MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmpt1s Structured version   Visualization version   GIF version

Theorem elrnmpt1s 5863
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
rnmpt.1 𝐹 = (𝑥𝐴𝐵)
elrnmpt1s.1 (𝑥 = 𝐷𝐵 = 𝐶)
Assertion
Ref Expression
elrnmpt1s ((𝐷𝐴𝐶𝑉) → 𝐶 ∈ ran 𝐹)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐴   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem elrnmpt1s
StepHypRef Expression
1 eqid 2739 . . 3 𝐶 = 𝐶
2 elrnmpt1s.1 . . . 4 (𝑥 = 𝐷𝐵 = 𝐶)
32rspceeqv 3575 . . 3 ((𝐷𝐴𝐶 = 𝐶) → ∃𝑥𝐴 𝐶 = 𝐵)
41, 3mpan2 687 . 2 (𝐷𝐴 → ∃𝑥𝐴 𝐶 = 𝐵)
5 rnmpt.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
65elrnmpt 5862 . . 3 (𝐶𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
76biimparc 479 . 2 ((∃𝑥𝐴 𝐶 = 𝐵𝐶𝑉) → 𝐶 ∈ ran 𝐹)
84, 7sylan 579 1 ((𝐷𝐴𝐶𝑉) → 𝐶 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wrex 3066  cmpt 5161  ran crn 5589
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pr 5355
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-sn 4567  df-pr 4569  df-op 4573  df-br 5079  df-opab 5141  df-mpt 5162  df-cnv 5596  df-dm 5598  df-rn 5599
This theorem is referenced by:  wunex2  10478  dfod2  19152  dprd2dlem1  19625  dprd2da  19626  ordtbaslem  22320  subgntr  23239  opnsubg  23240  tgpconncomp  23245  tsmsxplem1  23285  xrge0gsumle  23977  xrge0tsms  23978  minveclem3b  24573  minveclem3  24574  minveclem4  24577  efsubm  25688  dchrisum0fno1  26640  fnpreimac  30987  xrge0tsmsd  31296  esumcvg  32033  esum2d  32040  msubco  33472  suprubrnmpt2  42751  infxrlbrnmpt2  42904  sge0xaddlem1  43925
  Copyright terms: Public domain W3C validator