![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elpclN | Structured version Visualization version GIF version |
Description: Membership in the projective subspace closure function. (Contributed by NM, 13-Sep-2013.) (New usage is discouraged.) |
Ref | Expression |
---|---|
pclfval.a | β’ π΄ = (AtomsβπΎ) |
pclfval.s | β’ π = (PSubSpβπΎ) |
pclfval.c | β’ π = (PClβπΎ) |
elpcl.q | β’ π β V |
Ref | Expression |
---|---|
elpclN | β’ ((πΎ β π β§ π β π΄) β (π β (πβπ) β βπ¦ β π (π β π¦ β π β π¦))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pclfval.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
2 | pclfval.s | . . . 4 β’ π = (PSubSpβπΎ) | |
3 | pclfval.c | . . . 4 β’ π = (PClβπΎ) | |
4 | 1, 2, 3 | pclvalN 38761 | . . 3 β’ ((πΎ β π β§ π β π΄) β (πβπ) = β© {π¦ β π β£ π β π¦}) |
5 | 4 | eleq2d 2820 | . 2 β’ ((πΎ β π β§ π β π΄) β (π β (πβπ) β π β β© {π¦ β π β£ π β π¦})) |
6 | elpcl.q | . . 3 β’ π β V | |
7 | 6 | elintrab 4965 | . 2 β’ (π β β© {π¦ β π β£ π β π¦} β βπ¦ β π (π β π¦ β π β π¦)) |
8 | 5, 7 | bitrdi 287 | 1 β’ ((πΎ β π β§ π β π΄) β (π β (πβπ) β βπ¦ β π (π β π¦ β π β π¦))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β wb 205 β§ wa 397 = wceq 1542 β wcel 2107 βwral 3062 {crab 3433 Vcvv 3475 β wss 3949 β© cint 4951 βcfv 6544 Atomscatm 38133 PSubSpcpsubsp 38367 PClcpclN 38758 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-psubsp 38374 df-pclN 38759 |
This theorem is referenced by: pclfinclN 38821 |
Copyright terms: Public domain | W3C validator |