Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rloc1r Structured version   Visualization version   GIF version

Theorem rloc1r 33196
Description: The multiplicative identity of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
rloc0g.1 0 = (0g𝑅)
rloc0g.2 1 = (1r𝑅)
rloc0g.3 𝐿 = (𝑅 RLocal 𝑆)
rloc0g.4 = (𝑅 ~RL 𝑆)
rloc0g.5 (𝜑𝑅 ∈ CRing)
rloc0g.6 (𝜑𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
rloc1r.i 𝐼 = [⟨ 1 , 1 ⟩]
Assertion
Ref Expression
rloc1r (𝜑𝐼 = (1r𝐿))

Proof of Theorem rloc1r
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rloc1r.i . 2 𝐼 = [⟨ 1 , 1 ⟩]
2 eqid 2729 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2729 . . . . 5 (.r𝑅) = (.r𝑅)
4 eqid 2729 . . . . 5 (+g𝑅) = (+g𝑅)
5 rloc0g.3 . . . . 5 𝐿 = (𝑅 RLocal 𝑆)
6 rloc0g.4 . . . . 5 = (𝑅 ~RL 𝑆)
7 rloc0g.5 . . . . 5 (𝜑𝑅 ∈ CRing)
8 rloc0g.6 . . . . 5 (𝜑𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
92, 3, 4, 5, 6, 7, 8rloccring 33194 . . . 4 (𝜑𝐿 ∈ CRing)
109crngringd 20131 . . 3 (𝜑𝐿 ∈ Ring)
11 eqid 2729 . . . . . . . . . 10 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1211, 2mgpbas 20030 . . . . . . . . 9 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
1312submss 18712 . . . . . . . 8 (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 𝑆 ⊆ (Base‘𝑅))
148, 13syl 17 . . . . . . 7 (𝜑𝑆 ⊆ (Base‘𝑅))
15 rloc0g.2 . . . . . . . . . 10 1 = (1r𝑅)
1611, 15ringidval 20068 . . . . . . . . 9 1 = (0g‘(mulGrp‘𝑅))
1716subm0cl 18714 . . . . . . . 8 (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 1𝑆)
188, 17syl 17 . . . . . . 7 (𝜑1𝑆)
1914, 18sseldd 3944 . . . . . 6 (𝜑1 ∈ (Base‘𝑅))
2019, 18opelxpd 5670 . . . . 5 (𝜑 → ⟨ 1 , 1 ⟩ ∈ ((Base‘𝑅) × 𝑆))
216ovexi 7403 . . . . . 6 ∈ V
2221ecelqsi 8720 . . . . 5 (⟨ 1 , 1 ⟩ ∈ ((Base‘𝑅) × 𝑆) → [⟨ 1 , 1 ⟩] ∈ (((Base‘𝑅) × 𝑆) / ))
2320, 22syl 17 . . . 4 (𝜑 → [⟨ 1 , 1 ⟩] ∈ (((Base‘𝑅) × 𝑆) / ))
24 rloc0g.1 . . . . 5 0 = (0g𝑅)
25 eqid 2729 . . . . 5 (-g𝑅) = (-g𝑅)
26 eqid 2729 . . . . 5 ((Base‘𝑅) × 𝑆) = ((Base‘𝑅) × 𝑆)
272, 24, 3, 25, 26, 5, 6, 7, 14rlocbas 33191 . . . 4 (𝜑 → (((Base‘𝑅) × 𝑆) / ) = (Base‘𝐿))
2823, 27eleqtrd 2830 . . 3 (𝜑 → [⟨ 1 , 1 ⟩] ∈ (Base‘𝐿))
297ad4antr 732 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑅 ∈ CRing)
308ad4antr 732 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
3119ad4antr 732 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 1 ∈ (Base‘𝑅))
32 simpllr 775 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑎 ∈ (Base‘𝑅))
3330, 17syl 17 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 1𝑆)
34 simplr 768 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑏𝑆)
35 eqid 2729 . . . . . . . . 9 (.r𝐿) = (.r𝐿)
362, 3, 4, 5, 6, 29, 30, 31, 32, 33, 34, 35rlocmulval 33193 . . . . . . . 8 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ([⟨ 1 , 1 ⟩] (.r𝐿)[⟨𝑎, 𝑏⟩] ) = [⟨( 1 (.r𝑅)𝑎), ( 1 (.r𝑅)𝑏)⟩] )
3729crngringd 20131 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑅 ∈ Ring)
382, 3, 15, 37, 32ringlidmd 20157 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ( 1 (.r𝑅)𝑎) = 𝑎)
3930, 13syl 17 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑆 ⊆ (Base‘𝑅))
4039, 34sseldd 3944 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑏 ∈ (Base‘𝑅))
412, 3, 15, 37, 40ringlidmd 20157 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ( 1 (.r𝑅)𝑏) = 𝑏)
4238, 41opeq12d 4841 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ⟨( 1 (.r𝑅)𝑎), ( 1 (.r𝑅)𝑏)⟩ = ⟨𝑎, 𝑏⟩)
4342eceq1d 8688 . . . . . . . 8 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → [⟨( 1 (.r𝑅)𝑎), ( 1 (.r𝑅)𝑏)⟩] = [⟨𝑎, 𝑏⟩] )
4436, 43eqtrd 2764 . . . . . . 7 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ([⟨ 1 , 1 ⟩] (.r𝐿)[⟨𝑎, 𝑏⟩] ) = [⟨𝑎, 𝑏⟩] )
45 simpr 484 . . . . . . . 8 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑥 = [⟨𝑎, 𝑏⟩] )
4645oveq2d 7385 . . . . . . 7 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = ([⟨ 1 , 1 ⟩] (.r𝐿)[⟨𝑎, 𝑏⟩] ))
4744, 46, 453eqtr4d 2774 . . . . . 6 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = 𝑥)
4827eqcomd 2735 . . . . . . . . 9 (𝜑 → (Base‘𝐿) = (((Base‘𝑅) × 𝑆) / ))
4948eleq2d 2814 . . . . . . . 8 (𝜑 → (𝑥 ∈ (Base‘𝐿) ↔ 𝑥 ∈ (((Base‘𝑅) × 𝑆) / )))
5049biimpa 476 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐿)) → 𝑥 ∈ (((Base‘𝑅) × 𝑆) / ))
5150elrlocbasi 33190 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐿)) → ∃𝑎 ∈ (Base‘𝑅)∃𝑏𝑆 𝑥 = [⟨𝑎, 𝑏⟩] )
5247, 51r19.29vva 3195 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐿)) → ([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = 𝑥)
532, 3, 4, 5, 6, 29, 30, 32, 31, 34, 33, 35rlocmulval 33193 . . . . . . . 8 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ([⟨𝑎, 𝑏⟩] (.r𝐿)[⟨ 1 , 1 ⟩] ) = [⟨(𝑎(.r𝑅) 1 ), (𝑏(.r𝑅) 1 )⟩] )
542, 3, 15, 37, 32ringridmd 20158 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → (𝑎(.r𝑅) 1 ) = 𝑎)
552, 3, 15, 37, 40ringridmd 20158 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → (𝑏(.r𝑅) 1 ) = 𝑏)
5654, 55opeq12d 4841 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ⟨(𝑎(.r𝑅) 1 ), (𝑏(.r𝑅) 1 )⟩ = ⟨𝑎, 𝑏⟩)
5756eceq1d 8688 . . . . . . . 8 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → [⟨(𝑎(.r𝑅) 1 ), (𝑏(.r𝑅) 1 )⟩] = [⟨𝑎, 𝑏⟩] )
5853, 57eqtrd 2764 . . . . . . 7 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ([⟨𝑎, 𝑏⟩] (.r𝐿)[⟨ 1 , 1 ⟩] ) = [⟨𝑎, 𝑏⟩] )
5945oveq1d 7384 . . . . . . 7 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = ([⟨𝑎, 𝑏⟩] (.r𝐿)[⟨ 1 , 1 ⟩] ))
6058, 59, 453eqtr4d 2774 . . . . . 6 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = 𝑥)
6160, 51r19.29vva 3195 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐿)) → (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = 𝑥)
6252, 61jca 511 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐿)) → (([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = 𝑥 ∧ (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = 𝑥))
6362ralrimiva 3125 . . 3 (𝜑 → ∀𝑥 ∈ (Base‘𝐿)(([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = 𝑥 ∧ (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = 𝑥))
64 eqid 2729 . . . . 5 (Base‘𝐿) = (Base‘𝐿)
65 eqid 2729 . . . . 5 (1r𝐿) = (1r𝐿)
6664, 35, 65isringid 20156 . . . 4 (𝐿 ∈ Ring → (([⟨ 1 , 1 ⟩] ∈ (Base‘𝐿) ∧ ∀𝑥 ∈ (Base‘𝐿)(([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = 𝑥 ∧ (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = 𝑥)) ↔ (1r𝐿) = [⟨ 1 , 1 ⟩] ))
6766biimpa 476 . . 3 ((𝐿 ∈ Ring ∧ ([⟨ 1 , 1 ⟩] ∈ (Base‘𝐿) ∧ ∀𝑥 ∈ (Base‘𝐿)(([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = 𝑥 ∧ (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = 𝑥))) → (1r𝐿) = [⟨ 1 , 1 ⟩] )
6810, 28, 63, 67syl12anc 836 . 2 (𝜑 → (1r𝐿) = [⟨ 1 , 1 ⟩] )
691, 68eqtr4id 2783 1 (𝜑𝐼 = (1r𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wral 3044  wss 3911  cop 4591   × cxp 5629  cfv 6499  (class class class)co 7369  [cec 8646   / cqs 8647  Basecbs 17155  +gcplusg 17196  .rcmulr 17197  0gc0g 17378  SubMndcsubmnd 18685  -gcsg 18843  mulGrpcmgp 20025  1rcur 20066  Ringcrg 20118  CRingccrg 20119   ~RL cerl 33177   RLocal crloc 33178
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-ec 8650  df-qs 8654  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-0g 17380  df-imas 17447  df-qus 17448  df-mgm 18543  df-sgrp 18622  df-mnd 18638  df-submnd 18687  df-grp 18844  df-minusg 18845  df-sbg 18846  df-cmn 19688  df-abl 19689  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-erl 33179  df-rloc 33180
This theorem is referenced by:  rlocf1  33197  fracfld  33231  zringfrac  33498
  Copyright terms: Public domain W3C validator