Step | Hyp | Ref
| Expression |
1 | | supminfxrrnmpt.x |
. . . 4
⊢
Ⅎ𝑥𝜑 |
2 | | eqid 2738 |
. . . 4
⊢ (𝑥 ∈ 𝐴 ↦ 𝐵) = (𝑥 ∈ 𝐴 ↦ 𝐵) |
3 | | supminfxrrnmpt.b |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈
ℝ*) |
4 | 1, 2, 3 | rnmptssd 42735 |
. . 3
⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ 𝐵) ⊆
ℝ*) |
5 | 4 | supminfxr2 43009 |
. 2
⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) =
-𝑒inf({𝑦
∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}, ℝ*, <
)) |
6 | | xnegex 12942 |
. . . . . . . . . . . 12
⊢
-𝑒𝑦 ∈ V |
7 | 2 | elrnmpt 5865 |
. . . . . . . . . . . 12
⊢
(-𝑒𝑦 ∈ V → (-𝑒𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 -𝑒𝑦 = 𝐵)) |
8 | 6, 7 | ax-mp 5 |
. . . . . . . . . . 11
⊢
(-𝑒𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔ ∃𝑥 ∈ 𝐴 -𝑒𝑦 = 𝐵) |
9 | 8 | biimpi 215 |
. . . . . . . . . 10
⊢
(-𝑒𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → ∃𝑥 ∈ 𝐴 -𝑒𝑦 = 𝐵) |
10 | | eqid 2738 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝐴 ↦ -𝑒𝐵) = (𝑥 ∈ 𝐴 ↦ -𝑒𝐵) |
11 | | xnegneg 12948 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 ∈ ℝ*
→ -𝑒-𝑒𝑦 = 𝑦) |
12 | 11 | eqcomd 2744 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 ∈ ℝ*
→ 𝑦 =
-𝑒-𝑒𝑦) |
13 | 12 | adantr 481 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℝ*
∧ -𝑒𝑦 = 𝐵) → 𝑦 =
-𝑒-𝑒𝑦) |
14 | | xnegeq 12941 |
. . . . . . . . . . . . . . . 16
⊢
(-𝑒𝑦 = 𝐵 →
-𝑒-𝑒𝑦 = -𝑒𝐵) |
15 | 14 | adantl 482 |
. . . . . . . . . . . . . . 15
⊢ ((𝑦 ∈ ℝ*
∧ -𝑒𝑦 = 𝐵) →
-𝑒-𝑒𝑦 = -𝑒𝐵) |
16 | 13, 15 | eqtrd 2778 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ ℝ*
∧ -𝑒𝑦 = 𝐵) → 𝑦 = -𝑒𝐵) |
17 | 16 | ex 413 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℝ*
→ (-𝑒𝑦 = 𝐵 → 𝑦 = -𝑒𝐵)) |
18 | 17 | reximdv 3202 |
. . . . . . . . . . . 12
⊢ (𝑦 ∈ ℝ*
→ (∃𝑥 ∈
𝐴
-𝑒𝑦 =
𝐵 → ∃𝑥 ∈ 𝐴 𝑦 = -𝑒𝐵)) |
19 | 18 | imp 407 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℝ*
∧ ∃𝑥 ∈ 𝐴 -𝑒𝑦 = 𝐵) → ∃𝑥 ∈ 𝐴 𝑦 = -𝑒𝐵) |
20 | | simpl 483 |
. . . . . . . . . . 11
⊢ ((𝑦 ∈ ℝ*
∧ ∃𝑥 ∈ 𝐴 -𝑒𝑦 = 𝐵) → 𝑦 ∈ ℝ*) |
21 | 10, 19, 20 | elrnmptd 5870 |
. . . . . . . . . 10
⊢ ((𝑦 ∈ ℝ*
∧ ∃𝑥 ∈ 𝐴 -𝑒𝑦 = 𝐵) → 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝑒𝐵)) |
22 | 9, 21 | sylan2 593 |
. . . . . . . . 9
⊢ ((𝑦 ∈ ℝ*
∧ -𝑒𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) → 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝑒𝐵)) |
23 | 22 | ex 413 |
. . . . . . . 8
⊢ (𝑦 ∈ ℝ*
→ (-𝑒𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝑒𝐵))) |
24 | 23 | rgen 3074 |
. . . . . . 7
⊢
∀𝑦 ∈
ℝ* (-𝑒𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝑒𝐵)) |
25 | | rabss 4005 |
. . . . . . . 8
⊢ ({𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} ⊆ ran (𝑥 ∈ 𝐴 ↦ -𝑒𝐵) ↔ ∀𝑦 ∈ ℝ*
(-𝑒𝑦
∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝑒𝐵))) |
26 | 25 | biimpri 227 |
. . . . . . 7
⊢
(∀𝑦 ∈
ℝ* (-𝑒𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) → 𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ -𝑒𝐵)) → {𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} ⊆ ran (𝑥 ∈ 𝐴 ↦ -𝑒𝐵)) |
27 | 24, 26 | ax-mp 5 |
. . . . . 6
⊢ {𝑦 ∈ ℝ*
∣ -𝑒𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} ⊆ ran (𝑥 ∈ 𝐴 ↦ -𝑒𝐵) |
28 | 27 | a1i 11 |
. . . . 5
⊢ (𝜑 → {𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} ⊆ ran (𝑥 ∈ 𝐴 ↦ -𝑒𝐵)) |
29 | | nfcv 2907 |
. . . . . . . 8
⊢
Ⅎ𝑥-𝑒𝑦 |
30 | | nfmpt1 5182 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝑥 ∈ 𝐴 ↦ 𝐵) |
31 | 30 | nfrn 5861 |
. . . . . . . 8
⊢
Ⅎ𝑥ran
(𝑥 ∈ 𝐴 ↦ 𝐵) |
32 | 29, 31 | nfel 2921 |
. . . . . . 7
⊢
Ⅎ𝑥-𝑒𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) |
33 | | nfcv 2907 |
. . . . . . 7
⊢
Ⅎ𝑥ℝ* |
34 | 32, 33 | nfrabw 3318 |
. . . . . 6
⊢
Ⅎ𝑥{𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} |
35 | | xnegeq 12941 |
. . . . . . . 8
⊢ (𝑦 = -𝑒𝐵 →
-𝑒𝑦 =
-𝑒-𝑒𝐵) |
36 | 35 | eleq1d 2823 |
. . . . . . 7
⊢ (𝑦 = -𝑒𝐵 →
(-𝑒𝑦
∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵) ↔
-𝑒-𝑒𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵))) |
37 | 3 | xnegcld 13034 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝑒𝐵 ∈
ℝ*) |
38 | | xnegneg 12948 |
. . . . . . . . 9
⊢ (𝐵 ∈ ℝ*
→ -𝑒-𝑒𝐵 = 𝐵) |
39 | 3, 38 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) →
-𝑒-𝑒𝐵 = 𝐵) |
40 | | simpr 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) |
41 | 2, 40, 3 | elrnmpt1d 42773 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
42 | 39, 41 | eqeltrd 2839 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) →
-𝑒-𝑒𝐵 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)) |
43 | 36, 37, 42 | elrabd 3626 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → -𝑒𝐵 ∈ {𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}) |
44 | 1, 34, 10, 43 | rnmptssdf 42800 |
. . . . 5
⊢ (𝜑 → ran (𝑥 ∈ 𝐴 ↦ -𝑒𝐵) ⊆ {𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}) |
45 | 28, 44 | eqssd 3938 |
. . . 4
⊢ (𝜑 → {𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)} = ran (𝑥 ∈ 𝐴 ↦ -𝑒𝐵)) |
46 | 45 | infeq1d 9236 |
. . 3
⊢ (𝜑 → inf({𝑦 ∈ ℝ* ∣
-𝑒𝑦
∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}, ℝ*, < ) = inf(ran
(𝑥 ∈ 𝐴 ↦ -𝑒𝐵), ℝ*, <
)) |
47 | 46 | xnegeqd 42977 |
. 2
⊢ (𝜑 →
-𝑒inf({𝑦
∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥 ∈ 𝐴 ↦ 𝐵)}, ℝ*, < ) =
-𝑒inf(ran (𝑥 ∈ 𝐴 ↦ -𝑒𝐵), ℝ*, <
)) |
48 | 5, 47 | eqtrd 2778 |
1
⊢ (𝜑 → sup(ran (𝑥 ∈ 𝐴 ↦ 𝐵), ℝ*, < ) =
-𝑒inf(ran (𝑥 ∈ 𝐴 ↦ -𝑒𝐵), ℝ*, <
)) |