Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ralrnmpt3 Structured version   Visualization version   GIF version

Theorem ralrnmpt3 42694
Description: A restricted quantifier over an image set. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
ralrnmpt3.1 𝑥𝜑
ralrnmpt3.2 ((𝜑𝑥𝐴) → 𝐵𝑉)
ralrnmpt3.3 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
ralrnmpt3 (𝜑 → (∀𝑦 ∈ ran (𝑥𝐴𝐵)𝜓 ↔ ∀𝑥𝐴 𝜒))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝜒,𝑦   𝜓,𝑥
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑥)   𝐵(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem ralrnmpt3
StepHypRef Expression
1 ralrnmpt3.1 . . 3 𝑥𝜑
2 ralrnmpt3.2 . . 3 ((𝜑𝑥𝐴) → 𝐵𝑉)
31, 2ralrimia 3420 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝑉)
4 eqid 2738 . . 3 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
5 ralrnmpt3.3 . . 3 (𝑦 = 𝐵 → (𝜓𝜒))
64, 5ralrnmptw 6952 . 2 (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran (𝑥𝐴𝐵)𝜓 ↔ ∀𝑥𝐴 𝜒))
73, 6syl 17 1 (𝜑 → (∀𝑦 ∈ ran (𝑥𝐴𝐵)𝜓 ↔ ∀𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wnf 1787  wcel 2108  wral 3063  cmpt 5153  ran crn 5581
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426
This theorem is referenced by:  liminflelimsuplem  43206
  Copyright terms: Public domain W3C validator