| Mathbox for Steven Nguyen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > domnexpgn0cl | Structured version Visualization version GIF version | ||
| Description: In a domain, a (nonnegative) power of a nonzero element is nonzero. (Contributed by SN, 6-Jul-2024.) |
| Ref | Expression |
|---|---|
| domnexpgn0cl.b | ⊢ 𝐵 = (Base‘𝑅) |
| domnexpgn0cl.0 | ⊢ 0 = (0g‘𝑅) |
| domnexpgn0cl.e | ⊢ ↑ = (.g‘(mulGrp‘𝑅)) |
| domnexpgn0cl.r | ⊢ (𝜑 → 𝑅 ∈ Domn) |
| domnexpgn0cl.n | ⊢ (𝜑 → 𝑁 ∈ ℕ0) |
| domnexpgn0cl.x | ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) |
| Ref | Expression |
|---|---|
| domnexpgn0cl | ⊢ (𝜑 → (𝑁 ↑ 𝑋) ∈ (𝐵 ∖ { 0 })) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . 4 ⊢ (mulGrp‘𝑅) = (mulGrp‘𝑅) | |
| 2 | domnexpgn0cl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑅) | |
| 3 | 1, 2 | mgpbas 20054 | . . 3 ⊢ 𝐵 = (Base‘(mulGrp‘𝑅)) |
| 4 | domnexpgn0cl.e | . . 3 ⊢ ↑ = (.g‘(mulGrp‘𝑅)) | |
| 5 | domnexpgn0cl.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Domn) | |
| 6 | domnring 20616 | . . . 4 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ Ring) | |
| 7 | 1 | ringmgp 20148 | . . . 4 ⊢ (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd) |
| 8 | 5, 6, 7 | 3syl 18 | . . 3 ⊢ (𝜑 → (mulGrp‘𝑅) ∈ Mnd) |
| 9 | domnexpgn0cl.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ0) | |
| 10 | domnexpgn0cl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝐵 ∖ { 0 })) | |
| 11 | 10 | eldifad 3926 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐵) |
| 12 | 3, 4, 8, 9, 11 | mulgnn0cld 19027 | . 2 ⊢ (𝜑 → (𝑁 ↑ 𝑋) ∈ 𝐵) |
| 13 | oveq1 7394 | . . . . 5 ⊢ (𝑥 = 0 → (𝑥 ↑ 𝑋) = (0 ↑ 𝑋)) | |
| 14 | 13 | neeq1d 2984 | . . . 4 ⊢ (𝑥 = 0 → ((𝑥 ↑ 𝑋) ≠ 0 ↔ (0 ↑ 𝑋) ≠ 0 )) |
| 15 | oveq1 7394 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 ↑ 𝑋) = (𝑦 ↑ 𝑋)) | |
| 16 | 15 | neeq1d 2984 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥 ↑ 𝑋) ≠ 0 ↔ (𝑦 ↑ 𝑋) ≠ 0 )) |
| 17 | oveq1 7394 | . . . . 5 ⊢ (𝑥 = (𝑦 + 1) → (𝑥 ↑ 𝑋) = ((𝑦 + 1) ↑ 𝑋)) | |
| 18 | 17 | neeq1d 2984 | . . . 4 ⊢ (𝑥 = (𝑦 + 1) → ((𝑥 ↑ 𝑋) ≠ 0 ↔ ((𝑦 + 1) ↑ 𝑋) ≠ 0 )) |
| 19 | oveq1 7394 | . . . . 5 ⊢ (𝑥 = 𝑁 → (𝑥 ↑ 𝑋) = (𝑁 ↑ 𝑋)) | |
| 20 | 19 | neeq1d 2984 | . . . 4 ⊢ (𝑥 = 𝑁 → ((𝑥 ↑ 𝑋) ≠ 0 ↔ (𝑁 ↑ 𝑋) ≠ 0 )) |
| 21 | eqid 2729 | . . . . . . . 8 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
| 22 | 1, 21 | ringidval 20092 | . . . . . . 7 ⊢ (1r‘𝑅) = (0g‘(mulGrp‘𝑅)) |
| 23 | 3, 22, 4 | mulg0 19006 | . . . . . 6 ⊢ (𝑋 ∈ 𝐵 → (0 ↑ 𝑋) = (1r‘𝑅)) |
| 24 | 11, 23 | syl 17 | . . . . 5 ⊢ (𝜑 → (0 ↑ 𝑋) = (1r‘𝑅)) |
| 25 | domnnzr 20615 | . . . . . 6 ⊢ (𝑅 ∈ Domn → 𝑅 ∈ NzRing) | |
| 26 | domnexpgn0cl.0 | . . . . . . 7 ⊢ 0 = (0g‘𝑅) | |
| 27 | 21, 26 | nzrnz 20424 | . . . . . 6 ⊢ (𝑅 ∈ NzRing → (1r‘𝑅) ≠ 0 ) |
| 28 | 5, 25, 27 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (1r‘𝑅) ≠ 0 ) |
| 29 | 24, 28 | eqnetrd 2992 | . . . 4 ⊢ (𝜑 → (0 ↑ 𝑋) ≠ 0 ) |
| 30 | 8 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ≠ 0 ) → (mulGrp‘𝑅) ∈ Mnd) |
| 31 | simplr 768 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ≠ 0 ) → 𝑦 ∈ ℕ0) | |
| 32 | 11 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ≠ 0 ) → 𝑋 ∈ 𝐵) |
| 33 | eqid 2729 | . . . . . . . 8 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 34 | 1, 33 | mgpplusg 20053 | . . . . . . 7 ⊢ (.r‘𝑅) = (+g‘(mulGrp‘𝑅)) |
| 35 | 3, 4, 34 | mulgnn0p1 19017 | . . . . . 6 ⊢ (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑦 ∈ ℕ0 ∧ 𝑋 ∈ 𝐵) → ((𝑦 + 1) ↑ 𝑋) = ((𝑦 ↑ 𝑋)(.r‘𝑅)𝑋)) |
| 36 | 30, 31, 32, 35 | syl3anc 1373 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ≠ 0 ) → ((𝑦 + 1) ↑ 𝑋) = ((𝑦 ↑ 𝑋)(.r‘𝑅)𝑋)) |
| 37 | 5 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ≠ 0 ) → 𝑅 ∈ Domn) |
| 38 | 3, 4, 30, 31, 32 | mulgnn0cld 19027 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ≠ 0 ) → (𝑦 ↑ 𝑋) ∈ 𝐵) |
| 39 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ≠ 0 ) → (𝑦 ↑ 𝑋) ≠ 0 ) | |
| 40 | eldifsni 4754 | . . . . . . . 8 ⊢ (𝑋 ∈ (𝐵 ∖ { 0 }) → 𝑋 ≠ 0 ) | |
| 41 | 10, 40 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ≠ 0 ) |
| 42 | 41 | ad2antrr 726 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ≠ 0 ) → 𝑋 ≠ 0 ) |
| 43 | 2, 33, 26 | domnmuln0 20618 | . . . . . 6 ⊢ ((𝑅 ∈ Domn ∧ ((𝑦 ↑ 𝑋) ∈ 𝐵 ∧ (𝑦 ↑ 𝑋) ≠ 0 ) ∧ (𝑋 ∈ 𝐵 ∧ 𝑋 ≠ 0 )) → ((𝑦 ↑ 𝑋)(.r‘𝑅)𝑋) ≠ 0 ) |
| 44 | 37, 38, 39, 32, 42, 43 | syl122anc 1381 | . . . . 5 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ≠ 0 ) → ((𝑦 ↑ 𝑋)(.r‘𝑅)𝑋) ≠ 0 ) |
| 45 | 36, 44 | eqnetrd 2992 | . . . 4 ⊢ (((𝜑 ∧ 𝑦 ∈ ℕ0) ∧ (𝑦 ↑ 𝑋) ≠ 0 ) → ((𝑦 + 1) ↑ 𝑋) ≠ 0 ) |
| 46 | 14, 16, 18, 20, 29, 45 | nn0indd 12631 | . . 3 ⊢ ((𝜑 ∧ 𝑁 ∈ ℕ0) → (𝑁 ↑ 𝑋) ≠ 0 ) |
| 47 | 9, 46 | mpdan 687 | . 2 ⊢ (𝜑 → (𝑁 ↑ 𝑋) ≠ 0 ) |
| 48 | 12, 47 | eldifsnd 4751 | 1 ⊢ (𝜑 → (𝑁 ↑ 𝑋) ∈ (𝐵 ∖ { 0 })) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3911 {csn 4589 ‘cfv 6511 (class class class)co 7387 0cc0 11068 1c1 11069 + caddc 11071 ℕ0cn0 12442 Basecbs 17179 .rcmulr 17221 0gc0g 17402 Mndcmnd 18661 .gcmg 18999 mulGrpcmgp 20049 1rcur 20090 Ringcrg 20142 NzRingcnzr 20421 Domncdomn 20601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-seq 13967 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-plusg 17233 df-0g 17404 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-grp 18868 df-minusg 18869 df-mulg 19000 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-nzr 20422 df-domn 20604 |
| This theorem is referenced by: fidomncyc 42523 |
| Copyright terms: Public domain | W3C validator |