ) | |
41 | 10, 40 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
42 | 41 | ad2antrr 725 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ≠ 0 ) → 𝑋 ≠ 0 ) |
43 | 2, 33, 26 | domnmuln0 20731 | . . . . . 6 ⊢ ((𝑅 ∈ Domn ∧ ((𝑦 ↑ 𝑋) ∈ 𝐵 ∧ (𝑦 ↑ 𝑋) ≠ 0 ) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → ((𝑦 ↑ 𝑋)(.r‘𝑅)𝑋) ≠ 0 ) |
44 | 37, 38, 39, 32, 42, 43 | syl122anc 1379 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ≠ 0 ) → ((𝑦 ↑ 𝑋)(.r‘𝑅)𝑋) ≠ 0 ) |
45 | 36, 44 | eqnetrd 3014 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ≠ 0 ) → ((𝑦 + 1) ↑ 𝑋) ≠ 0 ) |
46 | 14, 16, 18, 20, 29, 45 | nn0indd 12740 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝑁 ↑ 𝑋) ≠ 0 ) |
47 | 9, 46 | mpdan 686 | . 2 ⊢ (𝜑 → (𝑁 ↑ 𝑋) ≠ 0 ) |
48 | 12, 47 | eldifsnd 4812 | 1 ⊢ (𝜑 → (𝑁 ↑ 𝑋) ∈ (𝐵 ∖ { 0 })) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 {csn 4648 ‘cfv 6573 (class class class)co 7448 0cc0 11184 1c1 11185 + caddc 11187 ℕ0cn0 12553 Basecbs 17258 .rcmulr 17312 0gc0g 17499 Mndcmnd 18772 .gcmg 19107 mulGrpcmgp 20161 1rcur 20208 Ringcrg 20260 NzRingcnzr 20538 Domncdomn 20714 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-seq 14053 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-plusg 17324 df-0g 17501 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-mulg 19108 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-nzr 20539 df-domn 20717 |
This theorem is referenced by: fidomncyc 42490 |
Copyright terms: Public domain | W3C validator |