| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elrnmpt1s | Structured version Visualization version GIF version | ||
| Description: Elementhood in an image set. (Contributed by Mario Carneiro, 12-Sep-2015.) |
| Ref | Expression |
|---|---|
| rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| elrnmpt1s.1 | ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) |
| Ref | Expression |
|---|---|
| elrnmpt1s | ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ ran 𝐹) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . 3 ⊢ 𝐶 = 𝐶 | |
| 2 | elrnmpt1s.1 | . . . 4 ⊢ (𝑥 = 𝐷 → 𝐵 = 𝐶) | |
| 3 | 2 | rspceeqv 3611 | . . 3 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 = 𝐶) → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
| 4 | 1, 3 | mpan2 691 | . 2 ⊢ (𝐷 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
| 5 | rnmpt.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 6 | 5 | elrnmpt 5922 | . . 3 ⊢ (𝐶 ∈ 𝑉 → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
| 7 | 6 | biimparc 479 | . 2 ⊢ ((∃𝑥 ∈ 𝐴 𝐶 = 𝐵 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ ran 𝐹) |
| 8 | 4, 7 | sylan 580 | 1 ⊢ ((𝐷 ∈ 𝐴 ∧ 𝐶 ∈ 𝑉) → 𝐶 ∈ ran 𝐹) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ↦ cmpt 5188 ran crn 5639 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-mpt 5189 df-cnv 5646 df-dm 5648 df-rn 5649 |
| This theorem is referenced by: wunex2 10691 dfod2 19494 dprd2dlem1 19973 dprd2da 19974 ordtbaslem 23075 subgntr 23994 opnsubg 23995 tgpconncomp 24000 tsmsxplem1 24040 xrge0gsumle 24722 xrge0tsms 24723 minveclem3b 25328 minveclem3 25329 minveclem4 25332 efsubm 26460 dchrisum0fno1 27422 fnpreimac 32595 xrge0tsmsd 33002 esumcvg 34076 esum2d 34083 msubco 35518 suprubrnmpt2 45246 infxrlbrnmpt2 45406 sge0xaddlem1 46431 |
| Copyright terms: Public domain | W3C validator |