Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supminfxrrnmpt Structured version   Visualization version   GIF version

Theorem supminfxrrnmpt 45474
Description: The indexed supremum of a set of reals is the negation of the indexed infimum of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
supminfxrrnmpt.x 𝑥𝜑
supminfxrrnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
supminfxrrnmpt (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ*, < ) = -𝑒inf(ran (𝑥𝐴 ↦ -𝑒𝐵), ℝ*, < ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem supminfxrrnmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 supminfxrrnmpt.x . . . 4 𝑥𝜑
2 eqid 2730 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 supminfxrrnmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
41, 2, 3rnmptssd 45197 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ*)
54supminfxr2 45472 . 2 (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ*, < ) = -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)}, ℝ*, < ))
6 xnegex 13175 . . . . . . . . . . . 12 -𝑒𝑦 ∈ V
72elrnmpt 5925 . . . . . . . . . . . 12 (-𝑒𝑦 ∈ V → (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑒𝑦 = 𝐵))
86, 7ax-mp 5 . . . . . . . . . . 11 (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑒𝑦 = 𝐵)
98biimpi 216 . . . . . . . . . 10 (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 -𝑒𝑦 = 𝐵)
10 eqid 2730 . . . . . . . . . . 11 (𝑥𝐴 ↦ -𝑒𝐵) = (𝑥𝐴 ↦ -𝑒𝐵)
11 xnegneg 13181 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ* → -𝑒-𝑒𝑦 = 𝑦)
1211eqcomd 2736 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ*𝑦 = -𝑒-𝑒𝑦)
1312adantr 480 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 = 𝐵) → 𝑦 = -𝑒-𝑒𝑦)
14 xnegeq 13174 . . . . . . . . . . . . . . . 16 (-𝑒𝑦 = 𝐵 → -𝑒-𝑒𝑦 = -𝑒𝐵)
1514adantl 481 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 = 𝐵) → -𝑒-𝑒𝑦 = -𝑒𝐵)
1613, 15eqtrd 2765 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 = 𝐵) → 𝑦 = -𝑒𝐵)
1716ex 412 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → (-𝑒𝑦 = 𝐵𝑦 = -𝑒𝐵))
1817reximdv 3149 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (∃𝑥𝐴 -𝑒𝑦 = 𝐵 → ∃𝑥𝐴 𝑦 = -𝑒𝐵))
1918imp 406 . . . . . . . . . . 11 ((𝑦 ∈ ℝ* ∧ ∃𝑥𝐴 -𝑒𝑦 = 𝐵) → ∃𝑥𝐴 𝑦 = -𝑒𝐵)
20 simpl 482 . . . . . . . . . . 11 ((𝑦 ∈ ℝ* ∧ ∃𝑥𝐴 -𝑒𝑦 = 𝐵) → 𝑦 ∈ ℝ*)
2110, 19, 20elrnmptd 5930 . . . . . . . . . 10 ((𝑦 ∈ ℝ* ∧ ∃𝑥𝐴 -𝑒𝑦 = 𝐵) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵))
229, 21sylan2 593 . . . . . . . . 9 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵))
2322ex 412 . . . . . . . 8 (𝑦 ∈ ℝ* → (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵)))
2423rgen 3047 . . . . . . 7 𝑦 ∈ ℝ* (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵))
25 rabss 4038 . . . . . . . 8 ({𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝑒𝐵) ↔ ∀𝑦 ∈ ℝ* (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵)))
2625biimpri 228 . . . . . . 7 (∀𝑦 ∈ ℝ* (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵)) → {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝑒𝐵))
2724, 26ax-mp 5 . . . . . 6 {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝑒𝐵)
2827a1i 11 . . . . 5 (𝜑 → {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝑒𝐵))
29 nfcv 2892 . . . . . . . 8 𝑥-𝑒𝑦
30 nfmpt1 5209 . . . . . . . . 9 𝑥(𝑥𝐴𝐵)
3130nfrn 5919 . . . . . . . 8 𝑥ran (𝑥𝐴𝐵)
3229, 31nfel 2907 . . . . . . 7 𝑥-𝑒𝑦 ∈ ran (𝑥𝐴𝐵)
33 nfcv 2892 . . . . . . 7 𝑥*
3432, 33nfrabw 3446 . . . . . 6 𝑥{𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)}
35 xnegeq 13174 . . . . . . . 8 (𝑦 = -𝑒𝐵 → -𝑒𝑦 = -𝑒-𝑒𝐵)
3635eleq1d 2814 . . . . . . 7 (𝑦 = -𝑒𝐵 → (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) ↔ -𝑒-𝑒𝐵 ∈ ran (𝑥𝐴𝐵)))
373xnegcld 13267 . . . . . . 7 ((𝜑𝑥𝐴) → -𝑒𝐵 ∈ ℝ*)
38 xnegneg 13181 . . . . . . . . 9 (𝐵 ∈ ℝ* → -𝑒-𝑒𝐵 = 𝐵)
393, 38syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → -𝑒-𝑒𝐵 = 𝐵)
40 simpr 484 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
412, 40, 3elrnmpt1d 5931 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
4239, 41eqeltrd 2829 . . . . . . 7 ((𝜑𝑥𝐴) → -𝑒-𝑒𝐵 ∈ ran (𝑥𝐴𝐵))
4336, 37, 42elrabd 3664 . . . . . 6 ((𝜑𝑥𝐴) → -𝑒𝐵 ∈ {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)})
441, 34, 10, 43rnmptssdf 45255 . . . . 5 (𝜑 → ran (𝑥𝐴 ↦ -𝑒𝐵) ⊆ {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)})
4528, 44eqssd 3967 . . . 4 (𝜑 → {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)} = ran (𝑥𝐴 ↦ -𝑒𝐵))
4645infeq1d 9436 . . 3 (𝜑 → inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)}, ℝ*, < ) = inf(ran (𝑥𝐴 ↦ -𝑒𝐵), ℝ*, < ))
4746xnegeqd 45440 . 2 (𝜑 → -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)}, ℝ*, < ) = -𝑒inf(ran (𝑥𝐴 ↦ -𝑒𝐵), ℝ*, < ))
485, 47eqtrd 2765 1 (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ*, < ) = -𝑒inf(ran (𝑥𝐴 ↦ -𝑒𝐵), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wnf 1783  wcel 2109  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  wss 3917  cmpt 5191  ran crn 5642  supcsup 9398  infcinf 9399  *cxr 11214   < clt 11215  -𝑒cxne 13076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-xneg 13079
This theorem is referenced by:  liminfvalxr  45788
  Copyright terms: Public domain W3C validator