Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rloc1r Structured version   Visualization version   GIF version

Theorem rloc1r 33267
Description: The multiplicative identity of a ring localization. (Contributed by Thierry Arnoux, 4-May-2025.)
Hypotheses
Ref Expression
rloc0g.1 0 = (0g𝑅)
rloc0g.2 1 = (1r𝑅)
rloc0g.3 𝐿 = (𝑅 RLocal 𝑆)
rloc0g.4 = (𝑅 ~RL 𝑆)
rloc0g.5 (𝜑𝑅 ∈ CRing)
rloc0g.6 (𝜑𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
rloc1r.i 𝐼 = [⟨ 1 , 1 ⟩]
Assertion
Ref Expression
rloc1r (𝜑𝐼 = (1r𝐿))

Proof of Theorem rloc1r
Dummy variables 𝑎 𝑏 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rloc1r.i . 2 𝐼 = [⟨ 1 , 1 ⟩]
2 eqid 2735 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2735 . . . . 5 (.r𝑅) = (.r𝑅)
4 eqid 2735 . . . . 5 (+g𝑅) = (+g𝑅)
5 rloc0g.3 . . . . 5 𝐿 = (𝑅 RLocal 𝑆)
6 rloc0g.4 . . . . 5 = (𝑅 ~RL 𝑆)
7 rloc0g.5 . . . . 5 (𝜑𝑅 ∈ CRing)
8 rloc0g.6 . . . . 5 (𝜑𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
92, 3, 4, 5, 6, 7, 8rloccring 33265 . . . 4 (𝜑𝐿 ∈ CRing)
109crngringd 20206 . . 3 (𝜑𝐿 ∈ Ring)
11 eqid 2735 . . . . . . . . . 10 (mulGrp‘𝑅) = (mulGrp‘𝑅)
1211, 2mgpbas 20105 . . . . . . . . 9 (Base‘𝑅) = (Base‘(mulGrp‘𝑅))
1312submss 18787 . . . . . . . 8 (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 𝑆 ⊆ (Base‘𝑅))
148, 13syl 17 . . . . . . 7 (𝜑𝑆 ⊆ (Base‘𝑅))
15 rloc0g.2 . . . . . . . . . 10 1 = (1r𝑅)
1611, 15ringidval 20143 . . . . . . . . 9 1 = (0g‘(mulGrp‘𝑅))
1716subm0cl 18789 . . . . . . . 8 (𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)) → 1𝑆)
188, 17syl 17 . . . . . . 7 (𝜑1𝑆)
1914, 18sseldd 3959 . . . . . 6 (𝜑1 ∈ (Base‘𝑅))
2019, 18opelxpd 5693 . . . . 5 (𝜑 → ⟨ 1 , 1 ⟩ ∈ ((Base‘𝑅) × 𝑆))
216ovexi 7439 . . . . . 6 ∈ V
2221ecelqsi 8787 . . . . 5 (⟨ 1 , 1 ⟩ ∈ ((Base‘𝑅) × 𝑆) → [⟨ 1 , 1 ⟩] ∈ (((Base‘𝑅) × 𝑆) / ))
2320, 22syl 17 . . . 4 (𝜑 → [⟨ 1 , 1 ⟩] ∈ (((Base‘𝑅) × 𝑆) / ))
24 rloc0g.1 . . . . 5 0 = (0g𝑅)
25 eqid 2735 . . . . 5 (-g𝑅) = (-g𝑅)
26 eqid 2735 . . . . 5 ((Base‘𝑅) × 𝑆) = ((Base‘𝑅) × 𝑆)
272, 24, 3, 25, 26, 5, 6, 7, 14rlocbas 33262 . . . 4 (𝜑 → (((Base‘𝑅) × 𝑆) / ) = (Base‘𝐿))
2823, 27eleqtrd 2836 . . 3 (𝜑 → [⟨ 1 , 1 ⟩] ∈ (Base‘𝐿))
297ad4antr 732 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑅 ∈ CRing)
308ad4antr 732 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑆 ∈ (SubMnd‘(mulGrp‘𝑅)))
3119ad4antr 732 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 1 ∈ (Base‘𝑅))
32 simpllr 775 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑎 ∈ (Base‘𝑅))
3330, 17syl 17 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 1𝑆)
34 simplr 768 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑏𝑆)
35 eqid 2735 . . . . . . . . 9 (.r𝐿) = (.r𝐿)
362, 3, 4, 5, 6, 29, 30, 31, 32, 33, 34, 35rlocmulval 33264 . . . . . . . 8 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ([⟨ 1 , 1 ⟩] (.r𝐿)[⟨𝑎, 𝑏⟩] ) = [⟨( 1 (.r𝑅)𝑎), ( 1 (.r𝑅)𝑏)⟩] )
3729crngringd 20206 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑅 ∈ Ring)
382, 3, 15, 37, 32ringlidmd 20232 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ( 1 (.r𝑅)𝑎) = 𝑎)
3930, 13syl 17 . . . . . . . . . . . 12 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑆 ⊆ (Base‘𝑅))
4039, 34sseldd 3959 . . . . . . . . . . 11 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑏 ∈ (Base‘𝑅))
412, 3, 15, 37, 40ringlidmd 20232 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ( 1 (.r𝑅)𝑏) = 𝑏)
4238, 41opeq12d 4857 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ⟨( 1 (.r𝑅)𝑎), ( 1 (.r𝑅)𝑏)⟩ = ⟨𝑎, 𝑏⟩)
4342eceq1d 8759 . . . . . . . 8 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → [⟨( 1 (.r𝑅)𝑎), ( 1 (.r𝑅)𝑏)⟩] = [⟨𝑎, 𝑏⟩] )
4436, 43eqtrd 2770 . . . . . . 7 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ([⟨ 1 , 1 ⟩] (.r𝐿)[⟨𝑎, 𝑏⟩] ) = [⟨𝑎, 𝑏⟩] )
45 simpr 484 . . . . . . . 8 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → 𝑥 = [⟨𝑎, 𝑏⟩] )
4645oveq2d 7421 . . . . . . 7 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = ([⟨ 1 , 1 ⟩] (.r𝐿)[⟨𝑎, 𝑏⟩] ))
4744, 46, 453eqtr4d 2780 . . . . . 6 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = 𝑥)
4827eqcomd 2741 . . . . . . . . 9 (𝜑 → (Base‘𝐿) = (((Base‘𝑅) × 𝑆) / ))
4948eleq2d 2820 . . . . . . . 8 (𝜑 → (𝑥 ∈ (Base‘𝐿) ↔ 𝑥 ∈ (((Base‘𝑅) × 𝑆) / )))
5049biimpa 476 . . . . . . 7 ((𝜑𝑥 ∈ (Base‘𝐿)) → 𝑥 ∈ (((Base‘𝑅) × 𝑆) / ))
5150elrlocbasi 33261 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝐿)) → ∃𝑎 ∈ (Base‘𝑅)∃𝑏𝑆 𝑥 = [⟨𝑎, 𝑏⟩] )
5247, 51r19.29vva 3201 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐿)) → ([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = 𝑥)
532, 3, 4, 5, 6, 29, 30, 32, 31, 34, 33, 35rlocmulval 33264 . . . . . . . 8 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ([⟨𝑎, 𝑏⟩] (.r𝐿)[⟨ 1 , 1 ⟩] ) = [⟨(𝑎(.r𝑅) 1 ), (𝑏(.r𝑅) 1 )⟩] )
542, 3, 15, 37, 32ringridmd 20233 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → (𝑎(.r𝑅) 1 ) = 𝑎)
552, 3, 15, 37, 40ringridmd 20233 . . . . . . . . . 10 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → (𝑏(.r𝑅) 1 ) = 𝑏)
5654, 55opeq12d 4857 . . . . . . . . 9 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ⟨(𝑎(.r𝑅) 1 ), (𝑏(.r𝑅) 1 )⟩ = ⟨𝑎, 𝑏⟩)
5756eceq1d 8759 . . . . . . . 8 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → [⟨(𝑎(.r𝑅) 1 ), (𝑏(.r𝑅) 1 )⟩] = [⟨𝑎, 𝑏⟩] )
5853, 57eqtrd 2770 . . . . . . 7 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → ([⟨𝑎, 𝑏⟩] (.r𝐿)[⟨ 1 , 1 ⟩] ) = [⟨𝑎, 𝑏⟩] )
5945oveq1d 7420 . . . . . . 7 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = ([⟨𝑎, 𝑏⟩] (.r𝐿)[⟨ 1 , 1 ⟩] ))
6058, 59, 453eqtr4d 2780 . . . . . 6 (((((𝜑𝑥 ∈ (Base‘𝐿)) ∧ 𝑎 ∈ (Base‘𝑅)) ∧ 𝑏𝑆) ∧ 𝑥 = [⟨𝑎, 𝑏⟩] ) → (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = 𝑥)
6160, 51r19.29vva 3201 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝐿)) → (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = 𝑥)
6252, 61jca 511 . . . 4 ((𝜑𝑥 ∈ (Base‘𝐿)) → (([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = 𝑥 ∧ (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = 𝑥))
6362ralrimiva 3132 . . 3 (𝜑 → ∀𝑥 ∈ (Base‘𝐿)(([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = 𝑥 ∧ (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = 𝑥))
64 eqid 2735 . . . . 5 (Base‘𝐿) = (Base‘𝐿)
65 eqid 2735 . . . . 5 (1r𝐿) = (1r𝐿)
6664, 35, 65isringid 20231 . . . 4 (𝐿 ∈ Ring → (([⟨ 1 , 1 ⟩] ∈ (Base‘𝐿) ∧ ∀𝑥 ∈ (Base‘𝐿)(([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = 𝑥 ∧ (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = 𝑥)) ↔ (1r𝐿) = [⟨ 1 , 1 ⟩] ))
6766biimpa 476 . . 3 ((𝐿 ∈ Ring ∧ ([⟨ 1 , 1 ⟩] ∈ (Base‘𝐿) ∧ ∀𝑥 ∈ (Base‘𝐿)(([⟨ 1 , 1 ⟩] (.r𝐿)𝑥) = 𝑥 ∧ (𝑥(.r𝐿)[⟨ 1 , 1 ⟩] ) = 𝑥))) → (1r𝐿) = [⟨ 1 , 1 ⟩] )
6810, 28, 63, 67syl12anc 836 . 2 (𝜑 → (1r𝐿) = [⟨ 1 , 1 ⟩] )
691, 68eqtr4id 2789 1 (𝜑𝐼 = (1r𝐿))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wral 3051  wss 3926  cop 4607   × cxp 5652  cfv 6531  (class class class)co 7405  [cec 8717   / cqs 8718  Basecbs 17228  +gcplusg 17271  .rcmulr 17272  0gc0g 17453  SubMndcsubmnd 18760  -gcsg 18918  mulGrpcmgp 20100  1rcur 20141  Ringcrg 20193  CRingccrg 20194   ~RL cerl 33248   RLocal crloc 33249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-ec 8721  df-qs 8725  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-sup 9454  df-inf 9455  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-0g 17455  df-imas 17522  df-qus 17523  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-cring 20196  df-erl 33250  df-rloc 33251
This theorem is referenced by:  rlocf1  33268  fracfld  33302  zringfrac  33569
  Copyright terms: Public domain W3C validator