![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lcosslsp | Structured version Visualization version GIF version |
Description: Lemma for lspeqlco 43257. (Contributed by AV, 20-Apr-2019.) |
Ref | Expression |
---|---|
lspeqvlco.b | ⊢ 𝐵 = (Base‘𝑀) |
Ref | Expression |
---|---|
lcosslsp | ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) ⊆ ((LSpan‘𝑀)‘𝑉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellcoellss 43253 | . . . . . . . . . 10 ⊢ ((𝑀 ∈ LMod ∧ 𝑠 ∈ (LSubSp‘𝑀) ∧ 𝑉 ⊆ 𝑠) → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠) | |
2 | 1 | 3exp 1109 | . . . . . . . . 9 ⊢ (𝑀 ∈ LMod → (𝑠 ∈ (LSubSp‘𝑀) → (𝑉 ⊆ 𝑠 → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠))) |
3 | 2 | ad2antrr 716 | . . . . . . . 8 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → (𝑠 ∈ (LSubSp‘𝑀) → (𝑉 ⊆ 𝑠 → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠))) |
4 | 3 | imp 397 | . . . . . . 7 ⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) ∧ 𝑠 ∈ (LSubSp‘𝑀)) → (𝑉 ⊆ 𝑠 → ∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠)) |
5 | elequ1 2114 | . . . . . . . . 9 ⊢ (𝑦 = 𝑥 → (𝑦 ∈ 𝑠 ↔ 𝑥 ∈ 𝑠)) | |
6 | 5 | rspcv 3507 | . . . . . . . 8 ⊢ (𝑥 ∈ (𝑀 LinCo 𝑉) → (∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠 → 𝑥 ∈ 𝑠)) |
7 | 6 | ad2antlr 717 | . . . . . . 7 ⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) ∧ 𝑠 ∈ (LSubSp‘𝑀)) → (∀𝑦 ∈ (𝑀 LinCo 𝑉)𝑦 ∈ 𝑠 → 𝑥 ∈ 𝑠)) |
8 | 4, 7 | syld 47 | . . . . . 6 ⊢ ((((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) ∧ 𝑠 ∈ (LSubSp‘𝑀)) → (𝑉 ⊆ 𝑠 → 𝑥 ∈ 𝑠)) |
9 | 8 | ralrimiva 3148 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → ∀𝑠 ∈ (LSubSp‘𝑀)(𝑉 ⊆ 𝑠 → 𝑥 ∈ 𝑠)) |
10 | vex 3401 | . . . . . 6 ⊢ 𝑥 ∈ V | |
11 | 10 | elintrab 4724 | . . . . 5 ⊢ (𝑥 ∈ ∩ {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉 ⊆ 𝑠} ↔ ∀𝑠 ∈ (LSubSp‘𝑀)(𝑉 ⊆ 𝑠 → 𝑥 ∈ 𝑠)) |
12 | 9, 11 | sylibr 226 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑥 ∈ ∩ {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉 ⊆ 𝑠}) |
13 | simpll 757 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑀 ∈ LMod) | |
14 | elpwi 4389 | . . . . . 6 ⊢ (𝑉 ∈ 𝒫 𝐵 → 𝑉 ⊆ 𝐵) | |
15 | 14 | ad2antlr 717 | . . . . 5 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑉 ⊆ 𝐵) |
16 | lspeqvlco.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
17 | eqid 2778 | . . . . . 6 ⊢ (LSubSp‘𝑀) = (LSubSp‘𝑀) | |
18 | eqid 2778 | . . . . . 6 ⊢ (LSpan‘𝑀) = (LSpan‘𝑀) | |
19 | 16, 17, 18 | lspval 19381 | . . . . 5 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ⊆ 𝐵) → ((LSpan‘𝑀)‘𝑉) = ∩ {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉 ⊆ 𝑠}) |
20 | 13, 15, 19 | syl2anc 579 | . . . 4 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → ((LSpan‘𝑀)‘𝑉) = ∩ {𝑠 ∈ (LSubSp‘𝑀) ∣ 𝑉 ⊆ 𝑠}) |
21 | 12, 20 | eleqtrrd 2862 | . . 3 ⊢ (((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) ∧ 𝑥 ∈ (𝑀 LinCo 𝑉)) → 𝑥 ∈ ((LSpan‘𝑀)‘𝑉)) |
22 | 21 | ex 403 | . 2 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑥 ∈ (𝑀 LinCo 𝑉) → 𝑥 ∈ ((LSpan‘𝑀)‘𝑉))) |
23 | 22 | ssrdv 3827 | 1 ⊢ ((𝑀 ∈ LMod ∧ 𝑉 ∈ 𝒫 𝐵) → (𝑀 LinCo 𝑉) ⊆ ((LSpan‘𝑀)‘𝑉)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 386 = wceq 1601 ∈ wcel 2107 ∀wral 3090 {crab 3094 ⊆ wss 3792 𝒫 cpw 4379 ∩ cint 4712 ‘cfv 6137 (class class class)co 6924 Basecbs 16266 LModclmod 19266 LSubSpclss 19335 LSpanclspn 19377 LinCo clinco 43223 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1839 ax-4 1853 ax-5 1953 ax-6 2021 ax-7 2055 ax-8 2109 ax-9 2116 ax-10 2135 ax-11 2150 ax-12 2163 ax-13 2334 ax-ext 2754 ax-rep 5008 ax-sep 5019 ax-nul 5027 ax-pow 5079 ax-pr 5140 ax-un 7228 ax-cnex 10330 ax-resscn 10331 ax-1cn 10332 ax-icn 10333 ax-addcl 10334 ax-addrcl 10335 ax-mulcl 10336 ax-mulrcl 10337 ax-mulcom 10338 ax-addass 10339 ax-mulass 10340 ax-distr 10341 ax-i2m1 10342 ax-1ne0 10343 ax-1rid 10344 ax-rnegex 10345 ax-rrecex 10346 ax-cnre 10347 ax-pre-lttri 10348 ax-pre-lttrn 10349 ax-pre-ltadd 10350 ax-pre-mulgt0 10351 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 837 df-3or 1072 df-3an 1073 df-tru 1605 df-ex 1824 df-nf 1828 df-sb 2012 df-mo 2551 df-eu 2587 df-clab 2764 df-cleq 2770 df-clel 2774 df-nfc 2921 df-ne 2970 df-nel 3076 df-ral 3095 df-rex 3096 df-reu 3097 df-rmo 3098 df-rab 3099 df-v 3400 df-sbc 3653 df-csb 3752 df-dif 3795 df-un 3797 df-in 3799 df-ss 3806 df-pss 3808 df-nul 4142 df-if 4308 df-pw 4381 df-sn 4399 df-pr 4401 df-tp 4403 df-op 4405 df-uni 4674 df-int 4713 df-iun 4757 df-br 4889 df-opab 4951 df-mpt 4968 df-tr 4990 df-id 5263 df-eprel 5268 df-po 5276 df-so 5277 df-fr 5316 df-se 5317 df-we 5318 df-xp 5363 df-rel 5364 df-cnv 5365 df-co 5366 df-dm 5367 df-rn 5368 df-res 5369 df-ima 5370 df-pred 5935 df-ord 5981 df-on 5982 df-lim 5983 df-suc 5984 df-iota 6101 df-fun 6139 df-fn 6140 df-f 6141 df-f1 6142 df-fo 6143 df-f1o 6144 df-fv 6145 df-isom 6146 df-riota 6885 df-ov 6927 df-oprab 6928 df-mpt2 6929 df-om 7346 df-1st 7447 df-2nd 7448 df-supp 7579 df-wrecs 7691 df-recs 7753 df-rdg 7791 df-1o 7845 df-oadd 7849 df-er 8028 df-map 8144 df-en 8244 df-dom 8245 df-sdom 8246 df-fin 8247 df-fsupp 8566 df-oi 8706 df-card 9100 df-pnf 10415 df-mnf 10416 df-xr 10417 df-ltxr 10418 df-le 10419 df-sub 10610 df-neg 10611 df-nn 11380 df-2 11443 df-n0 11648 df-z 11734 df-uz 11998 df-fz 12649 df-fzo 12790 df-seq 13125 df-hash 13442 df-ndx 16269 df-slot 16270 df-base 16272 df-sets 16273 df-ress 16274 df-plusg 16362 df-0g 16499 df-gsum 16500 df-mgm 17639 df-sgrp 17681 df-mnd 17692 df-submnd 17733 df-grp 17823 df-minusg 17824 df-sbg 17825 df-subg 17986 df-cntz 18144 df-cmn 18592 df-abl 18593 df-mgp 18888 df-ur 18900 df-ring 18947 df-lmod 19268 df-lss 19336 df-lsp 19378 df-linc 43224 df-lco 43225 |
This theorem is referenced by: lspeqlco 43257 |
Copyright terms: Public domain | W3C validator |