Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elrnmpt1s | Structured version Visualization version GIF version |
Description: Elementhood in an image set. (Contributed by Mario Carneiro, 12-Sep-2015.) |
Ref | Expression |
---|---|
rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
elrnmpt1s.1 | ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) |
Ref | Expression |
---|---|
elrnmpt1s | ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ ran 𝐹) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2758 | . . 3 ⊢ 𝐶 = 𝐶 | |
2 | elrnmpt1s.1 | . . . 4 ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) | |
3 | 2 | rspceeqv 3558 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 = 𝐶) → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
4 | 1, 3 | mpan2 690 | . 2 ⊢ (𝐷 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
5 | rnmpt.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
6 | 5 | elrnmpt 5802 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
7 | 6 | biimparc 483 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝐶 = 𝐵 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ ran 𝐹) |
8 | 4, 7 | sylan 583 | 1 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ ran 𝐹) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∃wrex 3071 ↦ cmpt 5116 ran crn 5529 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pr 5302 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-v 3411 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-sn 4526 df-pr 4528 df-op 4532 df-br 5037 df-opab 5099 df-mpt 5117 df-cnv 5536 df-dm 5538 df-rn 5539 |
This theorem is referenced by: wunex2 10211 dfod2 18772 dprd2dlem1 19245 dprd2da 19246 ordtbaslem 21902 subgntr 22821 opnsubg 22822 tgpconncomp 22827 tsmsxplem1 22867 xrge0gsumle 23548 xrge0tsms 23549 minveclem3b 24142 minveclem3 24143 minveclem4 24146 efsubm 25256 dchrisum0fno1 26208 fnpreimac 30545 xrge0tsmsd 30856 esumcvg 31586 esum2d 31593 msubco 33022 suprubrnmpt2 42303 infxrlbrnmpt2 42458 sge0xaddlem1 43483 |
Copyright terms: Public domain | W3C validator |