Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  supminfxrrnmpt Structured version   Visualization version   GIF version

Theorem supminfxrrnmpt 42901
Description: The indexed supremum of a set of reals is the negation of the indexed infimum of that set's image under negation. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
Hypotheses
Ref Expression
supminfxrrnmpt.x 𝑥𝜑
supminfxrrnmpt.b ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
Assertion
Ref Expression
supminfxrrnmpt (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ*, < ) = -𝑒inf(ran (𝑥𝐴 ↦ -𝑒𝐵), ℝ*, < ))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem supminfxrrnmpt
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 supminfxrrnmpt.x . . . 4 𝑥𝜑
2 eqid 2738 . . . 4 (𝑥𝐴𝐵) = (𝑥𝐴𝐵)
3 supminfxrrnmpt.b . . . 4 ((𝜑𝑥𝐴) → 𝐵 ∈ ℝ*)
41, 2, 3rnmptssd 42624 . . 3 (𝜑 → ran (𝑥𝐴𝐵) ⊆ ℝ*)
54supminfxr2 42899 . 2 (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ*, < ) = -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)}, ℝ*, < ))
6 xnegex 12871 . . . . . . . . . . . 12 -𝑒𝑦 ∈ V
72elrnmpt 5854 . . . . . . . . . . . 12 (-𝑒𝑦 ∈ V → (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑒𝑦 = 𝐵))
86, 7ax-mp 5 . . . . . . . . . . 11 (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) ↔ ∃𝑥𝐴 -𝑒𝑦 = 𝐵)
98biimpi 215 . . . . . . . . . 10 (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) → ∃𝑥𝐴 -𝑒𝑦 = 𝐵)
10 eqid 2738 . . . . . . . . . . 11 (𝑥𝐴 ↦ -𝑒𝐵) = (𝑥𝐴 ↦ -𝑒𝐵)
11 xnegneg 12877 . . . . . . . . . . . . . . . . 17 (𝑦 ∈ ℝ* → -𝑒-𝑒𝑦 = 𝑦)
1211eqcomd 2744 . . . . . . . . . . . . . . . 16 (𝑦 ∈ ℝ*𝑦 = -𝑒-𝑒𝑦)
1312adantr 480 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 = 𝐵) → 𝑦 = -𝑒-𝑒𝑦)
14 xnegeq 12870 . . . . . . . . . . . . . . . 16 (-𝑒𝑦 = 𝐵 → -𝑒-𝑒𝑦 = -𝑒𝐵)
1514adantl 481 . . . . . . . . . . . . . . 15 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 = 𝐵) → -𝑒-𝑒𝑦 = -𝑒𝐵)
1613, 15eqtrd 2778 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 = 𝐵) → 𝑦 = -𝑒𝐵)
1716ex 412 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → (-𝑒𝑦 = 𝐵𝑦 = -𝑒𝐵))
1817reximdv 3201 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (∃𝑥𝐴 -𝑒𝑦 = 𝐵 → ∃𝑥𝐴 𝑦 = -𝑒𝐵))
1918imp 406 . . . . . . . . . . 11 ((𝑦 ∈ ℝ* ∧ ∃𝑥𝐴 -𝑒𝑦 = 𝐵) → ∃𝑥𝐴 𝑦 = -𝑒𝐵)
20 simpl 482 . . . . . . . . . . 11 ((𝑦 ∈ ℝ* ∧ ∃𝑥𝐴 -𝑒𝑦 = 𝐵) → 𝑦 ∈ ℝ*)
2110, 19, 20elrnmptd 5859 . . . . . . . . . 10 ((𝑦 ∈ ℝ* ∧ ∃𝑥𝐴 -𝑒𝑦 = 𝐵) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵))
229, 21sylan2 592 . . . . . . . . 9 ((𝑦 ∈ ℝ* ∧ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵))
2322ex 412 . . . . . . . 8 (𝑦 ∈ ℝ* → (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵)))
2423rgen 3073 . . . . . . 7 𝑦 ∈ ℝ* (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵))
25 rabss 4001 . . . . . . . 8 ({𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝑒𝐵) ↔ ∀𝑦 ∈ ℝ* (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵)))
2625biimpri 227 . . . . . . 7 (∀𝑦 ∈ ℝ* (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) → 𝑦 ∈ ran (𝑥𝐴 ↦ -𝑒𝐵)) → {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝑒𝐵))
2724, 26ax-mp 5 . . . . . 6 {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝑒𝐵)
2827a1i 11 . . . . 5 (𝜑 → {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)} ⊆ ran (𝑥𝐴 ↦ -𝑒𝐵))
29 nfcv 2906 . . . . . . . 8 𝑥-𝑒𝑦
30 nfmpt1 5178 . . . . . . . . 9 𝑥(𝑥𝐴𝐵)
3130nfrn 5850 . . . . . . . 8 𝑥ran (𝑥𝐴𝐵)
3229, 31nfel 2920 . . . . . . 7 𝑥-𝑒𝑦 ∈ ran (𝑥𝐴𝐵)
33 nfcv 2906 . . . . . . 7 𝑥*
3432, 33nfrabw 3311 . . . . . 6 𝑥{𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)}
35 xnegeq 12870 . . . . . . . 8 (𝑦 = -𝑒𝐵 → -𝑒𝑦 = -𝑒-𝑒𝐵)
3635eleq1d 2823 . . . . . . 7 (𝑦 = -𝑒𝐵 → (-𝑒𝑦 ∈ ran (𝑥𝐴𝐵) ↔ -𝑒-𝑒𝐵 ∈ ran (𝑥𝐴𝐵)))
373xnegcld 12963 . . . . . . 7 ((𝜑𝑥𝐴) → -𝑒𝐵 ∈ ℝ*)
38 xnegneg 12877 . . . . . . . . 9 (𝐵 ∈ ℝ* → -𝑒-𝑒𝐵 = 𝐵)
393, 38syl 17 . . . . . . . 8 ((𝜑𝑥𝐴) → -𝑒-𝑒𝐵 = 𝐵)
40 simpr 484 . . . . . . . . 9 ((𝜑𝑥𝐴) → 𝑥𝐴)
412, 40, 3elrnmpt1d 42662 . . . . . . . 8 ((𝜑𝑥𝐴) → 𝐵 ∈ ran (𝑥𝐴𝐵))
4239, 41eqeltrd 2839 . . . . . . 7 ((𝜑𝑥𝐴) → -𝑒-𝑒𝐵 ∈ ran (𝑥𝐴𝐵))
4336, 37, 42elrabd 3619 . . . . . 6 ((𝜑𝑥𝐴) → -𝑒𝐵 ∈ {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)})
441, 34, 10, 43rnmptssdf 42689 . . . . 5 (𝜑 → ran (𝑥𝐴 ↦ -𝑒𝐵) ⊆ {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)})
4528, 44eqssd 3934 . . . 4 (𝜑 → {𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)} = ran (𝑥𝐴 ↦ -𝑒𝐵))
4645infeq1d 9166 . . 3 (𝜑 → inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)}, ℝ*, < ) = inf(ran (𝑥𝐴 ↦ -𝑒𝐵), ℝ*, < ))
4746xnegeqd 42867 . 2 (𝜑 → -𝑒inf({𝑦 ∈ ℝ* ∣ -𝑒𝑦 ∈ ran (𝑥𝐴𝐵)}, ℝ*, < ) = -𝑒inf(ran (𝑥𝐴 ↦ -𝑒𝐵), ℝ*, < ))
485, 47eqtrd 2778 1 (𝜑 → sup(ran (𝑥𝐴𝐵), ℝ*, < ) = -𝑒inf(ran (𝑥𝐴 ↦ -𝑒𝐵), ℝ*, < ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wnf 1787  wcel 2108  wral 3063  wrex 3064  {crab 3067  Vcvv 3422  wss 3883  cmpt 5153  ran crn 5581  supcsup 9129  infcinf 9130  *cxr 10939   < clt 10940  -𝑒cxne 12774
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-xneg 12777
This theorem is referenced by:  liminfvalxr  43214
  Copyright terms: Public domain W3C validator