| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfblockliftmap2 | Structured version Visualization version GIF version | ||
| Description: Alternate definition of the block lift map. (Contributed by Peter Mazsa, 29-Jan-2026.) |
| Ref | Expression |
|---|---|
| dfblockliftmap2 | ⊢ (𝑅 BlockLiftMap 𝐴) = (𝑚 ∈ (𝐴 ∩ (dom 𝑅 ∖ {∅})) ↦ ([𝑚]𝑅 × 𝑚)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-blockliftmap 38483 | . 2 ⊢ (𝑅 BlockLiftMap 𝐴) = (𝑚 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ↦ [𝑚](𝑅 ⋉ (◡ E ↾ 𝐴))) | |
| 2 | elinel1 4148 | . . . . 5 ⊢ (𝑚 ∈ (𝐴 ∩ (dom 𝑅 ∖ {∅})) → 𝑚 ∈ 𝐴) | |
| 3 | dmxrncnvepres2 38467 | . . . . 5 ⊢ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) = (𝐴 ∩ (dom 𝑅 ∖ {∅})) | |
| 4 | 2, 3 | eleq2s 2849 | . . . 4 ⊢ (𝑚 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) → 𝑚 ∈ 𝐴) |
| 5 | xrnres2 38460 | . . . . . . 7 ⊢ ((𝑅 ⋉ ◡ E ) ↾ 𝐴) = (𝑅 ⋉ (◡ E ↾ 𝐴)) | |
| 6 | 5 | eceq2i 8664 | . . . . . 6 ⊢ [𝑚]((𝑅 ⋉ ◡ E ) ↾ 𝐴) = [𝑚](𝑅 ⋉ (◡ E ↾ 𝐴)) |
| 7 | elecreseq 8671 | . . . . . 6 ⊢ (𝑚 ∈ 𝐴 → [𝑚]((𝑅 ⋉ ◡ E ) ↾ 𝐴) = [𝑚](𝑅 ⋉ ◡ E )) | |
| 8 | 6, 7 | eqtr3id 2780 | . . . . 5 ⊢ (𝑚 ∈ 𝐴 → [𝑚](𝑅 ⋉ (◡ E ↾ 𝐴)) = [𝑚](𝑅 ⋉ ◡ E )) |
| 9 | ecxrncnvep2 38444 | . . . . 5 ⊢ (𝑚 ∈ 𝐴 → [𝑚](𝑅 ⋉ ◡ E ) = ([𝑚]𝑅 × 𝑚)) | |
| 10 | 8, 9 | eqtrd 2766 | . . . 4 ⊢ (𝑚 ∈ 𝐴 → [𝑚](𝑅 ⋉ (◡ E ↾ 𝐴)) = ([𝑚]𝑅 × 𝑚)) |
| 11 | 4, 10 | syl 17 | . . 3 ⊢ (𝑚 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) → [𝑚](𝑅 ⋉ (◡ E ↾ 𝐴)) = ([𝑚]𝑅 × 𝑚)) |
| 12 | 11 | mpteq2ia 5184 | . 2 ⊢ (𝑚 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ↦ [𝑚](𝑅 ⋉ (◡ E ↾ 𝐴))) = (𝑚 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ↦ ([𝑚]𝑅 × 𝑚)) |
| 13 | 3 | mpteq1i 5180 | . 2 ⊢ (𝑚 ∈ dom (𝑅 ⋉ (◡ E ↾ 𝐴)) ↦ ([𝑚]𝑅 × 𝑚)) = (𝑚 ∈ (𝐴 ∩ (dom 𝑅 ∖ {∅})) ↦ ([𝑚]𝑅 × 𝑚)) |
| 14 | 1, 12, 13 | 3eqtri 2758 | 1 ⊢ (𝑅 BlockLiftMap 𝐴) = (𝑚 ∈ (𝐴 ∩ (dom 𝑅 ∖ {∅})) ↦ ([𝑚]𝑅 × 𝑚)) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ∈ wcel 2111 ∖ cdif 3894 ∩ cin 3896 ∅c0 4280 {csn 4573 ↦ cmpt 5170 E cep 5513 × cxp 5612 ◡ccnv 5613 dom cdm 5614 ↾ cres 5616 [cec 8620 ⋉ cxrn 38224 BlockLiftMap cblockliftmap 38226 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-eprel 5514 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-oprab 7350 df-1st 7921 df-2nd 7922 df-ec 8624 df-xrn 38414 df-blockliftmap 38483 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |