Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rloc1r Structured version   Visualization version   GIF version

Theorem rloc1r 33244
Description: The multiplicative identity of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
rloc0g.1 0 = (0g𝑅)
rloc0g.2 1 = (1r𝑅)
rloc0g.3 𝐿 = (𝑅 RLocal 𝑆)
rloc0g.4 = (𝑅 ~RL 𝑆)
rloc0g.5 (𝜑𝑅 ∈ CRing)
rloc0g.6 (𝜑𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
rloc1r.i 𝐼 = [⟨ 1 , 1 ⟩]
Assertion
Ref Expression
rloc1r (𝜑𝐼 = (1r𝐿))

Proof of Theorem rloc1r
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rloc1r.i . 2 𝐼 = [⟨ 1 , 1 ⟩]
2 eqid 2740 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2740 . . . . 5 (.r𝑅) = (.r𝑅)
4 eqid 2740 . . . . 5 (+g𝑅) = (+g𝑅)
5 rloc0g.3 . . . . 5 𝐿 = (𝑅 RLocal 𝑆)
6 rloc0g.4 . . . . 5 = (𝑅 ~RL 𝑆)
7 rloc0g.5 . . . . 5 (𝜑𝑅 ∈ CRing)
8 rloc0g.6 . . . . 5 (𝜑𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
92, 3, 4, 5, 6, 7, 8rloccring 33242 . . . 4 (𝜑𝐿 ∈ CRing)
109crngringd 20273 . . 3 (𝜑𝐿 ∈ Ring)
11 eqid 2740 . . . . . . . . . 10 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1211, 2mgpbas 20167 . . . . . . . . 9 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
1312submss 18844 . . . . . . . 8 (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 𝑆 ⊆ (Base‘𝑅))
148, 13syl 17 . . . . . . 7 (𝜑𝑆 ⊆ (Base‘𝑅))
15 rloc0g.2 . . . . . . . . . 10 1 = (1r𝑅)
1611, 15ringidval 20210 . . . . . . . . 9 1 = (0g‘(mulGrp‘𝑅))
1716subm0cl 18846 . . . . . . . 8 (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 1𝑆)
188, 17syl 17 . . . . . . 7 (𝜑1𝑆)
1914, 18sseldd 4009 . . . . . 6 (𝜑1 ∈ (Base‘𝑅))
2019, 18opelxpd 5739 . . . . 5 (𝜑 → ⟨ 1 , 1 ⟩ ∈ ((Base‘𝑅) × 𝑆))
216ovexi 7482 . . . . . 6 ∈ V
2221ecelqsi 8831 . . . . 5 (⟨ 1 , 1 ⟩ ∈ ((Base‘𝑅) × 𝑆) → [⟨ 1 , 1 ⟩] ∈ (((Base‘𝑅) × 𝑆) / ))
2320, 22syl 17 . . . 4 (𝜑 → [⟨ 1 , 1 ⟩] ∈ (((Base‘𝑅) × 𝑆) / ))
24 rloc0g.1 . . . . 5 0 = (0g𝑅)
25 eqid 2740 . . . . 5 (-g𝑅) = (-g𝑅)
26 eqid 2740 . . . . 5 ((Base‘𝑅) × 𝑆) = ((Base‘𝑅) × 𝑆)
272, 24, 3, 25, 26, 5, 6, 7, 14rlocbas 33239 . . . 4 (𝜑 → (((Base‘𝑅) × 𝑆) / ) = (Base‘𝐿))
2823, 27eleqtrd 2846 . . 3 (𝜑 → [⟨ 1 , 1 ⟩] ∈ (Base‘𝐿))
297ad4antr 731 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑅 ∈ CRing)
308ad4antr 731 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
3119ad4antr 731 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 1 ∈ (Base‘𝑅))
32 simpllr 775 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑎 ∈ (Base‘𝑅))
3330, 17syl 17 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 1𝑆)
34 simplr 768 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑏𝑆)
35 eqid 2740 . . . . . . . . 9 (.r𝐿) = (.r𝐿)
362, 3, 4, 5, 6, 29, 30, 31, 32, 33, 34, 35rlocmulval 33241 . . . . . . . 8 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ([⟨ 1 , 1 ⟩] (.r𝐿)[⟨𝑎, 𝑏⟩] ) = [⟨( 1 (.r𝑅)𝑎), ( 1 (.r𝑅)𝑏)⟩] )
3729crngringd 20273 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑅 ∈ Ring)
382, 3, 15, 37, 32ringlidmd 20295 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ( 1 (.r𝑅)𝑎) = 𝑎)
3930, 13syl 17 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑆 ⊆ (Base‘𝑅))
4039, 34sseldd 4009 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑏 ∈ (Base‘𝑅))
412, 3, 15, 37, 40ringlidmd 20295 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ( 1 (.r𝑅)𝑏) = 𝑏)
4238, 41opeq12d 4905 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ⟨( 1 (.r𝑅)𝑎), ( 1 (.r𝑅)𝑏)⟩ = ⟨𝑎, 𝑏⟩)
4342eceq1d 8803 . . . . . . . 8 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → [⟨( 1 (.r𝑅)𝑎), ( 1 (.r𝑅)𝑏)⟩] = [⟨𝑎, 𝑏⟩] )
4436, 43eqtrd 2780 . . . . . . 7 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ([⟨ 1 , 1 ⟩] (.r𝐿)[⟨𝑎, 𝑏⟩] ) = [⟨𝑎, 𝑏⟩] )
45 simpr 484 . . . . . . . 8 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑥 = [⟨𝑎, 𝑏⟩] )
4645oveq2d 7464 . . . . . . 7 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = ([⟨ 1 , 1 ⟩] (.r𝐿)[⟨𝑎, 𝑏⟩] ))
4744, 46, 453eqtr4d 2790 . . . . . 6 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = 𝑥)
4827eqcomd 2746 . . . . . . . . 9 (𝜑 → (Base‘𝐿) = (((Base‘𝑅) × 𝑆) / ))
4948eleq2d 2830 . . . . . . . 8 (𝜑 → (𝑥 ∈ (Base‘𝐿) ↔ 𝑥 ∈ (((Base‘𝑅) × 𝑆) / )))
5049biimpa 476 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐿)) → 𝑥 ∈ (((Base‘𝑅) × 𝑆) / ))
5150elrlocbasi 33238 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐿)) → ∃𝑎 ∈ (Base‘𝑅)∃𝑏𝑆 𝑥 = [⟨𝑎, 𝑏⟩] )
5247, 51r19.29vva 3222 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐿)) → ([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = 𝑥)
532, 3, 4, 5, 6, 29, 30, 32, 31, 34, 33, 35rlocmulval 33241 . . . . . . . 8 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ([⟨𝑎, 𝑏⟩] (.r𝐿)[⟨ 1 , 1 ⟩] ) = [⟨(𝑎(.r𝑅) 1 ), (𝑏(.r𝑅) 1 )⟩] )
542, 3, 15, 37, 32ringridmd 20296 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → (𝑎(.r𝑅) 1 ) = 𝑎)
552, 3, 15, 37, 40ringridmd 20296 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → (𝑏(.r𝑅) 1 ) = 𝑏)
5654, 55opeq12d 4905 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ⟨(𝑎(.r𝑅) 1 ), (𝑏(.r𝑅) 1 )⟩ = ⟨𝑎, 𝑏⟩)
5756eceq1d 8803 . . . . . . . 8 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → [⟨(𝑎(.r𝑅) 1 ), (𝑏(.r𝑅) 1 )⟩] = [⟨𝑎, 𝑏⟩] )
5853, 57eqtrd 2780 . . . . . . 7 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ([⟨𝑎, 𝑏⟩] (.r𝐿)[⟨ 1 , 1 ⟩] ) = [⟨𝑎, 𝑏⟩] )
5945oveq1d 7463 . . . . . . 7 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = ([⟨𝑎, 𝑏⟩] (.r𝐿)[⟨ 1 , 1 ⟩] ))
6058, 59, 453eqtr4d 2790 . . . . . 6 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = 𝑥)
6160, 51r19.29vva 3222 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐿)) → (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = 𝑥)
6252, 61jca 511 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐿)) → (([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = 𝑥 ∧ (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = 𝑥))
6362ralrimiva 3152 . . 3 (𝜑 → ∀𝑥 ∈ (Base‘𝐿)(([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = 𝑥 ∧ (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = 𝑥))
64 eqid 2740 . . . . 5 (Base‘𝐿) = (Base‘𝐿)
65 eqid 2740 . . . . 5 (1r𝐿) = (1r𝐿)
6664, 35, 65isringid 20294 . . . 4 (𝐿 ∈ Ring → (([⟨ 1 , 1 ⟩] ∈ (Base‘𝐿) ∧ ∀𝑥 ∈ (Base‘𝐿)(([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = 𝑥 ∧ (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = 𝑥)) ↔ (1r𝐿) = [⟨ 1 , 1 ⟩] ))
6766biimpa 476 . . 3 ((𝐿 ∈ Ring ∧ ([⟨ 1 , 1 ⟩] ∈ (Base‘𝐿) ∧ ∀𝑥 ∈ (Base‘𝐿)(([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = 𝑥 ∧ (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = 𝑥))) → (1r𝐿) = [⟨ 1 , 1 ⟩] )
6810, 28, 63, 67syl12anc 836 . 2 (𝜑 → (1r𝐿) = [⟨ 1 , 1 ⟩] )
691, 68eqtr4id 2799 1 (𝜑𝐼 = (1r𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wss 3976  cop 4654   × cxp 5698  cfv 6573  (class class class)co 7448  [cec 8761   / cqs 8762  Basecbs 17258  +gcplusg 17311  .rcmulr 17312  0gc0g 17499  SubMndcsubmnd 18817  -gcsg 18975  mulGrpcmgp 20161  1rcur 20208  Ringcrg 20260  CRingccrg 20261   ~RL cerl 33225   RLocal crloc 33226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-ec 8765  df-qs 8769  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-0g 17501  df-imas 17568  df-qus 17569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-grp 18976  df-minusg 18977  df-sbg 18978  df-cmn 19824  df-abl 19825  df-mgp 20162  df-rng 20180  df-ur 20209  df-ring 20262  df-cring 20263  df-erl 33227  df-rloc 33228
This theorem is referenced by:  rlocf1  33245  fracfld  33275  zringfrac  33547
  Copyright terms: Public domain W3C validator