MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elrnmpt1s Structured version   Visualization version   GIF version

Theorem elrnmpt1s 5912
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 12-Sep-2015.)
Hypotheses
Ref Expression
rnmpt.1 𝐹 = (𝑥𝐴𝐵)
elrnmpt1s.1 (𝑥 = 𝐷𝐵 = 𝐶)
Assertion
Ref Expression
elrnmpt1s ((𝐷𝐴𝐶𝑉) → 𝐶 ∈ ran 𝐹)
Distinct variable groups:   𝑥,𝐶   𝑥,𝐴   𝑥,𝐷
Allowed substitution hints:   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥)

Proof of Theorem elrnmpt1s
StepHypRef Expression
1 eqid 2729 . . 3 𝐶 = 𝐶
2 elrnmpt1s.1 . . . 4 (𝑥 = 𝐷𝐵 = 𝐶)
32rspceeqv 3608 . . 3 ((𝐷𝐴𝐶 = 𝐶) → ∃𝑥𝐴 𝐶 = 𝐵)
41, 3mpan2 691 . 2 (𝐷𝐴 → ∃𝑥𝐴 𝐶 = 𝐵)
5 rnmpt.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
65elrnmpt 5911 . . 3 (𝐶𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥𝐴 𝐶 = 𝐵))
76biimparc 479 . 2 ((∃𝑥𝐴 𝐶 = 𝐵𝐶𝑉) → 𝐶 ∈ ran 𝐹)
84, 7sylan 580 1 ((𝐷𝐴𝐶𝑉) → 𝐶 ∈ ran 𝐹)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wrex 3053  cmpt 5183  ran crn 5632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-mpt 5184  df-cnv 5639  df-dm 5641  df-rn 5642
This theorem is referenced by:  wunex2  10667  dfod2  19478  dprd2dlem1  19957  dprd2da  19958  ordtbaslem  23108  subgntr  24027  opnsubg  24028  tgpconncomp  24033  tsmsxplem1  24073  xrge0gsumle  24755  xrge0tsms  24756  minveclem3b  25361  minveclem3  25362  minveclem4  25365  efsubm  26493  dchrisum0fno1  27455  fnpreimac  32645  xrge0tsmsd  33045  esumcvg  34069  esum2d  34076  msubco  35511  suprubrnmpt2  45239  infxrlbrnmpt2  45399  sge0xaddlem1  46424
  Copyright terms: Public domain W3C validator