| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > naddelim | Structured version Visualization version GIF version | ||
| Description: Ordinal less-than is preserved by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.) |
| Ref | Expression |
|---|---|
| naddelim | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7360 | . . . . . . . . 9 ⊢ (𝑏 = 𝐴 → (𝑏 +no 𝐶) = (𝐴 +no 𝐶)) | |
| 2 | 1 | eleq1d 2813 | . . . . . . . 8 ⊢ (𝑏 = 𝐴 → ((𝑏 +no 𝐶) ∈ 𝑥 ↔ (𝐴 +no 𝐶) ∈ 𝑥)) |
| 3 | 2 | rspcv 3575 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐵 → (∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥 → (𝐴 +no 𝐶) ∈ 𝑥)) |
| 4 | 3 | ad2antlr 727 | . . . . . 6 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ On) → (∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥 → (𝐴 +no 𝐶) ∈ 𝑥)) |
| 5 | 4 | adantld 490 | . . . . 5 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ On) → ((∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥) → (𝐴 +no 𝐶) ∈ 𝑥)) |
| 6 | 5 | ralrimiva 3121 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) → ∀𝑥 ∈ On ((∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥) → (𝐴 +no 𝐶) ∈ 𝑥)) |
| 7 | ovex 7386 | . . . . 5 ⊢ (𝐴 +no 𝐶) ∈ V | |
| 8 | 7 | elintrab 4913 | . . . 4 ⊢ ((𝐴 +no 𝐶) ∈ ∩ {𝑥 ∈ On ∣ (∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥)} ↔ ∀𝑥 ∈ On ((∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥) → (𝐴 +no 𝐶) ∈ 𝑥)) |
| 9 | 6, 8 | sylibr 234 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) → (𝐴 +no 𝐶) ∈ ∩ {𝑥 ∈ On ∣ (∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥)}) |
| 10 | naddov2 8604 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) = ∩ {𝑥 ∈ On ∣ (∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥)}) | |
| 11 | 10 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) = ∩ {𝑥 ∈ On ∣ (∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥)}) |
| 12 | 11 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) → (𝐵 +no 𝐶) = ∩ {𝑥 ∈ On ∣ (∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥)}) |
| 13 | 9, 12 | eleqtrrd 2831 | . 2 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) → (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶)) |
| 14 | 13 | ex 412 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 {crab 3396 ∩ cint 4899 Oncon0 6311 (class class class)co 7353 +no cnadd 8590 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-oprab 7357 df-mpo 7358 df-1st 7931 df-2nd 7932 df-frecs 8221 df-nadd 8591 |
| This theorem is referenced by: naddel1 8612 naddsuc2 8626 |
| Copyright terms: Public domain | W3C validator |