Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lcosslsp Structured version   Visualization version   GIF version

Theorem lcosslsp 48411
Description: Lemma for lspeqlco 48412. (Contributed by AV, 20-Apr-2019.)
Hypothesis
Ref Expression
lspeqvlco.b 𝐵 = (Base‘𝑀)
Assertion
Ref Expression
lcosslsp ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) ⊆ ((LSpan‘𝑀)‘𝑉))

Proof of Theorem lcosslsp
Dummy variables 𝑠 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ellcoellss 48408 . . . . . . . . . 10 ((𝑀 ∈ LMod ∧ 𝑠 ∈ (LSubSp‘𝑀) ∧ 𝑉𝑠) → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦𝑠)
213exp 1119 . . . . . . . . 9 (𝑀 ∈ LMod → (𝑠 ∈ (LSubSp‘𝑀) → (𝑉𝑠 → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦𝑠)))
32ad2antrr 726 . . . . . . . 8 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → (𝑠 ∈ (LSubSp‘𝑀) → (𝑉𝑠 → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦𝑠)))
43imp 406 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) ∧ 𝑠 ∈ (LSubSp‘𝑀)) → (𝑉𝑠 → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦𝑠))
5 elequ1 2116 . . . . . . . . 9 (𝑦 = 𝑥 → (𝑦𝑠𝑥𝑠))
65rspcv 3575 . . . . . . . 8 (𝑥 ∈ (𝑀 LinCo 𝑉) → (∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦𝑠𝑥𝑠))
76ad2antlr 727 . . . . . . 7 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) ∧ 𝑠 ∈ (LSubSp‘𝑀)) → (∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦𝑠𝑥𝑠))
84, 7syld 47 . . . . . 6 ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) ∧ 𝑠 ∈ (LSubSp‘𝑀)) → (𝑉𝑠𝑥𝑠))
98ralrimiva 3121 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → ∀𝑠 ∈ (LSubSp‘𝑀)(𝑉𝑠𝑥𝑠))
10 vex 3442 . . . . . 6 𝑥 ∈ V
1110elintrab 4913 . . . . 5 (𝑥 {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉𝑠} ↔ ∀𝑠 ∈ (LSubSp‘𝑀)(𝑉𝑠𝑥𝑠))
129, 11sylibr 234 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑥 {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉𝑠})
13 simpll 766 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑀 ∈ LMod)
14 elpwi 4560 . . . . . 6 (𝑉 ∈ 𝒫 𝐵𝑉𝐵)
1514ad2antlr 727 . . . . 5 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑉𝐵)
16 lspeqvlco.b . . . . . 6 𝐵 = (Base‘𝑀)
17 eqid 2729 . . . . . 6 (LSubSp‘𝑀) = (LSubSp‘𝑀)
18 eqid 2729 . . . . . 6 (LSpan‘𝑀) = (LSpan‘𝑀)
1916, 17, 18lspval 20896 . . . . 5 ((𝑀 ∈ LMod ∧ 𝑉𝐵) → ((LSpan‘𝑀)‘𝑉) = {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉𝑠})
2013, 15, 19syl2anc 584 . . . 4 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → ((LSpan‘𝑀)‘𝑉) = {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉𝑠})
2112, 20eleqtrrd 2831 . . 3 (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑥 ∈ ((LSpan‘𝑀)‘𝑉))
2221ex 412 . 2 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝑀 LinCo 𝑉) → 𝑥 ∈ ((LSpan‘𝑀)‘𝑉)))
2322ssrdv 3943 1 ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) ⊆ ((LSpan‘𝑀)‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  {crab 3396  wss 3905  𝒫 cpw 4553   cint 4899  cfv 6486  (class class class)co 7353  Basecbs 17138  LModclmod 20781  LSubSpclss 20852  LSpanclspn 20892   LinCo clinco 48378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-er 8632  df-map 8762  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-oi 9421  df-card 9854  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-nn 12147  df-2 12209  df-n0 12403  df-z 12490  df-uz 12754  df-fz 13429  df-fzo 13576  df-seq 13927  df-hash 14256  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-0g 17363  df-gsum 17364  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-grp 18833  df-minusg 18834  df-sbg 18835  df-subg 19020  df-cntz 19214  df-cmn 19679  df-abl 19680  df-mgp 20044  df-ur 20085  df-ring 20138  df-lmod 20783  df-lss 20853  df-lsp 20893  df-linc 48379  df-lco 48380
This theorem is referenced by:  lspeqlco  48412
  Copyright terms: Public domain W3C validator