Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supminfxrrnmpt Structured version   Visualization version   GIF version

Theorem supminfxrrnmpt 42110
Description: The indexed supremum of a set of reals is the negation of the indexed infimum of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
supminfxrrnmpt.x 𝑥𝜑
supminfxrrnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
supminfxrrnmpt (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ*, < ) = -𝑒inf(ran (𝑥𝐴 ↦ -𝑒𝐵), ℝ*, < ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem supminfxrrnmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 supminfxrrnmpt.x . . . 4 𝑥𝜑
2 eqid 2798 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 supminfxrrnmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
41, 2, 3rnmptssd 41824 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ*)
54supminfxr2 42108 . 2 (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ*, < ) = -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)}, ℝ*, < ))
6 xnegex 12589 . . . . . . . . . . . 12 -𝑒𝑦 ∈ V
72elrnmpt 5792 . . . . . . . . . . . 12 (-𝑒𝑦 ∈ V → (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑒𝑦 = 𝐵))
86, 7ax-mp 5 . . . . . . . . . . 11 (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑒𝑦 = 𝐵)
98biimpi 219 . . . . . . . . . 10 (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 -𝑒𝑦 = 𝐵)
10 eqid 2798 . . . . . . . . . . 11 (𝑥𝐴 ↦ -𝑒𝐵) = (𝑥𝐴 ↦ -𝑒𝐵)
11 xnegneg 12595 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ* → -𝑒-𝑒𝑦 = 𝑦)
1211eqcomd 2804 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ*𝑦 = -𝑒-𝑒𝑦)
1312adantr 484 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 = 𝐵) → 𝑦 = -𝑒-𝑒𝑦)
14 xnegeq 12588 . . . . . . . . . . . . . . . 16 (-𝑒𝑦 = 𝐵 → -𝑒-𝑒𝑦 = -𝑒𝐵)
1514adantl 485 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 = 𝐵) → -𝑒-𝑒𝑦 = -𝑒𝐵)
1613, 15eqtrd 2833 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 = 𝐵) → 𝑦 = -𝑒𝐵)
1716ex 416 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → (-𝑒𝑦 = 𝐵𝑦 = -𝑒𝐵))
1817reximdv 3232 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (∃𝑥𝐴 -𝑒𝑦 = 𝐵 → ∃𝑥𝐴 𝑦 = -𝑒𝐵))
1918imp 410 . . . . . . . . . . 11 ((𝑦 ∈ ℝ* ∧ ∃𝑥𝐴 -𝑒𝑦 = 𝐵) → ∃𝑥𝐴 𝑦 = -𝑒𝐵)
20 simpl 486 . . . . . . . . . . 11 ((𝑦 ∈ ℝ* ∧ ∃𝑥𝐴 -𝑒𝑦 = 𝐵) → 𝑦 ∈ ℝ*)
2110, 19, 20elrnmptd 5797 . . . . . . . . . 10 ((𝑦 ∈ ℝ* ∧ ∃𝑥𝐴 -𝑒𝑦 = 𝐵) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵))
229, 21sylan2 595 . . . . . . . . 9 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵))
2322ex 416 . . . . . . . 8 (𝑦 ∈ ℝ* → (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵)))
2423rgen 3116 . . . . . . 7 𝑦 ∈ ℝ* (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵))
25 rabss 3999 . . . . . . . 8 ({𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝑒𝐵) ↔ ∀𝑦 ∈ ℝ* (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵)))
2625biimpri 231 . . . . . . 7 (∀𝑦 ∈ ℝ* (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵)) → {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝑒𝐵))
2724, 26ax-mp 5 . . . . . 6 {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝑒𝐵)
2827a1i 11 . . . . 5 (𝜑 → {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝑒𝐵))
29 nfcv 2955 . . . . . . . 8 𝑥-𝑒𝑦
30 nfmpt1 5128 . . . . . . . . 9 𝑥(𝑥𝐴𝐵)
3130nfrn 5788 . . . . . . . 8 𝑥ran (𝑥𝐴𝐵)
3229, 31nfel 2969 . . . . . . 7 𝑥-𝑒𝑦 ∈ ran (𝑥𝐴𝐵)
33 nfcv 2955 . . . . . . 7 𝑥*
3432, 33nfrabw 3338 . . . . . 6 𝑥{𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)}
35 xnegeq 12588 . . . . . . . 8 (𝑦 = -𝑒𝐵 → -𝑒𝑦 = -𝑒-𝑒𝐵)
3635eleq1d 2874 . . . . . . 7 (𝑦 = -𝑒𝐵 → (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) ↔ -𝑒-𝑒𝐵 ∈ ran (𝑥𝐴𝐵)))
373xnegcld 12681 . . . . . . 7 ((𝜑𝑥𝐴) → -𝑒𝐵 ∈ ℝ*)
38 xnegneg 12595 . . . . . . . . 9 (𝐵 ∈ ℝ* → -𝑒-𝑒𝐵 = 𝐵)
393, 38syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → -𝑒-𝑒𝐵 = 𝐵)
40 simpr 488 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
412, 40, 3elrnmpt1d 41866 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
4239, 41eqeltrd 2890 . . . . . . 7 ((𝜑𝑥𝐴) → -𝑒-𝑒𝐵 ∈ ran (𝑥𝐴𝐵))
4336, 37, 42elrabd 3630 . . . . . 6 ((𝜑𝑥𝐴) → -𝑒𝐵 ∈ {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)})
441, 34, 10, 43rnmptssdf 41892 . . . . 5 (𝜑 → ran (𝑥𝐴 ↦ -𝑒𝐵) ⊆ {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)})
4528, 44eqssd 3932 . . . 4 (𝜑 → {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)} = ran (𝑥𝐴 ↦ -𝑒𝐵))
4645infeq1d 8925 . . 3 (𝜑 → inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)}, ℝ*, < ) = inf(ran (𝑥𝐴 ↦ -𝑒𝐵), ℝ*, < ))
4746xnegeqd 42074 . 2 (𝜑 → -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)}, ℝ*, < ) = -𝑒inf(ran (𝑥𝐴 ↦ -𝑒𝐵), ℝ*, < ))
485, 47eqtrd 2833 1 (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ*, < ) = -𝑒inf(ran (𝑥𝐴 ↦ -𝑒𝐵), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wnf 1785  wcel 2111  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  wss 3881  cmpt 5110  ran crn 5520  supcsup 8888  infcinf 8889  *cxr 10663   < clt 10664  -𝑒cxne 12492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-isom 6333  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-inf 8891  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-xneg 12495
This theorem is referenced by:  liminfvalxr  42425
  Copyright terms: Public domain W3C validator