Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rloc1r Structured version   Visualization version   GIF version

Theorem rloc1r 33212
Description: The multiplicative identity of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
rloc0g.1 0 = (0g𝑅)
rloc0g.2 1 = (1r𝑅)
rloc0g.3 𝐿 = (𝑅 RLocal 𝑆)
rloc0g.4 = (𝑅 ~RL 𝑆)
rloc0g.5 (𝜑𝑅 ∈ CRing)
rloc0g.6 (𝜑𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
rloc1r.i 𝐼 = [⟨ 1 , 1 ⟩]
Assertion
Ref Expression
rloc1r (𝜑𝐼 = (1r𝐿))

Proof of Theorem rloc1r
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rloc1r.i . 2 𝐼 = [⟨ 1 , 1 ⟩]
2 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2729 . . . . 5 (.r𝑅) = (.r𝑅)
4 eqid 2729 . . . . 5 (+g𝑅) = (+g𝑅)
5 rloc0g.3 . . . . 5 𝐿 = (𝑅 RLocal 𝑆)
6 rloc0g.4 . . . . 5 = (𝑅 ~RL 𝑆)
7 rloc0g.5 . . . . 5 (𝜑𝑅 ∈ CRing)
8 rloc0g.6 . . . . 5 (𝜑𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
92, 3, 4, 5, 6, 7, 8rloccring 33210 . . . 4 (𝜑𝐿 ∈ CRing)
109crngringd 20131 . . 3 (𝜑𝐿 ∈ Ring)
11 eqid 2729 . . . . . . . . . 10 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1211, 2mgpbas 20030 . . . . . . . . 9 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
1312submss 18683 . . . . . . . 8 (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 𝑆 ⊆ (Base‘𝑅))
148, 13syl 17 . . . . . . 7 (𝜑𝑆 ⊆ (Base‘𝑅))
15 rloc0g.2 . . . . . . . . . 10 1 = (1r𝑅)
1611, 15ringidval 20068 . . . . . . . . 9 1 = (0g‘(mulGrp‘𝑅))
1716subm0cl 18685 . . . . . . . 8 (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 1𝑆)
188, 17syl 17 . . . . . . 7 (𝜑1𝑆)
1914, 18sseldd 3936 . . . . . 6 (𝜑1 ∈ (Base‘𝑅))
2019, 18opelxpd 5658 . . . . 5 (𝜑 → ⟨ 1 , 1 ⟩ ∈ ((Base‘𝑅) × 𝑆))
216ovexi 7383 . . . . . 6 ∈ V
2221ecelqsi 8697 . . . . 5 (⟨ 1 , 1 ⟩ ∈ ((Base‘𝑅) × 𝑆) → [⟨ 1 , 1 ⟩] ∈ (((Base‘𝑅) × 𝑆) / ))
2320, 22syl 17 . . . 4 (𝜑 → [⟨ 1 , 1 ⟩] ∈ (((Base‘𝑅) × 𝑆) / ))
24 rloc0g.1 . . . . 5 0 = (0g𝑅)
25 eqid 2729 . . . . 5 (-g𝑅) = (-g𝑅)
26 eqid 2729 . . . . 5 ((Base‘𝑅) × 𝑆) = ((Base‘𝑅) × 𝑆)
272, 24, 3, 25, 26, 5, 6, 7, 14rlocbas 33207 . . . 4 (𝜑 → (((Base‘𝑅) × 𝑆) / ) = (Base‘𝐿))
2823, 27eleqtrd 2830 . . 3 (𝜑 → [⟨ 1 , 1 ⟩] ∈ (Base‘𝐿))
297ad4antr 732 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑅 ∈ CRing)
308ad4antr 732 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
3119ad4antr 732 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 1 ∈ (Base‘𝑅))
32 simpllr 775 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑎 ∈ (Base‘𝑅))
3330, 17syl 17 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 1𝑆)
34 simplr 768 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑏𝑆)
35 eqid 2729 . . . . . . . . 9 (.r𝐿) = (.r𝐿)
362, 3, 4, 5, 6, 29, 30, 31, 32, 33, 34, 35rlocmulval 33209 . . . . . . . 8 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ([⟨ 1 , 1 ⟩] (.r𝐿)[⟨𝑎, 𝑏⟩] ) = [⟨( 1 (.r𝑅)𝑎), ( 1 (.r𝑅)𝑏)⟩] )
3729crngringd 20131 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑅 ∈ Ring)
382, 3, 15, 37, 32ringlidmd 20157 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ( 1 (.r𝑅)𝑎) = 𝑎)
3930, 13syl 17 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑆 ⊆ (Base‘𝑅))
4039, 34sseldd 3936 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑏 ∈ (Base‘𝑅))
412, 3, 15, 37, 40ringlidmd 20157 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ( 1 (.r𝑅)𝑏) = 𝑏)
4238, 41opeq12d 4832 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ⟨( 1 (.r𝑅)𝑎), ( 1 (.r𝑅)𝑏)⟩ = ⟨𝑎, 𝑏⟩)
4342eceq1d 8665 . . . . . . . 8 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → [⟨( 1 (.r𝑅)𝑎), ( 1 (.r𝑅)𝑏)⟩] = [⟨𝑎, 𝑏⟩] )
4436, 43eqtrd 2764 . . . . . . 7 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ([⟨ 1 , 1 ⟩] (.r𝐿)[⟨𝑎, 𝑏⟩] ) = [⟨𝑎, 𝑏⟩] )
45 simpr 484 . . . . . . . 8 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑥 = [⟨𝑎, 𝑏⟩] )
4645oveq2d 7365 . . . . . . 7 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = ([⟨ 1 , 1 ⟩] (.r𝐿)[⟨𝑎, 𝑏⟩] ))
4744, 46, 453eqtr4d 2774 . . . . . 6 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = 𝑥)
4827eqcomd 2735 . . . . . . . . 9 (𝜑 → (Base‘𝐿) = (((Base‘𝑅) × 𝑆) / ))
4948eleq2d 2814 . . . . . . . 8 (𝜑 → (𝑥 ∈ (Base‘𝐿) ↔ 𝑥 ∈ (((Base‘𝑅) × 𝑆) / )))
5049biimpa 476 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐿)) → 𝑥 ∈ (((Base‘𝑅) × 𝑆) / ))
5150elrlocbasi 33206 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐿)) → ∃𝑎 ∈ (Base‘𝑅)∃𝑏𝑆 𝑥 = [⟨𝑎, 𝑏⟩] )
5247, 51r19.29vva 3189 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐿)) → ([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = 𝑥)
532, 3, 4, 5, 6, 29, 30, 32, 31, 34, 33, 35rlocmulval 33209 . . . . . . . 8 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ([⟨𝑎, 𝑏⟩] (.r𝐿)[⟨ 1 , 1 ⟩] ) = [⟨(𝑎(.r𝑅) 1 ), (𝑏(.r𝑅) 1 )⟩] )
542, 3, 15, 37, 32ringridmd 20158 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → (𝑎(.r𝑅) 1 ) = 𝑎)
552, 3, 15, 37, 40ringridmd 20158 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → (𝑏(.r𝑅) 1 ) = 𝑏)
5654, 55opeq12d 4832 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ⟨(𝑎(.r𝑅) 1 ), (𝑏(.r𝑅) 1 )⟩ = ⟨𝑎, 𝑏⟩)
5756eceq1d 8665 . . . . . . . 8 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → [⟨(𝑎(.r𝑅) 1 ), (𝑏(.r𝑅) 1 )⟩] = [⟨𝑎, 𝑏⟩] )
5853, 57eqtrd 2764 . . . . . . 7 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ([⟨𝑎, 𝑏⟩] (.r𝐿)[⟨ 1 , 1 ⟩] ) = [⟨𝑎, 𝑏⟩] )
5945oveq1d 7364 . . . . . . 7 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = ([⟨𝑎, 𝑏⟩] (.r𝐿)[⟨ 1 , 1 ⟩] ))
6058, 59, 453eqtr4d 2774 . . . . . 6 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = 𝑥)
6160, 51r19.29vva 3189 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐿)) → (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = 𝑥)
6252, 61jca 511 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐿)) → (([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = 𝑥 ∧ (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = 𝑥))
6362ralrimiva 3121 . . 3 (𝜑 → ∀𝑥 ∈ (Base‘𝐿)(([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = 𝑥 ∧ (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = 𝑥))
64 eqid 2729 . . . . 5 (Base‘𝐿) = (Base‘𝐿)
65 eqid 2729 . . . . 5 (1r𝐿) = (1r𝐿)
6664, 35, 65isringid 20156 . . . 4 (𝐿 ∈ Ring → (([⟨ 1 , 1 ⟩] ∈ (Base‘𝐿) ∧ ∀𝑥 ∈ (Base‘𝐿)(([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = 𝑥 ∧ (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = 𝑥)) ↔ (1r𝐿) = [⟨ 1 , 1 ⟩] ))
6766biimpa 476 . . 3 ((𝐿 ∈ Ring ∧ ([⟨ 1 , 1 ⟩] ∈ (Base‘𝐿) ∧ ∀𝑥 ∈ (Base‘𝐿)(([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = 𝑥 ∧ (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = 𝑥))) → (1r𝐿) = [⟨ 1 , 1 ⟩] )
6810, 28, 63, 67syl12anc 836 . 2 (𝜑 → (1r𝐿) = [⟨ 1 , 1 ⟩] )
691, 68eqtr4id 2783 1 (𝜑𝐼 = (1r𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3903  cop 4583   × cxp 5617  cfv 6482  (class class class)co 7349  [cec 8623   / cqs 8624  Basecbs 17120  +gcplusg 17161  .rcmulr 17162  0gc0g 17343  SubMndcsubmnd 18656  -gcsg 18814  mulGrpcmgp 20025  1rcur 20066  Ringcrg 20118  CRingccrg 20119   ~RL cerl 33193   RLocal crloc 33194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-ec 8627  df-qs 8631  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-fz 13411  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-0g 17345  df-imas 17412  df-qus 17413  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-sbg 18817  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-erl 33195  df-rloc 33196
This theorem is referenced by:  rlocf1  33213  fracfld  33247  zringfrac  33491
  Copyright terms: Public domain W3C validator