| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrnmpt1s | Structured version Visualization version GIF version | ||
| Description: Elementhood in an image set. (Contributed by Mario Carneiro, 12-Sep-2015.) |
| Ref | Expression |
|---|---|
| rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| elrnmpt1s.1 | ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| elrnmpt1s | ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . 3 ⊢ 𝐶 = 𝐶 | |
| 2 | elrnmpt1s.1 | . . . 4 ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) | |
| 3 | 2 | rspceeqv 3614 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 = 𝐶) → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
| 4 | 1, 3 | mpan2 691 | . 2 ⊢ (𝐷 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
| 5 | rnmpt.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 6 | 5 | elrnmpt 5925 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
| 7 | 6 | biimparc 479 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝐶 = 𝐵 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ ran 𝐹) |
| 8 | 4, 7 | sylan 580 | 1 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3054 ↦ cmpt 5191 ran crn 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-mpt 5192 df-cnv 5649 df-dm 5651 df-rn 5652 |
| This theorem is referenced by: wunex2 10698 dfod2 19501 dprd2dlem1 19980 dprd2da 19981 ordtbaslem 23082 subgntr 24001 opnsubg 24002 tgpconncomp 24007 tsmsxplem1 24047 xrge0gsumle 24729 xrge0tsms 24730 minveclem3b 25335 minveclem3 25336 minveclem4 25339 efsubm 26467 dchrisum0fno1 27429 fnpreimac 32602 xrge0tsmsd 33009 esumcvg 34083 esum2d 34090 msubco 35525 suprubrnmpt2 45253 infxrlbrnmpt2 45413 sge0xaddlem1 46438 |
| Copyright terms: Public domain | W3C validator |