MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmpt1s Structured version   Visualization version   GIF version

Theorem elrnmpt1s 5898
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
rnmpt.1 𝐹 = (𝑥𝐴𝐵)
elrnmpt1s.1 (𝑥 = 𝐷𝐵 = 𝐶)
Assertion
Ref Expression
elrnmpt1s ((𝐷𝐴𝐶𝑉) → 𝐶 ∈ ran 𝐹)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐴   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem elrnmpt1s
StepHypRef Expression
1 eqid 2731 . . 3 𝐶 = 𝐶
2 elrnmpt1s.1 . . . 4 (𝑥 = 𝐷𝐵 = 𝐶)
32rspceeqv 3595 . . 3 ((𝐷𝐴𝐶 = 𝐶) → ∃𝑥𝐴 𝐶 = 𝐵)
41, 3mpan2 691 . 2 (𝐷𝐴 → ∃𝑥𝐴 𝐶 = 𝐵)
5 rnmpt.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
65elrnmpt 5897 . . 3 (𝐶𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
76biimparc 479 . 2 ((∃𝑥𝐴 𝐶 = 𝐵𝐶𝑉) → 𝐶 ∈ ran 𝐹)
84, 7sylan 580 1 ((𝐷𝐴𝐶𝑉) → 𝐶 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  cmpt 5170  ran crn 5615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-mpt 5171  df-cnv 5622  df-dm 5624  df-rn 5625
This theorem is referenced by:  wunex2  10629  dfod2  19476  dprd2dlem1  19955  dprd2da  19956  ordtbaslem  23103  subgntr  24022  opnsubg  24023  tgpconncomp  24028  tsmsxplem1  24068  xrge0gsumle  24749  xrge0tsms  24750  minveclem3b  25355  minveclem3  25356  minveclem4  25359  efsubm  26487  dchrisum0fno1  27449  fnpreimac  32653  xrge0tsmsd  33042  esumcvg  34099  esum2d  34106  msubco  35575  suprubrnmpt2  45348  infxrlbrnmpt2  45507  sge0xaddlem1  46530
  Copyright terms: Public domain W3C validator