| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcosslsp | Structured version Visualization version GIF version | ||
| Description: Lemma for lspeqlco 48412. (Contributed by AV, 20-Apr-2019.) |
| Ref | Expression |
|---|---|
| lspeqvlco.b | ⊢ 𝐵 = (Base‘𝑀) |
| Ref | Expression |
|---|---|
| lcosslsp | ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) ⊆ ((LSpan‘𝑀)‘𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellcoellss 48408 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ LMod ∧ 𝑠 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑠) → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠) | |
| 2 | 1 | 3exp 1119 | . . . . . . . . 9 ⊢ (𝑀 ∈ LMod → (𝑠 ∈ (LSubSp‘𝑀) → (𝑉 ⊆ 𝑠 → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠))) |
| 3 | 2 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → (𝑠 ∈ (LSubSp‘𝑀) → (𝑉 ⊆ 𝑠 → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠))) |
| 4 | 3 | imp 406 | . . . . . . 7 ⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) ∧ 𝑠 ∈ (LSubSp‘𝑀)) → (𝑉 ⊆ 𝑠 → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠)) |
| 5 | elequ1 2116 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑠 ↔ 𝑥 ∈ 𝑠)) | |
| 6 | 5 | rspcv 3575 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝑀 LinCo 𝑉) → (∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠 → 𝑥 ∈ 𝑠)) |
| 7 | 6 | ad2antlr 727 | . . . . . . 7 ⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) ∧ 𝑠 ∈ (LSubSp‘𝑀)) → (∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠 → 𝑥 ∈ 𝑠)) |
| 8 | 4, 7 | syld 47 | . . . . . 6 ⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) ∧ 𝑠 ∈ (LSubSp‘𝑀)) → (𝑉 ⊆ 𝑠 → 𝑥 ∈ 𝑠)) |
| 9 | 8 | ralrimiva 3121 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → ∀𝑠 ∈ (LSubSp‘𝑀)(𝑉 ⊆ 𝑠 → 𝑥 ∈ 𝑠)) |
| 10 | vex 3442 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 11 | 10 | elintrab 4913 | . . . . 5 ⊢ (𝑥 ∈ ∩ {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉 ⊆ 𝑠} ↔ ∀𝑠 ∈ (LSubSp‘𝑀)(𝑉 ⊆ 𝑠 → 𝑥 ∈ 𝑠)) |
| 12 | 9, 11 | sylibr 234 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑥 ∈ ∩ {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉 ⊆ 𝑠}) |
| 13 | simpll 766 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑀 ∈ LMod) | |
| 14 | elpwi 4560 | . . . . . 6 ⊢ (𝑉 ∈ 𝒫 𝐵 → 𝑉 ⊆ 𝐵) | |
| 15 | 14 | ad2antlr 727 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑉 ⊆ 𝐵) |
| 16 | lspeqvlco.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
| 17 | eqid 2729 | . . . . . 6 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
| 18 | eqid 2729 | . . . . . 6 ⊢ (LSpan‘𝑀) = (LSpan‘𝑀) | |
| 19 | 16, 17, 18 | lspval 20896 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → ((LSpan‘𝑀)‘𝑉) = ∩ {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉 ⊆ 𝑠}) |
| 20 | 13, 15, 19 | syl2anc 584 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → ((LSpan‘𝑀)‘𝑉) = ∩ {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉 ⊆ 𝑠}) |
| 21 | 12, 20 | eleqtrrd 2831 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑥 ∈ ((LSpan‘𝑀)‘𝑉)) |
| 22 | 21 | ex 412 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝑀 LinCo 𝑉) → 𝑥 ∈ ((LSpan‘𝑀)‘𝑉))) |
| 23 | 22 | ssrdv 3943 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) ⊆ ((LSpan‘𝑀)‘𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3396 ⊆ wss 3905 𝒫 cpw 4553 ∩ cint 4899 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 LModclmod 20781 LSubSpclss 20852 LSpanclspn 20892 LinCo clinco 48378 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-n0 12403 df-z 12490 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-0g 17363 df-gsum 17364 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-subg 19020 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-ur 20085 df-ring 20138 df-lmod 20783 df-lss 20853 df-lsp 20893 df-linc 48379 df-lco 48380 |
| This theorem is referenced by: lspeqlco 48412 |
| Copyright terms: Public domain | W3C validator |