![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpclN | Structured version Visualization version GIF version |
Description: Membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pclfval.a | β’ π΄ = (AtomsβπΎ) |
pclfval.s | β’ π = (PSubSpβπΎ) |
pclfval.c | β’ π = (PClβπΎ) |
elpcl.q | β’ π β V |
Ref | Expression |
---|---|
elpclN | β’ ((πΎ β π β§ π β π΄) β (π β (πβπ) β βπ¦ β π (π β π¦ β π β π¦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pclfval.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
2 | pclfval.s | . . . 4 β’ π = (PSubSpβπΎ) | |
3 | pclfval.c | . . . 4 β’ π = (PClβπΎ) | |
4 | 1, 2, 3 | pclvalN 39363 | . . 3 β’ ((πΎ β π β§ π β π΄) β (πβπ) = β© {π¦ β π β£ π β π¦}) |
5 | 4 | eleq2d 2815 | . 2 β’ ((πΎ β π β§ π β π΄) β (π β (πβπ) β π β β© {π¦ β π β£ π β π¦})) |
6 | elpcl.q | . . 3 β’ π β V | |
7 | 6 | elintrab 4963 | . 2 β’ (π β β© {π¦ β π β£ π β π¦} β βπ¦ β π (π β π¦ β π β π¦)) |
8 | 5, 7 | bitrdi 287 | 1 β’ ((πΎ β π β§ π β π΄) β (π β (πβπ) β βπ¦ β π (π β π¦ β π β π¦))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 395 = wceq 1534 β wcel 2099 βwral 3058 {crab 3429 Vcvv 3471 β wss 3947 β© cint 4949 βcfv 6548 Atomscatm 38735 PSubSpcpsubsp 38969 PClcpclN 39360 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-ral 3059 df-rex 3068 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-ov 7423 df-psubsp 38976 df-pclN 39361 |
This theorem is referenced by: pclfinclN 39423 |
Copyright terms: Public domain | W3C validator |