| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 1stdm | Structured version Visualization version GIF version | ||
| Description: The first ordered pair component of a member of a relation belongs to the domain of the relation. (Contributed by NM, 17-Sep-2006.) |
| Ref | Expression |
|---|---|
| 1stdm | ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (1st ‘𝐴) ∈ dom 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel 5630 | . . . . 5 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
| 2 | 1 | biimpi 216 | . . . 4 ⊢ (Rel 𝑅 → 𝑅 ⊆ (V × V)) |
| 3 | 2 | sselda 3937 | . . 3 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → 𝐴 ∈ (V × V)) |
| 4 | 1stval2 7948 | . . 3 ⊢ (𝐴 ∈ (V × V) → (1st ‘𝐴) = ∩ ∩ 𝐴) | |
| 5 | 3, 4 | syl 17 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (1st ‘𝐴) = ∩ ∩ 𝐴) |
| 6 | elreldm 5881 | . 2 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → ∩ ∩ 𝐴 ∈ dom 𝑅) | |
| 7 | 5, 6 | eqeltrd 2828 | 1 ⊢ ((Rel 𝑅 ∧ 𝐴 ∈ 𝑅) → (1st ‘𝐴) ∈ dom 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3438 ⊆ wss 3905 ∩ cint 4899 × cxp 5621 dom cdm 5623 Rel wrel 5628 ‘cfv 6486 1st c1st 7929 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-iota 6442 df-fun 6488 df-fv 6494 df-1st 7931 |
| This theorem is referenced by: releldmdifi 7987 funeldmdif 7990 frxp 8066 dprd2dlem2 19939 dprd2da 19941 gsummpt2d 33015 gsumhashmul 33027 gsumwrd2dccat 33033 satfdmlem 35340 satffunlem1lem2 35375 satffunlem2lem2 35378 |
| Copyright terms: Public domain | W3C validator |