MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stdm Structured version   Visualization version   GIF version

Theorem 1stdm 8022
Description: The first ordered pair component of a member of a relation belongs to the domain of the relation. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
1stdm ((Rel 𝑅𝐴𝑅) → (1st𝐴) ∈ dom 𝑅)

Proof of Theorem 1stdm
StepHypRef Expression
1 df-rel 5648 . . . . 5 (Rel 𝑅𝑅 ⊆ (V × V))
21biimpi 216 . . . 4 (Rel 𝑅𝑅 ⊆ (V × V))
32sselda 3949 . . 3 ((Rel 𝑅𝐴𝑅) → 𝐴 ∈ (V × V))
4 1stval2 7988 . . 3 (𝐴 ∈ (V × V) → (1st𝐴) = 𝐴)
53, 4syl 17 . 2 ((Rel 𝑅𝐴𝑅) → (1st𝐴) = 𝐴)
6 elreldm 5902 . 2 ((Rel 𝑅𝐴𝑅) → 𝐴 ∈ dom 𝑅)
75, 6eqeltrd 2829 1 ((Rel 𝑅𝐴𝑅) → (1st𝐴) ∈ dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917   cint 4913   × cxp 5639  dom cdm 5641  Rel wrel 5646  cfv 6514  1st c1st 7969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-iota 6467  df-fun 6516  df-fv 6522  df-1st 7971
This theorem is referenced by:  releldmdifi  8027  funeldmdif  8030  frxp  8108  dprd2dlem2  19979  dprd2da  19981  gsummpt2d  32996  gsumhashmul  33008  gsumwrd2dccat  33014  satfdmlem  35362  satffunlem1lem2  35397  satffunlem2lem2  35400
  Copyright terms: Public domain W3C validator