Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcosslsp | Structured version Visualization version GIF version |
Description: Lemma for lspeqlco 45838. (Contributed by AV, 20-Apr-2019.) |
Ref | Expression |
---|---|
lspeqvlco.b | ⊢ 𝐵 = (Base‘𝑀) |
Ref | Expression |
---|---|
lcosslsp | ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) ⊆ ((LSpan‘𝑀)‘𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellcoellss 45834 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ LMod ∧ 𝑠 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑠) → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠) | |
2 | 1 | 3exp 1119 | . . . . . . . . 9 ⊢ (𝑀 ∈ LMod → (𝑠 ∈ (LSubSp‘𝑀) → (𝑉 ⊆ 𝑠 → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠))) |
3 | 2 | ad2antrr 724 | . . . . . . . 8 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → (𝑠 ∈ (LSubSp‘𝑀) → (𝑉 ⊆ 𝑠 → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠))) |
4 | 3 | imp 408 | . . . . . . 7 ⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) ∧ 𝑠 ∈ (LSubSp‘𝑀)) → (𝑉 ⊆ 𝑠 → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠)) |
5 | elequ1 2111 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑠 ↔ 𝑥 ∈ 𝑠)) | |
6 | 5 | rspcv 3562 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝑀 LinCo 𝑉) → (∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠 → 𝑥 ∈ 𝑠)) |
7 | 6 | ad2antlr 725 | . . . . . . 7 ⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) ∧ 𝑠 ∈ (LSubSp‘𝑀)) → (∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠 → 𝑥 ∈ 𝑠)) |
8 | 4, 7 | syld 47 | . . . . . 6 ⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) ∧ 𝑠 ∈ (LSubSp‘𝑀)) → (𝑉 ⊆ 𝑠 → 𝑥 ∈ 𝑠)) |
9 | 8 | ralrimiva 3140 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → ∀𝑠 ∈ (LSubSp‘𝑀)(𝑉 ⊆ 𝑠 → 𝑥 ∈ 𝑠)) |
10 | vex 3441 | . . . . . 6 ⊢ 𝑥 ∈ V | |
11 | 10 | elintrab 4898 | . . . . 5 ⊢ (𝑥 ∈ ∩ {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉 ⊆ 𝑠} ↔ ∀𝑠 ∈ (LSubSp‘𝑀)(𝑉 ⊆ 𝑠 → 𝑥 ∈ 𝑠)) |
12 | 9, 11 | sylibr 233 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑥 ∈ ∩ {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉 ⊆ 𝑠}) |
13 | simpll 765 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑀 ∈ LMod) | |
14 | elpwi 4546 | . . . . . 6 ⊢ (𝑉 ∈ 𝒫 𝐵 → 𝑉 ⊆ 𝐵) | |
15 | 14 | ad2antlr 725 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑉 ⊆ 𝐵) |
16 | lspeqvlco.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
17 | eqid 2736 | . . . . . 6 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
18 | eqid 2736 | . . . . . 6 ⊢ (LSpan‘𝑀) = (LSpan‘𝑀) | |
19 | 16, 17, 18 | lspval 20282 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → ((LSpan‘𝑀)‘𝑉) = ∩ {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉 ⊆ 𝑠}) |
20 | 13, 15, 19 | syl2anc 585 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → ((LSpan‘𝑀)‘𝑉) = ∩ {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉 ⊆ 𝑠}) |
21 | 12, 20 | eleqtrrd 2840 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑥 ∈ ((LSpan‘𝑀)‘𝑉)) |
22 | 21 | ex 414 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝑀 LinCo 𝑉) → 𝑥 ∈ ((LSpan‘𝑀)‘𝑉))) |
23 | 22 | ssrdv 3932 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) ⊆ ((LSpan‘𝑀)‘𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ∀wral 3062 {crab 3284 ⊆ wss 3892 𝒫 cpw 4539 ∩ cint 4886 ‘cfv 6458 (class class class)co 7307 Basecbs 16957 LModclmod 20168 LSubSpclss 20238 LSpanclspn 20278 LinCo clinco 45804 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2707 ax-rep 5218 ax-sep 5232 ax-nul 5239 ax-pow 5297 ax-pr 5361 ax-un 7620 ax-cnex 10973 ax-resscn 10974 ax-1cn 10975 ax-icn 10976 ax-addcl 10977 ax-addrcl 10978 ax-mulcl 10979 ax-mulrcl 10980 ax-mulcom 10981 ax-addass 10982 ax-mulass 10983 ax-distr 10984 ax-i2m1 10985 ax-1ne0 10986 ax-1rid 10987 ax-rnegex 10988 ax-rrecex 10989 ax-cnre 10990 ax-pre-lttri 10991 ax-pre-lttrn 10992 ax-pre-ltadd 10993 ax-pre-mulgt0 10994 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3285 df-reu 3286 df-rab 3287 df-v 3439 df-sbc 3722 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-pss 3911 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-int 4887 df-iun 4933 df-br 5082 df-opab 5144 df-mpt 5165 df-tr 5199 df-id 5500 df-eprel 5506 df-po 5514 df-so 5515 df-fr 5555 df-se 5556 df-we 5557 df-xp 5606 df-rel 5607 df-cnv 5608 df-co 5609 df-dm 5610 df-rn 5611 df-res 5612 df-ima 5613 df-pred 6217 df-ord 6284 df-on 6285 df-lim 6286 df-suc 6287 df-iota 6410 df-fun 6460 df-fn 6461 df-f 6462 df-f1 6463 df-fo 6464 df-f1o 6465 df-fv 6466 df-isom 6467 df-riota 7264 df-ov 7310 df-oprab 7311 df-mpo 7312 df-om 7745 df-1st 7863 df-2nd 7864 df-supp 8009 df-frecs 8128 df-wrecs 8159 df-recs 8233 df-rdg 8272 df-1o 8328 df-er 8529 df-map 8648 df-en 8765 df-dom 8766 df-sdom 8767 df-fin 8768 df-fsupp 9173 df-oi 9313 df-card 9741 df-pnf 11057 df-mnf 11058 df-xr 11059 df-ltxr 11060 df-le 11061 df-sub 11253 df-neg 11254 df-nn 12020 df-2 12082 df-n0 12280 df-z 12366 df-uz 12629 df-fz 13286 df-fzo 13429 df-seq 13768 df-hash 14091 df-sets 16910 df-slot 16928 df-ndx 16940 df-base 16958 df-ress 16987 df-plusg 17020 df-0g 17197 df-gsum 17198 df-mgm 18371 df-sgrp 18420 df-mnd 18431 df-submnd 18476 df-grp 18625 df-minusg 18626 df-sbg 18627 df-subg 18797 df-cntz 18968 df-cmn 19433 df-abl 19434 df-mgp 19766 df-ur 19783 df-ring 19830 df-lmod 20170 df-lss 20239 df-lsp 20279 df-linc 45805 df-lco 45806 |
This theorem is referenced by: lspeqlco 45838 |
Copyright terms: Public domain | W3C validator |