Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dfblockliftmap2 Structured version   Visualization version   GIF version

Theorem dfblockliftmap2 38484
Description: Alternate definition of the block lift map. (Contributed by Peter Mazsa, 29-Jan-2026.)
Assertion
Ref Expression
dfblockliftmap2 (𝑅 BlockLiftMap 𝐴) = (𝑚 ∈ (𝐴 ∩ (dom 𝑅 ∖ {∅})) ↦ ([𝑚]𝑅 × 𝑚))
Distinct variable groups:   𝐴,𝑚   𝑅,𝑚

Proof of Theorem dfblockliftmap2
StepHypRef Expression
1 df-blockliftmap 38483 . 2 (𝑅 BlockLiftMap 𝐴) = (𝑚 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ↦ [𝑚](𝑅 ⋉ ( E ↾ 𝐴)))
2 elinel1 4148 . . . . 5 (𝑚 ∈ (𝐴 ∩ (dom 𝑅 ∖ {∅})) → 𝑚𝐴)
3 dmxrncnvepres2 38467 . . . . 5 dom (𝑅 ⋉ ( E ↾ 𝐴)) = (𝐴 ∩ (dom 𝑅 ∖ {∅}))
42, 3eleq2s 2849 . . . 4 (𝑚 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) → 𝑚𝐴)
5 xrnres2 38460 . . . . . . 7 ((𝑅 E ) ↾ 𝐴) = (𝑅 ⋉ ( E ↾ 𝐴))
65eceq2i 8664 . . . . . 6 [𝑚]((𝑅 E ) ↾ 𝐴) = [𝑚](𝑅 ⋉ ( E ↾ 𝐴))
7 elecreseq 8671 . . . . . 6 (𝑚𝐴 → [𝑚]((𝑅 E ) ↾ 𝐴) = [𝑚](𝑅 E ))
86, 7eqtr3id 2780 . . . . 5 (𝑚𝐴 → [𝑚](𝑅 ⋉ ( E ↾ 𝐴)) = [𝑚](𝑅 E ))
9 ecxrncnvep2 38444 . . . . 5 (𝑚𝐴 → [𝑚](𝑅 E ) = ([𝑚]𝑅 × 𝑚))
108, 9eqtrd 2766 . . . 4 (𝑚𝐴 → [𝑚](𝑅 ⋉ ( E ↾ 𝐴)) = ([𝑚]𝑅 × 𝑚))
114, 10syl 17 . . 3 (𝑚 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) → [𝑚](𝑅 ⋉ ( E ↾ 𝐴)) = ([𝑚]𝑅 × 𝑚))
1211mpteq2ia 5184 . 2 (𝑚 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ↦ [𝑚](𝑅 ⋉ ( E ↾ 𝐴))) = (𝑚 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ↦ ([𝑚]𝑅 × 𝑚))
133mpteq1i 5180 . 2 (𝑚 ∈ dom (𝑅 ⋉ ( E ↾ 𝐴)) ↦ ([𝑚]𝑅 × 𝑚)) = (𝑚 ∈ (𝐴 ∩ (dom 𝑅 ∖ {∅})) ↦ ([𝑚]𝑅 × 𝑚))
141, 12, 133eqtri 2758 1 (𝑅 BlockLiftMap 𝐴) = (𝑚 ∈ (𝐴 ∩ (dom 𝑅 ∖ {∅})) ↦ ([𝑚]𝑅 × 𝑚))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1541  wcel 2111  cdif 3894  cin 3896  c0 4280  {csn 4573  cmpt 5170   E cep 5513   × cxp 5612  ccnv 5613  dom cdm 5614  cres 5616  [cec 8620  cxrn 38224   BlockLiftMap cblockliftmap 38226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-eprel 5514  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fo 6487  df-fv 6489  df-oprab 7350  df-1st 7921  df-2nd 7922  df-ec 8624  df-xrn 38414  df-blockliftmap 38483
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator