Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcosslsp Structured version   Visualization version   GIF version

Theorem lcosslsp 48417
Description: Lemma for lspeqlco 48418. (Contributed by AV, 20-Apr-2019.)
Hypothesis
Ref Expression
lspeqvlco.b 𝐵 = (Base‘𝑀)
Assertion
Ref Expression
lcosslsp ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) ⊆ ((LSpan‘𝑀)‘𝑉))

Proof of Theorem lcosslsp
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellcoellss 48414 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ 𝑠 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑠) → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦𝑠)
213exp 1119 . . . . . . . . 9 (𝑀 ∈ LMod → (𝑠 ∈ (LSubSp‘𝑀) → (𝑉𝑠 → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦𝑠)))
32ad2antrr 726 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → (𝑠 ∈ (LSubSp‘𝑀) → (𝑉𝑠 → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦𝑠)))
43imp 406 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) ∧ 𝑠 ∈ (LSubSp‘𝑀)) → (𝑉𝑠 → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦𝑠))
5 elequ1 2116 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦𝑠𝑥𝑠))
65rspcv 3587 . . . . . . . 8 (𝑥 ∈ (𝑀 LinCo 𝑉) → (∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦𝑠𝑥𝑠))
76ad2antlr 727 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) ∧ 𝑠 ∈ (LSubSp‘𝑀)) → (∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦𝑠𝑥𝑠))
84, 7syld 47 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) ∧ 𝑠 ∈ (LSubSp‘𝑀)) → (𝑉𝑠𝑥𝑠))
98ralrimiva 3126 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → ∀𝑠 ∈ (LSubSp‘𝑀)(𝑉𝑠𝑥𝑠))
10 vex 3454 . . . . . 6 𝑥 ∈ V
1110elintrab 4926 . . . . 5 (𝑥 {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉𝑠} ↔ ∀𝑠 ∈ (LSubSp‘𝑀)(𝑉𝑠𝑥𝑠))
129, 11sylibr 234 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑥 {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉𝑠})
13 simpll 766 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑀 ∈ LMod)
14 elpwi 4572 . . . . . 6 (𝑉 ∈ 𝒫 𝐵𝑉𝐵)
1514ad2antlr 727 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑉𝐵)
16 lspeqvlco.b . . . . . 6 𝐵 = (Base‘𝑀)
17 eqid 2730 . . . . . 6 (LSubSp‘𝑀) = (LSubSp‘𝑀)
18 eqid 2730 . . . . . 6 (LSpan‘𝑀) = (LSpan‘𝑀)
1916, 17, 18lspval 20887 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → ((LSpan‘𝑀)‘𝑉) = {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉𝑠})
2013, 15, 19syl2anc 584 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → ((LSpan‘𝑀)‘𝑉) = {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉𝑠})
2112, 20eleqtrrd 2832 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑥 ∈ ((LSpan‘𝑀)‘𝑉))
2221ex 412 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝑀 LinCo 𝑉) → 𝑥 ∈ ((LSpan‘𝑀)‘𝑉)))
2322ssrdv 3954 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) ⊆ ((LSpan‘𝑀)‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3045  {crab 3408  wss 3916  𝒫 cpw 4565   cint 4912  cfv 6513  (class class class)co 7389  Basecbs 17185  LModclmod 20772  LSubSpclss 20843  LSpanclspn 20883   LinCo clinco 48384
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713  ax-cnex 11130  ax-resscn 11131  ax-1cn 11132  ax-icn 11133  ax-addcl 11134  ax-addrcl 11135  ax-mulcl 11136  ax-mulrcl 11137  ax-mulcom 11138  ax-addass 11139  ax-mulass 11140  ax-distr 11141  ax-i2m1 11142  ax-1ne0 11143  ax-1rid 11144  ax-rnegex 11145  ax-rrecex 11146  ax-cnre 11147  ax-pre-lttri 11148  ax-pre-lttrn 11149  ax-pre-ltadd 11150  ax-pre-mulgt0 11151
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-pss 3936  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-int 4913  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-tr 5217  df-id 5535  df-eprel 5540  df-po 5548  df-so 5549  df-fr 5593  df-se 5594  df-we 5595  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-pred 6276  df-ord 6337  df-on 6338  df-lim 6339  df-suc 6340  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-isom 6522  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-om 7845  df-1st 7970  df-2nd 7971  df-supp 8142  df-frecs 8262  df-wrecs 8293  df-recs 8342  df-rdg 8380  df-1o 8436  df-er 8673  df-map 8803  df-en 8921  df-dom 8922  df-sdom 8923  df-fin 8924  df-fsupp 9319  df-oi 9469  df-card 9898  df-pnf 11216  df-mnf 11217  df-xr 11218  df-ltxr 11219  df-le 11220  df-sub 11413  df-neg 11414  df-nn 12188  df-2 12250  df-n0 12449  df-z 12536  df-uz 12800  df-fz 13475  df-fzo 13622  df-seq 13973  df-hash 14302  df-sets 17140  df-slot 17158  df-ndx 17170  df-base 17186  df-ress 17207  df-plusg 17239  df-0g 17410  df-gsum 17411  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18717  df-grp 18874  df-minusg 18875  df-sbg 18876  df-subg 19061  df-cntz 19255  df-cmn 19718  df-abl 19719  df-mgp 20056  df-ur 20097  df-ring 20150  df-lmod 20774  df-lss 20844  df-lsp 20884  df-linc 48385  df-lco 48386
This theorem is referenced by:  lspeqlco  48418
  Copyright terms: Public domain W3C validator