| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lcosslsp | Structured version Visualization version GIF version | ||
| Description: Lemma for lspeqlco 48428. (Contributed by AV, 20-Apr-2019.) |
| Ref | Expression |
|---|---|
| lspeqvlco.b | ⊢ 𝐵 = (Base‘𝑀) |
| Ref | Expression |
|---|---|
| lcosslsp | ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) ⊆ ((LSpan‘𝑀)‘𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellcoellss 48424 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ LMod ∧ 𝑠 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑠) → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠) | |
| 2 | 1 | 3exp 1119 | . . . . . . . . 9 ⊢ (𝑀 ∈ LMod → (𝑠 ∈ (LSubSp‘𝑀) → (𝑉 ⊆ 𝑠 → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠))) |
| 3 | 2 | ad2antrr 726 | . . . . . . . 8 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → (𝑠 ∈ (LSubSp‘𝑀) → (𝑉 ⊆ 𝑠 → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠))) |
| 4 | 3 | imp 406 | . . . . . . 7 ⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) ∧ 𝑠 ∈ (LSubSp‘𝑀)) → (𝑉 ⊆ 𝑠 → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠)) |
| 5 | elequ1 2116 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑠 ↔ 𝑥 ∈ 𝑠)) | |
| 6 | 5 | rspcv 3584 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝑀 LinCo 𝑉) → (∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠 → 𝑥 ∈ 𝑠)) |
| 7 | 6 | ad2antlr 727 | . . . . . . 7 ⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) ∧ 𝑠 ∈ (LSubSp‘𝑀)) → (∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠 → 𝑥 ∈ 𝑠)) |
| 8 | 4, 7 | syld 47 | . . . . . 6 ⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) ∧ 𝑠 ∈ (LSubSp‘𝑀)) → (𝑉 ⊆ 𝑠 → 𝑥 ∈ 𝑠)) |
| 9 | 8 | ralrimiva 3125 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → ∀𝑠 ∈ (LSubSp‘𝑀)(𝑉 ⊆ 𝑠 → 𝑥 ∈ 𝑠)) |
| 10 | vex 3451 | . . . . . 6 ⊢ 𝑥 ∈ V | |
| 11 | 10 | elintrab 4924 | . . . . 5 ⊢ (𝑥 ∈ ∩ {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉 ⊆ 𝑠} ↔ ∀𝑠 ∈ (LSubSp‘𝑀)(𝑉 ⊆ 𝑠 → 𝑥 ∈ 𝑠)) |
| 12 | 9, 11 | sylibr 234 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑥 ∈ ∩ {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉 ⊆ 𝑠}) |
| 13 | simpll 766 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑀 ∈ LMod) | |
| 14 | elpwi 4570 | . . . . . 6 ⊢ (𝑉 ∈ 𝒫 𝐵 → 𝑉 ⊆ 𝐵) | |
| 15 | 14 | ad2antlr 727 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑉 ⊆ 𝐵) |
| 16 | lspeqvlco.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
| 17 | eqid 2729 | . . . . . 6 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
| 18 | eqid 2729 | . . . . . 6 ⊢ (LSpan‘𝑀) = (LSpan‘𝑀) | |
| 19 | 16, 17, 18 | lspval 20881 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → ((LSpan‘𝑀)‘𝑉) = ∩ {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉 ⊆ 𝑠}) |
| 20 | 13, 15, 19 | syl2anc 584 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → ((LSpan‘𝑀)‘𝑉) = ∩ {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉 ⊆ 𝑠}) |
| 21 | 12, 20 | eleqtrrd 2831 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑥 ∈ ((LSpan‘𝑀)‘𝑉)) |
| 22 | 21 | ex 412 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝑀 LinCo 𝑉) → 𝑥 ∈ ((LSpan‘𝑀)‘𝑉))) |
| 23 | 22 | ssrdv 3952 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) ⊆ ((LSpan‘𝑀)‘𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3405 ⊆ wss 3914 𝒫 cpw 4563 ∩ cint 4910 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 LModclmod 20766 LSubSpclss 20837 LSpanclspn 20877 LinCo clinco 48394 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-isom 6520 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-supp 8140 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-fsupp 9313 df-oi 9463 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-fzo 13616 df-seq 13967 df-hash 14296 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-0g 17404 df-gsum 17405 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-cntz 19249 df-cmn 19712 df-abl 19713 df-mgp 20050 df-ur 20091 df-ring 20144 df-lmod 20768 df-lss 20838 df-lsp 20878 df-linc 48395 df-lco 48396 |
| This theorem is referenced by: lspeqlco 48428 |
| Copyright terms: Public domain | W3C validator |