| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > naddelim | Structured version Visualization version GIF version | ||
| Description: Ordinal less-than is preserved by natural addition. (Contributed by Scott Fenton, 9-Sep-2024.) |
| Ref | Expression |
|---|---|
| naddelim | ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7359 | . . . . . . . . 9 ⊢ (𝑏 = 𝐴 → (𝑏 +no 𝐶) = (𝐴 +no 𝐶)) | |
| 2 | 1 | eleq1d 2818 | . . . . . . . 8 ⊢ (𝑏 = 𝐴 → ((𝑏 +no 𝐶) ∈ 𝑥 ↔ (𝐴 +no 𝐶) ∈ 𝑥)) |
| 3 | 2 | rspcv 3569 | . . . . . . 7 ⊢ (𝐴 ∈ 𝐵 → (∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥 → (𝐴 +no 𝐶) ∈ 𝑥)) |
| 4 | 3 | ad2antlr 727 | . . . . . 6 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ On) → (∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥 → (𝐴 +no 𝐶) ∈ 𝑥)) |
| 5 | 4 | adantld 490 | . . . . 5 ⊢ ((((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) ∧ 𝑥 ∈ On) → ((∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥) → (𝐴 +no 𝐶) ∈ 𝑥)) |
| 6 | 5 | ralrimiva 3125 | . . . 4 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) → ∀𝑥 ∈ On ((∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥) → (𝐴 +no 𝐶) ∈ 𝑥)) |
| 7 | ovex 7385 | . . . . 5 ⊢ (𝐴 +no 𝐶) ∈ V | |
| 8 | 7 | elintrab 4910 | . . . 4 ⊢ ((𝐴 +no 𝐶) ∈ ∩ {𝑥 ∈ On ∣ (∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥)} ↔ ∀𝑥 ∈ On ((∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥) → (𝐴 +no 𝐶) ∈ 𝑥)) |
| 9 | 6, 8 | sylibr 234 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) → (𝐴 +no 𝐶) ∈ ∩ {𝑥 ∈ On ∣ (∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥)}) |
| 10 | naddov2 8600 | . . . . 5 ⊢ ((𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) = ∩ {𝑥 ∈ On ∣ (∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥)}) | |
| 11 | 10 | 3adant1 1130 | . . . 4 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐵 +no 𝐶) = ∩ {𝑥 ∈ On ∣ (∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥)}) |
| 12 | 11 | adantr 480 | . . 3 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) → (𝐵 +no 𝐶) = ∩ {𝑥 ∈ On ∣ (∀𝑐 ∈ 𝐶 (𝐵 +no 𝑐) ∈ 𝑥 ∧ ∀𝑏 ∈ 𝐵 (𝑏 +no 𝐶) ∈ 𝑥)}) |
| 13 | 9, 12 | eleqtrrd 2836 | . 2 ⊢ (((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) ∧ 𝐴 ∈ 𝐵) → (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶)) |
| 14 | 13 | ex 412 | 1 ⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On ∧ 𝐶 ∈ On) → (𝐴 ∈ 𝐵 → (𝐴 +no 𝐶) ∈ (𝐵 +no 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2113 ∀wral 3048 {crab 3396 ∩ cint 4897 Oncon0 6311 (class class class)co 7352 +no cnadd 8586 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-oprab 7356 df-mpo 7357 df-1st 7927 df-2nd 7928 df-frecs 8217 df-nadd 8587 |
| This theorem is referenced by: naddel1 8608 naddsuc2 8622 |
| Copyright terms: Public domain | W3C validator |