![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > naddelim | Structured version Visualization version GIF version |
Description: Ordinal less-than is preserved by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.) |
Ref | Expression |
---|---|
naddelim | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7365 | . . . . . . . . 9 ⊢ (𝑏 = 𝐴 → (𝑏 +no 𝐶) = (𝐴 +no 𝐶)) | |
2 | 1 | eleq1d 2823 | . . . . . . . 8 ⊢ (𝑏 = 𝐴 → ((𝑏 +no 𝐶) ∈ 𝑥 ↔ (𝐴 +no 𝐶) ∈ 𝑥)) |
3 | 2 | rspcv 3578 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐵 → (∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥 → (𝐴 +no 𝐶) ∈ 𝑥)) |
4 | 3 | ad2antlr 726 | . . . . . 6 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ On) → (∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥 → (𝐴 +no 𝐶) ∈ 𝑥)) |
5 | 4 | adantld 492 | . . . . 5 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ On) → ((∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥) → (𝐴 +no 𝐶) ∈ 𝑥)) |
6 | 5 | ralrimiva 3144 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) → ∀𝑥 ∈ On ((∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥) → (𝐴 +no 𝐶) ∈ 𝑥)) |
7 | ovex 7391 | . . . . 5 ⊢ (𝐴 +no 𝐶) ∈ V | |
8 | 7 | elintrab 4922 | . . . 4 ⊢ ((𝐴 +no 𝐶) ∈ ∩ {𝑥 ∈ On ∣ (∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥)} ↔ ∀𝑥 ∈ On ((∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥) → (𝐴 +no 𝐶) ∈ 𝑥)) |
9 | 6, 8 | sylibr 233 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) → (𝐴 +no 𝐶) ∈ ∩ {𝑥 ∈ On ∣ (∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥)}) |
10 | naddov2 8626 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) = ∩ {𝑥 ∈ On ∣ (∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥)}) | |
11 | 10 | 3adant1 1131 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) = ∩ {𝑥 ∈ On ∣ (∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥)}) |
12 | 11 | adantr 482 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) → (𝐵 +no 𝐶) = ∩ {𝑥 ∈ On ∣ (∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥)}) |
13 | 9, 12 | eleqtrrd 2841 | . 2 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) → (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶)) |
14 | 13 | ex 414 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∀wral 3065 {crab 3408 ∩ cint 4908 Oncon0 6318 (class class class)co 7358 +no cnadd 8612 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2708 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2890 df-ne 2945 df-ral 3066 df-rex 3075 df-reu 3355 df-rab 3409 df-v 3448 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-int 4909 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-se 5590 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-oprab 7362 df-mpo 7363 df-1st 7922 df-2nd 7923 df-frecs 8213 df-nadd 8613 |
This theorem is referenced by: naddel1 8633 |
Copyright terms: Public domain | W3C validator |