Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rlocbas Structured version   Visualization version   GIF version

Theorem rlocbas 33226
Description: The base set of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
rlocbas.b 𝐵 = (Base‘𝑅)
rlocbas.1 0 = (0g𝑅)
rlocbas.2 · = (.r𝑅)
rlocbas.3 = (-g𝑅)
rlocbas.w 𝑊 = (𝐵 × 𝑆)
rlocbas.l 𝐿 = (𝑅 RLocal 𝑆)
rlocbas.4 = (𝑅 ~RL 𝑆)
rlocbas.r (𝜑𝑅𝑉)
rlocbas.s (𝜑𝑆𝐵)
Assertion
Ref Expression
rlocbas (𝜑 → (𝑊 / ) = (Base‘𝐿))

Proof of Theorem rlocbas
Dummy variables 𝑎 𝑏 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rlocbas.l . . 3 𝐿 = (𝑅 RLocal 𝑆)
2 rlocbas.b . . . 4 𝐵 = (Base‘𝑅)
3 rlocbas.1 . . . 4 0 = (0g𝑅)
4 rlocbas.2 . . . 4 · = (.r𝑅)
5 rlocbas.3 . . . 4 = (-g𝑅)
6 eqid 2731 . . . 4 (+g𝑅) = (+g𝑅)
7 eqid 2731 . . . 4 (le‘𝑅) = (le‘𝑅)
8 eqid 2731 . . . 4 (Scalar‘𝑅) = (Scalar‘𝑅)
9 eqid 2731 . . . 4 (Base‘(Scalar‘𝑅)) = (Base‘(Scalar‘𝑅))
10 eqid 2731 . . . 4 ( ·𝑠𝑅) = ( ·𝑠𝑅)
11 rlocbas.w . . . 4 𝑊 = (𝐵 × 𝑆)
12 rlocbas.4 . . . 4 = (𝑅 ~RL 𝑆)
13 eqid 2731 . . . 4 (TopSet‘𝑅) = (TopSet‘𝑅)
14 eqid 2731 . . . 4 (dist‘𝑅) = (dist‘𝑅)
15 eqid 2731 . . . 4 (𝑎𝑊, 𝑏𝑊 ↦ ⟨(((1st𝑎) · (2nd𝑏))(+g𝑅)((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩) = (𝑎𝑊, 𝑏𝑊 ↦ ⟨(((1st𝑎) · (2nd𝑏))(+g𝑅)((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)
16 eqid 2731 . . . 4 (𝑎𝑊, 𝑏𝑊 ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩) = (𝑎𝑊, 𝑏𝑊 ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)
17 eqid 2731 . . . 4 (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎𝑊 ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩) = (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎𝑊 ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)
18 eqid 2731 . . . 4 {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑊𝑏𝑊) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))} = {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑊𝑏𝑊) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}
19 eqid 2731 . . . 4 (𝑎𝑊, 𝑏𝑊 ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎)))) = (𝑎𝑊, 𝑏𝑊 ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))
20 rlocbas.r . . . 4 (𝜑𝑅𝑉)
21 rlocbas.s . . . 4 (𝜑𝑆𝐵)
222, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21rlocval 33218 . . 3 (𝜑 → (𝑅 RLocal 𝑆) = ((({⟨(Base‘ndx), 𝑊⟩, ⟨(+g‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨(((1st𝑎) · (2nd𝑏))(+g𝑅)((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎𝑊 ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑊𝑏𝑊) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}) /s ))
231, 22eqtrid 2778 . 2 (𝜑𝐿 = ((({⟨(Base‘ndx), 𝑊⟩, ⟨(+g‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨(((1st𝑎) · (2nd𝑏))(+g𝑅)((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎𝑊 ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑊𝑏𝑊) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}) /s ))
24 eqidd 2732 . . . 4 (𝜑 → (({⟨(Base‘ndx), 𝑊⟩, ⟨(+g‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨(((1st𝑎) · (2nd𝑏))(+g𝑅)((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎𝑊 ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑊𝑏𝑊) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}) = (({⟨(Base‘ndx), 𝑊⟩, ⟨(+g‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨(((1st𝑎) · (2nd𝑏))(+g𝑅)((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎𝑊 ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑊𝑏𝑊) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}))
25 eqid 2731 . . . . 5 (({⟨(Base‘ndx), 𝑊⟩, ⟨(+g‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨(((1st𝑎) · (2nd𝑏))(+g𝑅)((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎𝑊 ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑊𝑏𝑊) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}) = (({⟨(Base‘ndx), 𝑊⟩, ⟨(+g‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨(((1st𝑎) · (2nd𝑏))(+g𝑅)((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎𝑊 ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑊𝑏𝑊) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩})
2625imasvalstr 17350 . . . 4 (({⟨(Base‘ndx), 𝑊⟩, ⟨(+g‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨(((1st𝑎) · (2nd𝑏))(+g𝑅)((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎𝑊 ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑊𝑏𝑊) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}) Struct ⟨1, 12⟩
27 baseid 17118 . . . 4 Base = Slot (Base‘ndx)
28 snsstp1 4763 . . . . 5 {⟨(Base‘ndx), 𝑊⟩} ⊆ {⟨(Base‘ndx), 𝑊⟩, ⟨(+g‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨(((1st𝑎) · (2nd𝑏))(+g𝑅)((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩}
29 ssun1 4123 . . . . . 6 {⟨(Base‘ndx), 𝑊⟩, ⟨(+g‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨(((1st𝑎) · (2nd𝑏))(+g𝑅)((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ⊆ ({⟨(Base‘ndx), 𝑊⟩, ⟨(+g‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨(((1st𝑎) · (2nd𝑏))(+g𝑅)((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎𝑊 ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩})
30 ssun1 4123 . . . . . 6 ({⟨(Base‘ndx), 𝑊⟩, ⟨(+g‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨(((1st𝑎) · (2nd𝑏))(+g𝑅)((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎𝑊 ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ⊆ (({⟨(Base‘ndx), 𝑊⟩, ⟨(+g‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨(((1st𝑎) · (2nd𝑏))(+g𝑅)((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎𝑊 ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑊𝑏𝑊) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩})
3129, 30sstri 3939 . . . . 5 {⟨(Base‘ndx), 𝑊⟩, ⟨(+g‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨(((1st𝑎) · (2nd𝑏))(+g𝑅)((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ⊆ (({⟨(Base‘ndx), 𝑊⟩, ⟨(+g‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨(((1st𝑎) · (2nd𝑏))(+g𝑅)((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎𝑊 ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑊𝑏𝑊) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩})
3228, 31sstri 3939 . . . 4 {⟨(Base‘ndx), 𝑊⟩} ⊆ (({⟨(Base‘ndx), 𝑊⟩, ⟨(+g‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨(((1st𝑎) · (2nd𝑏))(+g𝑅)((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎𝑊 ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑊𝑏𝑊) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩})
332fvexi 6831 . . . . . . 7 𝐵 ∈ V
3433a1i 11 . . . . . 6 (𝜑𝐵 ∈ V)
3534, 21ssexd 5257 . . . . . 6 (𝜑𝑆 ∈ V)
3634, 35xpexd 7679 . . . . 5 (𝜑 → (𝐵 × 𝑆) ∈ V)
3711, 36eqeltrid 2835 . . . 4 (𝜑𝑊 ∈ V)
38 eqid 2731 . . . 4 (Base‘(({⟨(Base‘ndx), 𝑊⟩, ⟨(+g‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨(((1st𝑎) · (2nd𝑏))(+g𝑅)((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎𝑊 ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑊𝑏𝑊) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩})) = (Base‘(({⟨(Base‘ndx), 𝑊⟩, ⟨(+g‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨(((1st𝑎) · (2nd𝑏))(+g𝑅)((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎𝑊 ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑊𝑏𝑊) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}))
3924, 26, 27, 32, 37, 38strfv3 17110 . . 3 (𝜑 → (Base‘(({⟨(Base‘ndx), 𝑊⟩, ⟨(+g‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨(((1st𝑎) · (2nd𝑏))(+g𝑅)((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎𝑊 ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑊𝑏𝑊) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩})) = 𝑊)
4039eqcomd 2737 . 2 (𝜑𝑊 = (Base‘(({⟨(Base‘ndx), 𝑊⟩, ⟨(+g‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨(((1st𝑎) · (2nd𝑏))(+g𝑅)((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎𝑊 ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑊𝑏𝑊) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩})))
4112ovexi 7375 . . 3 ∈ V
4241a1i 11 . 2 (𝜑 ∈ V)
43 tpex 7674 . . . . 5 {⟨(Base‘ndx), 𝑊⟩, ⟨(+g‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨(((1st𝑎) · (2nd𝑏))(+g𝑅)((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∈ V
44 tpex 7674 . . . . 5 {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎𝑊 ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩} ∈ V
4543, 44unex 7672 . . . 4 ({⟨(Base‘ndx), 𝑊⟩, ⟨(+g‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨(((1st𝑎) · (2nd𝑏))(+g𝑅)((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎𝑊 ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∈ V
46 tpex 7674 . . . 4 {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑊𝑏𝑊) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩} ∈ V
4745, 46unex 7672 . . 3 (({⟨(Base‘ndx), 𝑊⟩, ⟨(+g‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨(((1st𝑎) · (2nd𝑏))(+g𝑅)((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎𝑊 ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑊𝑏𝑊) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}) ∈ V
4847a1i 11 . 2 (𝜑 → (({⟨(Base‘ndx), 𝑊⟩, ⟨(+g‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨(((1st𝑎) · (2nd𝑏))(+g𝑅)((1st𝑏) · (2nd𝑎))), ((2nd𝑎) · (2nd𝑏))⟩)⟩, ⟨(.r‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ ⟨((1st𝑎) · (1st𝑏)), ((2nd𝑎) · (2nd𝑏))⟩)⟩} ∪ {⟨(Scalar‘ndx), (Scalar‘𝑅)⟩, ⟨( ·𝑠 ‘ndx), (𝑘 ∈ (Base‘(Scalar‘𝑅)), 𝑎𝑊 ↦ ⟨(𝑘( ·𝑠𝑅)(1st𝑎)), (2nd𝑎)⟩)⟩, ⟨(·𝑖‘ndx), ∅⟩}) ∪ {⟨(TopSet‘ndx), ((TopSet‘𝑅) ×t ((TopSet‘𝑅) ↾t 𝑆))⟩, ⟨(le‘ndx), {⟨𝑎, 𝑏⟩ ∣ ((𝑎𝑊𝑏𝑊) ∧ ((1st𝑎) · (2nd𝑏))(le‘𝑅)((1st𝑏) · (2nd𝑎)))}⟩, ⟨(dist‘ndx), (𝑎𝑊, 𝑏𝑊 ↦ (((1st𝑎) · (2nd𝑏))(dist‘𝑅)((1st𝑏) · (2nd𝑎))))⟩}) ∈ V)
4923, 40, 42, 48qusbas 17444 1 (𝜑 → (𝑊 / ) = (Base‘𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  Vcvv 3436  cun 3895  wss 3897  c0 4278  {csn 4571  {ctp 4575  cop 4577   class class class wbr 5086  {copab 5148   × cxp 5609  cfv 6476  (class class class)co 7341  cmpo 7343  1st c1st 7914  2nd c2nd 7915   / cqs 8616  1c1 11002  2c2 12175  cdc 12583  ndxcnx 17099  Basecbs 17115  +gcplusg 17156  .rcmulr 17157  Scalarcsca 17159   ·𝑠 cvsca 17160  ·𝑖cip 17161  TopSetcts 17162  lecple 17163  distcds 17165  t crest 17319  0gc0g 17338   /s cqus 17404  -gcsg 18843   ×t ctx 23470   ~RL cerl 33212   RLocal crloc 33213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-ec 8619  df-qs 8623  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-struct 17053  df-slot 17088  df-ndx 17100  df-base 17116  df-plusg 17169  df-mulr 17170  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-imas 17407  df-qus 17408  df-rloc 33215
This theorem is referenced by:  rloccring  33229  rloc0g  33230  rloc1r  33231  rlocf1  33232  fracbas  33263  fracfld  33266  zringfrac  33511
  Copyright terms: Public domain W3C validator