| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > naddelim | Structured version Visualization version GIF version | ||
| Description: Ordinal less-than is preserved by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.) |
| Ref | Expression |
|---|---|
| naddelim | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7353 | . . . . . . . . 9 ⊢ (𝑏 = 𝐴 → (𝑏 +no 𝐶) = (𝐴 +no 𝐶)) | |
| 2 | 1 | eleq1d 2816 | . . . . . . . 8 ⊢ (𝑏 = 𝐴 → ((𝑏 +no 𝐶) ∈ 𝑥 ↔ (𝐴 +no 𝐶) ∈ 𝑥)) |
| 3 | 2 | rspcv 3573 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐵 → (∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥 → (𝐴 +no 𝐶) ∈ 𝑥)) |
| 4 | 3 | ad2antlr 727 | . . . . . 6 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ On) → (∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥 → (𝐴 +no 𝐶) ∈ 𝑥)) |
| 5 | 4 | adantld 490 | . . . . 5 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ On) → ((∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥) → (𝐴 +no 𝐶) ∈ 𝑥)) |
| 6 | 5 | ralrimiva 3124 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) → ∀𝑥 ∈ On ((∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥) → (𝐴 +no 𝐶) ∈ 𝑥)) |
| 7 | ovex 7379 | . . . . 5 ⊢ (𝐴 +no 𝐶) ∈ V | |
| 8 | 7 | elintrab 4910 | . . . 4 ⊢ ((𝐴 +no 𝐶) ∈ ∩ {𝑥 ∈ On ∣ (∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥)} ↔ ∀𝑥 ∈ On ((∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥) → (𝐴 +no 𝐶) ∈ 𝑥)) |
| 9 | 6, 8 | sylibr 234 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) → (𝐴 +no 𝐶) ∈ ∩ {𝑥 ∈ On ∣ (∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥)}) |
| 10 | naddov2 8594 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) = ∩ {𝑥 ∈ On ∣ (∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥)}) | |
| 11 | 10 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) = ∩ {𝑥 ∈ On ∣ (∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥)}) |
| 12 | 11 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) → (𝐵 +no 𝐶) = ∩ {𝑥 ∈ On ∣ (∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥)}) |
| 13 | 9, 12 | eleqtrrd 2834 | . 2 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) → (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶)) |
| 14 | 13 | ex 412 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ∀wral 3047 {crab 3395 ∩ cint 4897 Oncon0 6306 (class class class)co 7346 +no cnadd 8580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-se 5570 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-1st 7921 df-2nd 7922 df-frecs 8211 df-nadd 8581 |
| This theorem is referenced by: naddel1 8602 naddsuc2 8616 |
| Copyright terms: Public domain | W3C validator |