| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > elpclN | Structured version Visualization version GIF version | ||
| Description: Membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| pclfval.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| pclfval.s | ⊢ 𝑆 = (PSubSp‘𝐾) |
| pclfval.c | ⊢ 𝑈 = (PCl‘𝐾) |
| elpcl.q | ⊢ 𝑄 ∈ V |
| Ref | Expression |
|---|---|
| elpclN | ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑄 ∈ (𝑈‘𝑋) ↔ ∀𝑦 ∈ 𝑆 (𝑋 ⊆ 𝑦 → 𝑄 ∈ 𝑦))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pclfval.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 2 | pclfval.s | . . . 4 ⊢ 𝑆 = (PSubSp‘𝐾) | |
| 3 | pclfval.c | . . . 4 ⊢ 𝑈 = (PCl‘𝐾) | |
| 4 | 1, 2, 3 | pclvalN 39869 | . . 3 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑈‘𝑋) = ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦}) |
| 5 | 4 | eleq2d 2814 | . 2 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑄 ∈ (𝑈‘𝑋) ↔ 𝑄 ∈ ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦})) |
| 6 | elpcl.q | . . 3 ⊢ 𝑄 ∈ V | |
| 7 | 6 | elintrab 4913 | . 2 ⊢ (𝑄 ∈ ∩ {𝑦 ∈ 𝑆 ∣ 𝑋 ⊆ 𝑦} ↔ ∀𝑦 ∈ 𝑆 (𝑋 ⊆ 𝑦 → 𝑄 ∈ 𝑦)) |
| 8 | 5, 7 | bitrdi 287 | 1 ⊢ ((𝐾 ∈ 𝑉 ∧ 𝑋 ⊆ 𝐴) → (𝑄 ∈ (𝑈‘𝑋) ↔ ∀𝑦 ∈ 𝑆 (𝑋 ⊆ 𝑦 → 𝑄 ∈ 𝑦))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3396 Vcvv 3438 ⊆ wss 3905 ∩ cint 4899 ‘cfv 6486 Atomscatm 39241 PSubSpcpsubsp 39475 PClcpclN 39866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-psubsp 39482 df-pclN 39867 |
| This theorem is referenced by: pclfinclN 39929 |
| Copyright terms: Public domain | W3C validator |