MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmpt1s Structured version   Visualization version   GIF version

Theorem elrnmpt1s 5944
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
rnmpt.1 𝐹 = (𝑥𝐴𝐵)
elrnmpt1s.1 (𝑥 = 𝐷𝐵 = 𝐶)
Assertion
Ref Expression
elrnmpt1s ((𝐷𝐴𝐶𝑉) → 𝐶 ∈ ran 𝐹)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐴   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem elrnmpt1s
StepHypRef Expression
1 eqid 2736 . . 3 𝐶 = 𝐶
2 elrnmpt1s.1 . . . 4 (𝑥 = 𝐷𝐵 = 𝐶)
32rspceeqv 3629 . . 3 ((𝐷𝐴𝐶 = 𝐶) → ∃𝑥𝐴 𝐶 = 𝐵)
41, 3mpan2 691 . 2 (𝐷𝐴 → ∃𝑥𝐴 𝐶 = 𝐵)
5 rnmpt.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
65elrnmpt 5943 . . 3 (𝐶𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
76biimparc 479 . 2 ((∃𝑥𝐴 𝐶 = 𝐵𝐶𝑉) → 𝐶 ∈ ran 𝐹)
84, 7sylan 580 1 ((𝐷𝐴𝐶𝑉) → 𝐶 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3061  cmpt 5206  ran crn 5660
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5125  df-opab 5187  df-mpt 5207  df-cnv 5667  df-dm 5669  df-rn 5670
This theorem is referenced by:  wunex2  10757  dfod2  19550  dprd2dlem1  20029  dprd2da  20030  ordtbaslem  23131  subgntr  24050  opnsubg  24051  tgpconncomp  24056  tsmsxplem1  24096  xrge0gsumle  24778  xrge0tsms  24779  minveclem3b  25385  minveclem3  25386  minveclem4  25389  efsubm  26517  dchrisum0fno1  27479  fnpreimac  32654  xrge0tsmsd  33061  esumcvg  34122  esum2d  34129  msubco  35558  suprubrnmpt2  45243  infxrlbrnmpt2  45404  sge0xaddlem1  46429
  Copyright terms: Public domain W3C validator