Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supminfxrrnmpt Structured version   Visualization version   GIF version

Theorem supminfxrrnmpt 45579
Description: The indexed supremum of a set of reals is the negation of the indexed infimum of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
supminfxrrnmpt.x 𝑥𝜑
supminfxrrnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
supminfxrrnmpt (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ*, < ) = -𝑒inf(ran (𝑥𝐴 ↦ -𝑒𝐵), ℝ*, < ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem supminfxrrnmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 supminfxrrnmpt.x . . . 4 𝑥𝜑
2 eqid 2731 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 supminfxrrnmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
41, 2, 3rnmptssd 45303 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ*)
54supminfxr2 45577 . 2 (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ*, < ) = -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)}, ℝ*, < ))
6 xnegex 13107 . . . . . . . . . . . 12 -𝑒𝑦 ∈ V
72elrnmpt 5897 . . . . . . . . . . . 12 (-𝑒𝑦 ∈ V → (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑒𝑦 = 𝐵))
86, 7ax-mp 5 . . . . . . . . . . 11 (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑒𝑦 = 𝐵)
98biimpi 216 . . . . . . . . . 10 (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 -𝑒𝑦 = 𝐵)
10 eqid 2731 . . . . . . . . . . 11 (𝑥𝐴 ↦ -𝑒𝐵) = (𝑥𝐴 ↦ -𝑒𝐵)
11 xnegneg 13113 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ* → -𝑒-𝑒𝑦 = 𝑦)
1211eqcomd 2737 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ*𝑦 = -𝑒-𝑒𝑦)
1312adantr 480 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 = 𝐵) → 𝑦 = -𝑒-𝑒𝑦)
14 xnegeq 13106 . . . . . . . . . . . . . . . 16 (-𝑒𝑦 = 𝐵 → -𝑒-𝑒𝑦 = -𝑒𝐵)
1514adantl 481 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 = 𝐵) → -𝑒-𝑒𝑦 = -𝑒𝐵)
1613, 15eqtrd 2766 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 = 𝐵) → 𝑦 = -𝑒𝐵)
1716ex 412 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → (-𝑒𝑦 = 𝐵𝑦 = -𝑒𝐵))
1817reximdv 3147 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (∃𝑥𝐴 -𝑒𝑦 = 𝐵 → ∃𝑥𝐴 𝑦 = -𝑒𝐵))
1918imp 406 . . . . . . . . . . 11 ((𝑦 ∈ ℝ* ∧ ∃𝑥𝐴 -𝑒𝑦 = 𝐵) → ∃𝑥𝐴 𝑦 = -𝑒𝐵)
20 simpl 482 . . . . . . . . . . 11 ((𝑦 ∈ ℝ* ∧ ∃𝑥𝐴 -𝑒𝑦 = 𝐵) → 𝑦 ∈ ℝ*)
2110, 19, 20elrnmptd 5902 . . . . . . . . . 10 ((𝑦 ∈ ℝ* ∧ ∃𝑥𝐴 -𝑒𝑦 = 𝐵) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵))
229, 21sylan2 593 . . . . . . . . 9 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵))
2322ex 412 . . . . . . . 8 (𝑦 ∈ ℝ* → (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵)))
2423rgen 3049 . . . . . . 7 𝑦 ∈ ℝ* (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵))
25 rabss 4017 . . . . . . . 8 ({𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝑒𝐵) ↔ ∀𝑦 ∈ ℝ* (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵)))
2625biimpri 228 . . . . . . 7 (∀𝑦 ∈ ℝ* (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵)) → {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝑒𝐵))
2724, 26ax-mp 5 . . . . . 6 {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝑒𝐵)
2827a1i 11 . . . . 5 (𝜑 → {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝑒𝐵))
29 nfcv 2894 . . . . . . . 8 𝑥-𝑒𝑦
30 nfmpt1 5188 . . . . . . . . 9 𝑥(𝑥𝐴𝐵)
3130nfrn 5891 . . . . . . . 8 𝑥ran (𝑥𝐴𝐵)
3229, 31nfel 2909 . . . . . . 7 𝑥-𝑒𝑦 ∈ ran (𝑥𝐴𝐵)
33 nfcv 2894 . . . . . . 7 𝑥*
3432, 33nfrabw 3432 . . . . . 6 𝑥{𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)}
35 xnegeq 13106 . . . . . . . 8 (𝑦 = -𝑒𝐵 → -𝑒𝑦 = -𝑒-𝑒𝐵)
3635eleq1d 2816 . . . . . . 7 (𝑦 = -𝑒𝐵 → (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) ↔ -𝑒-𝑒𝐵 ∈ ran (𝑥𝐴𝐵)))
373xnegcld 13199 . . . . . . 7 ((𝜑𝑥𝐴) → -𝑒𝐵 ∈ ℝ*)
38 xnegneg 13113 . . . . . . . . 9 (𝐵 ∈ ℝ* → -𝑒-𝑒𝐵 = 𝐵)
393, 38syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → -𝑒-𝑒𝐵 = 𝐵)
40 simpr 484 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
412, 40, 3elrnmpt1d 5903 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
4239, 41eqeltrd 2831 . . . . . . 7 ((𝜑𝑥𝐴) → -𝑒-𝑒𝐵 ∈ ran (𝑥𝐴𝐵))
4336, 37, 42elrabd 3644 . . . . . 6 ((𝜑𝑥𝐴) → -𝑒𝐵 ∈ {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)})
441, 34, 10, 43rnmptssdf 45361 . . . . 5 (𝜑 → ran (𝑥𝐴 ↦ -𝑒𝐵) ⊆ {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)})
4528, 44eqssd 3947 . . . 4 (𝜑 → {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)} = ran (𝑥𝐴 ↦ -𝑒𝐵))
4645infeq1d 9362 . . 3 (𝜑 → inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)}, ℝ*, < ) = inf(ran (𝑥𝐴 ↦ -𝑒𝐵), ℝ*, < ))
4746xnegeqd 45545 . 2 (𝜑 → -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)}, ℝ*, < ) = -𝑒inf(ran (𝑥𝐴 ↦ -𝑒𝐵), ℝ*, < ))
485, 47eqtrd 2766 1 (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ*, < ) = -𝑒inf(ran (𝑥𝐴 ↦ -𝑒𝐵), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wnf 1784  wcel 2111  wral 3047  wrex 3056  {crab 3395  Vcvv 3436  wss 3897  cmpt 5170  ran crn 5615  supcsup 9324  infcinf 9325  *cxr 11145   < clt 11146  -𝑒cxne 13008
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-po 5522  df-so 5523  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-isom 6490  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-xneg 13011
This theorem is referenced by:  liminfvalxr  45891
  Copyright terms: Public domain W3C validator