Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ralrnmpt3 Structured version   Visualization version   GIF version

Theorem ralrnmpt3 45355
Description: A restricted quantifier over an image set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
ralrnmpt3.1 𝑥𝜑
ralrnmpt3.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
ralrnmpt3.3 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
ralrnmpt3 (𝜑 → (∀𝑦 ∈ ran (𝑥𝐴𝐵)𝜓 ↔ ∀𝑥𝐴 𝜒))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝜒,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑥)   𝐵(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem ralrnmpt3
StepHypRef Expression
1 ralrnmpt3.1 . . 3 𝑥𝜑
2 ralrnmpt3.2 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
31, 2ralrimia 3231 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
4 eqid 2731 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
5 ralrnmpt3.3 . . 3 (𝑦 = 𝐵 → (𝜓𝜒))
64, 5ralrnmptw 7027 . 2 (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran (𝑥𝐴𝐵)𝜓 ↔ ∀𝑥𝐴 𝜒))
73, 6syl 17 1 (𝜑 → (∀𝑦 ∈ ran (𝑥𝐴𝐵)𝜓 ↔ ∀𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wnf 1784  wcel 2111  wral 3047  cmpt 5170  ran crn 5615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-fv 6489
This theorem is referenced by:  liminflelimsuplem  45872
  Copyright terms: Public domain W3C validator