MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  naddelim Structured version   Visualization version   GIF version

Theorem naddelim 8611
Description: Ordinal less-than is preserved by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.)
Assertion
Ref Expression
naddelim ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶)))

Proof of Theorem naddelim
Dummy variables 𝑏 𝑐 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq1 7360 . . . . . . . . 9 (𝑏 = 𝐴 → (𝑏 +no 𝐶) = (𝐴 +no 𝐶))
21eleq1d 2813 . . . . . . . 8 (𝑏 = 𝐴 → ((𝑏 +no 𝐶) ∈ 𝑥 ↔ (𝐴 +no 𝐶) ∈ 𝑥))
32rspcv 3575 . . . . . . 7 (𝐴𝐵 → (∀𝑏𝐵 (𝑏 +no 𝐶) ∈ 𝑥 → (𝐴 +no 𝐶) ∈ 𝑥))
43ad2antlr 727 . . . . . 6 ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) ∧ 𝑥 ∈ On) → (∀𝑏𝐵 (𝑏 +no 𝐶) ∈ 𝑥 → (𝐴 +no 𝐶) ∈ 𝑥))
54adantld 490 . . . . 5 ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) ∧ 𝑥 ∈ On) → ((∀𝑐𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝐵 (𝑏 +no 𝐶) ∈ 𝑥) → (𝐴 +no 𝐶) ∈ 𝑥))
65ralrimiva 3121 . . . 4 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → ∀𝑥 ∈ On ((∀𝑐𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝐵 (𝑏 +no 𝐶) ∈ 𝑥) → (𝐴 +no 𝐶) ∈ 𝑥))
7 ovex 7386 . . . . 5 (𝐴 +no 𝐶) ∈ V
87elintrab 4913 . . . 4 ((𝐴 +no 𝐶) ∈ {𝑥 ∈ On ∣ (∀𝑐𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝐵 (𝑏 +no 𝐶) ∈ 𝑥)} ↔ ∀𝑥 ∈ On ((∀𝑐𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝐵 (𝑏 +no 𝐶) ∈ 𝑥) → (𝐴 +no 𝐶) ∈ 𝑥))
96, 8sylibr 234 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐴 +no 𝐶) ∈ {𝑥 ∈ On ∣ (∀𝑐𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝐵 (𝑏 +no 𝐶) ∈ 𝑥)})
10 naddov2 8604 . . . . 5 ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) = {𝑥 ∈ On ∣ (∀𝑐𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝐵 (𝑏 +no 𝐶) ∈ 𝑥)})
11103adant1 1130 . . . 4 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) = {𝑥 ∈ On ∣ (∀𝑐𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝐵 (𝑏 +no 𝐶) ∈ 𝑥)})
1211adantr 480 . . 3 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐵 +no 𝐶) = {𝑥 ∈ On ∣ (∀𝑐𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏𝐵 (𝑏 +no 𝐶) ∈ 𝑥)})
139, 12eleqtrrd 2831 . 2 (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴𝐵) → (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))
1413ex 412 1 ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴𝐵 → (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3044  {crab 3396   cint 4899  Oncon0 6311  (class class class)co 7353   +no cnadd 8590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-ov 7356  df-oprab 7357  df-mpo 7358  df-1st 7931  df-2nd 7932  df-frecs 8221  df-nadd 8591
This theorem is referenced by:  naddel1  8612  naddsuc2  8626
  Copyright terms: Public domain W3C validator