Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > naddelim | Structured version Visualization version GIF version |
Description: Ordinal less-than is preserved by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.) |
Ref | Expression |
---|---|
naddelim | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7282 | . . . . . . . . 9 ⊢ (𝑏 = 𝐴 → (𝑏 +no 𝐶) = (𝐴 +no 𝐶)) | |
2 | 1 | eleq1d 2823 | . . . . . . . 8 ⊢ (𝑏 = 𝐴 → ((𝑏 +no 𝐶) ∈ 𝑥 ↔ (𝐴 +no 𝐶) ∈ 𝑥)) |
3 | 2 | rspcv 3557 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐵 → (∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥 → (𝐴 +no 𝐶) ∈ 𝑥)) |
4 | 3 | ad2antlr 724 | . . . . . 6 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ On) → (∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥 → (𝐴 +no 𝐶) ∈ 𝑥)) |
5 | 4 | adantld 491 | . . . . 5 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ On) → ((∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥) → (𝐴 +no 𝐶) ∈ 𝑥)) |
6 | 5 | ralrimiva 3103 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) → ∀𝑥 ∈ On ((∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥) → (𝐴 +no 𝐶) ∈ 𝑥)) |
7 | ovex 7308 | . . . . 5 ⊢ (𝐴 +no 𝐶) ∈ V | |
8 | 7 | elintrab 4891 | . . . 4 ⊢ ((𝐴 +no 𝐶) ∈ ∩ {𝑥 ∈ On ∣ (∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥)} ↔ ∀𝑥 ∈ On ((∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥) → (𝐴 +no 𝐶) ∈ 𝑥)) |
9 | 6, 8 | sylibr 233 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) → (𝐴 +no 𝐶) ∈ ∩ {𝑥 ∈ On ∣ (∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥)}) |
10 | naddov2 33834 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) = ∩ {𝑥 ∈ On ∣ (∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥)}) | |
11 | 10 | 3adant1 1129 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) = ∩ {𝑥 ∈ On ∣ (∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥)}) |
12 | 11 | adantr 481 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) → (𝐵 +no 𝐶) = ∩ {𝑥 ∈ On ∣ (∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥)}) |
13 | 9, 12 | eleqtrrd 2842 | . 2 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) → (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶)) |
14 | 13 | ex 413 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ∀wral 3064 {crab 3068 ∩ cint 4879 Oncon0 6266 (class class class)co 7275 +no cnadd 33824 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-int 4880 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-frecs 8097 df-nadd 33825 |
This theorem is referenced by: naddel1 33839 |
Copyright terms: Public domain | W3C validator |