Users' Mathboxes Mathbox for Steven Nguyen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  domnexpgn0cl Structured version   Visualization version   GIF version

Theorem domnexpgn0cl 42511
Description: In a domain, a (nonnegative) power of a nonzero element is nonzero. (Contributed by SN, 6-Jul-2024.)
Hypotheses
Ref Expression
domnexpgn0cl.b 𝐵 = (Base‘𝑅)
domnexpgn0cl.0 0 = (0g𝑅)
domnexpgn0cl.e = (.g‘(mulGrp‘𝑅))
domnexpgn0cl.r (𝜑𝑅 ∈ Domn)
domnexpgn0cl.n (𝜑𝑁 ∈ ℕ0)
domnexpgn0cl.x (𝜑𝑋 ∈ (𝐵 ∖ { 0 }))
Assertion
Ref Expression
domnexpgn0cl (𝜑 → (𝑁 𝑋) ∈ (𝐵 ∖ { 0 }))

Proof of Theorem domnexpgn0cl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . 4 (mulGrp‘𝑅) = (mulGrp‘𝑅)
2 domnexpgn0cl.b . . . 4 𝐵 = (Base‘𝑅)
31, 2mgpbas 20054 . . 3 𝐵 = (Base‘(mulGrp‘𝑅))
4 domnexpgn0cl.e . . 3 = (.g‘(mulGrp‘𝑅))
5 domnexpgn0cl.r . . . 4 (𝜑𝑅 ∈ Domn)
6 domnring 20616 . . . 4 (𝑅 ∈ Domn → 𝑅 ∈ Ring)
71ringmgp 20148 . . . 4 (𝑅 ∈ Ring → (mulGrp‘𝑅) ∈ Mnd)
85, 6, 73syl 18 . . 3 (𝜑 → (mulGrp‘𝑅) ∈ Mnd)
9 domnexpgn0cl.n . . 3 (𝜑𝑁 ∈ ℕ0)
10 domnexpgn0cl.x . . . 4 (𝜑𝑋 ∈ (𝐵 ∖ { 0 }))
1110eldifad 3926 . . 3 (𝜑𝑋𝐵)
123, 4, 8, 9, 11mulgnn0cld 19027 . 2 (𝜑 → (𝑁 𝑋) ∈ 𝐵)
13 oveq1 7394 . . . . 5 (𝑥 = 0 → (𝑥 𝑋) = (0 𝑋))
1413neeq1d 2984 . . . 4 (𝑥 = 0 → ((𝑥 𝑋) ≠ 0 ↔ (0 𝑋) ≠ 0 ))
15 oveq1 7394 . . . . 5 (𝑥 = 𝑦 → (𝑥 𝑋) = (𝑦 𝑋))
1615neeq1d 2984 . . . 4 (𝑥 = 𝑦 → ((𝑥 𝑋) ≠ 0 ↔ (𝑦 𝑋) ≠ 0 ))
17 oveq1 7394 . . . . 5 (𝑥 = (𝑦 + 1) → (𝑥 𝑋) = ((𝑦 + 1) 𝑋))
1817neeq1d 2984 . . . 4 (𝑥 = (𝑦 + 1) → ((𝑥 𝑋) ≠ 0 ↔ ((𝑦 + 1) 𝑋) ≠ 0 ))
19 oveq1 7394 . . . . 5 (𝑥 = 𝑁 → (𝑥 𝑋) = (𝑁 𝑋))
2019neeq1d 2984 . . . 4 (𝑥 = 𝑁 → ((𝑥 𝑋) ≠ 0 ↔ (𝑁 𝑋) ≠ 0 ))
21 eqid 2729 . . . . . . . 8 (1r𝑅) = (1r𝑅)
221, 21ringidval 20092 . . . . . . 7 (1r𝑅) = (0g‘(mulGrp‘𝑅))
233, 22, 4mulg0 19006 . . . . . 6 (𝑋𝐵 → (0 𝑋) = (1r𝑅))
2411, 23syl 17 . . . . 5 (𝜑 → (0 𝑋) = (1r𝑅))
25 domnnzr 20615 . . . . . 6 (𝑅 ∈ Domn → 𝑅 ∈ NzRing)
26 domnexpgn0cl.0 . . . . . . 7 0 = (0g𝑅)
2721, 26nzrnz 20424 . . . . . 6 (𝑅 ∈ NzRing → (1r𝑅) ≠ 0 )
285, 25, 273syl 18 . . . . 5 (𝜑 → (1r𝑅) ≠ 0 )
2924, 28eqnetrd 2992 . . . 4 (𝜑 → (0 𝑋) ≠ 0 )
308ad2antrr 726 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ≠ 0 ) → (mulGrp‘𝑅) ∈ Mnd)
31 simplr 768 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ≠ 0 ) → 𝑦 ∈ ℕ0)
3211ad2antrr 726 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ≠ 0 ) → 𝑋𝐵)
33 eqid 2729 . . . . . . . 8 (.r𝑅) = (.r𝑅)
341, 33mgpplusg 20053 . . . . . . 7 (.r𝑅) = (+g‘(mulGrp‘𝑅))
353, 4, 34mulgnn0p1 19017 . . . . . 6 (((mulGrp‘𝑅) ∈ Mnd ∧ 𝑦 ∈ ℕ0𝑋𝐵) → ((𝑦 + 1) 𝑋) = ((𝑦 𝑋)(.r𝑅)𝑋))
3630, 31, 32, 35syl3anc 1373 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ≠ 0 ) → ((𝑦 + 1) 𝑋) = ((𝑦 𝑋)(.r𝑅)𝑋))
375ad2antrr 726 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ≠ 0 ) → 𝑅 ∈ Domn)
383, 4, 30, 31, 32mulgnn0cld 19027 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ≠ 0 ) → (𝑦 𝑋) ∈ 𝐵)
39 simpr 484 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ≠ 0 ) → (𝑦 𝑋) ≠ 0 )
40 eldifsni 4754 . . . . . . . 8 (𝑋 ∈ (𝐵 ∖ { 0 }) → 𝑋0 )
4110, 40syl 17 . . . . . . 7 (𝜑𝑋0 )
4241ad2antrr 726 . . . . . 6 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ≠ 0 ) → 𝑋0 )
432, 33, 26domnmuln0 20618 . . . . . 6 ((𝑅 ∈ Domn ∧ ((𝑦 𝑋) ∈ 𝐵 ∧ (𝑦 𝑋) ≠ 0 ) ∧ (𝑋𝐵𝑋0 )) → ((𝑦 𝑋)(.r𝑅)𝑋) ≠ 0 )
4437, 38, 39, 32, 42, 43syl122anc 1381 . . . . 5 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ≠ 0 ) → ((𝑦 𝑋)(.r𝑅)𝑋) ≠ 0 )
4536, 44eqnetrd 2992 . . . 4 (((𝜑𝑦 ∈ ℕ0) ∧ (𝑦 𝑋) ≠ 0 ) → ((𝑦 + 1) 𝑋) ≠ 0 )
4614, 16, 18, 20, 29, 45nn0indd 12631 . . 3 ((𝜑𝑁 ∈ ℕ0) → (𝑁 𝑋) ≠ 0 )
479, 46mpdan 687 . 2 (𝜑 → (𝑁 𝑋) ≠ 0 )
4812, 47eldifsnd 4751 1 (𝜑 → (𝑁 𝑋) ∈ (𝐵 ∖ { 0 }))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  cdif 3911  {csn 4589  cfv 6511  (class class class)co 7387  0cc0 11068  1c1 11069   + caddc 11071  0cn0 12442  Basecbs 17179  .rcmulr 17221  0gc0g 17402  Mndcmnd 18661  .gcmg 18999  mulGrpcmgp 20049  1rcur 20090  Ringcrg 20142  NzRingcnzr 20421  Domncdomn 20601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-fz 13469  df-seq 13967  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-plusg 17233  df-0g 17404  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-mulg 19000  df-cmn 19712  df-abl 19713  df-mgp 20050  df-rng 20062  df-ur 20091  df-ring 20144  df-nzr 20422  df-domn 20604
This theorem is referenced by:  fidomncyc  42523
  Copyright terms: Public domain W3C validator