MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1stdm Structured version   Visualization version   GIF version

Theorem 1stdm 7854
Description: The first ordered pair component of a member of a relation belongs to the domain of the relation. (Contributed by NM, 17-Sep-2006.)
Assertion
Ref Expression
1stdm ((Rel 𝑅𝐴𝑅) → (1st𝐴) ∈ dom 𝑅)

Proof of Theorem 1stdm
StepHypRef Expression
1 df-rel 5587 . . . . 5 (Rel 𝑅𝑅 ⊆ (V × V))
21biimpi 215 . . . 4 (Rel 𝑅𝑅 ⊆ (V × V))
32sselda 3917 . . 3 ((Rel 𝑅𝐴𝑅) → 𝐴 ∈ (V × V))
4 1stval2 7821 . . 3 (𝐴 ∈ (V × V) → (1st𝐴) = 𝐴)
53, 4syl 17 . 2 ((Rel 𝑅𝐴𝑅) → (1st𝐴) = 𝐴)
6 elreldm 5833 . 2 ((Rel 𝑅𝐴𝑅) → 𝐴 ∈ dom 𝑅)
75, 6eqeltrd 2839 1 ((Rel 𝑅𝐴𝑅) → (1st𝐴) ∈ dom 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883   cint 4876   × cxp 5578  dom cdm 5580  Rel wrel 5585  cfv 6418  1st c1st 7802
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fv 6426  df-1st 7804
This theorem is referenced by:  releldmdifi  7859  funeldmdif  7862  frxp  7938  dprd2dlem2  19558  dprd2da  19560  gsummpt2d  31211  gsumhashmul  31218  satfdmlem  33230  satffunlem1lem2  33265  satffunlem2lem2  33268
  Copyright terms: Public domain W3C validator