MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1 Structured version   Visualization version   GIF version

Theorem en1 8995
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.) Avoid ax-un 7711. (Revised by BTernaryTau, 23-Sep-2024.)
Assertion
Ref Expression
en1 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem en1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df1o2 8441 . . . . 5 1o = {∅}
21breq2i 5115 . . . 4 (𝐴 ≈ 1o𝐴 ≈ {∅})
3 encv 8926 . . . . . 6 (𝐴 ≈ {∅} → (𝐴 ∈ V ∧ {∅} ∈ V))
4 breng 8927 . . . . . 6 ((𝐴 ∈ V ∧ {∅} ∈ V) → (𝐴 ≈ {∅} ↔ ∃𝑓 𝑓:𝐴1-1-onto→{∅}))
53, 4syl 17 . . . . 5 (𝐴 ≈ {∅} → (𝐴 ≈ {∅} ↔ ∃𝑓 𝑓:𝐴1-1-onto→{∅}))
65ibi 267 . . . 4 (𝐴 ≈ {∅} → ∃𝑓 𝑓:𝐴1-1-onto→{∅})
72, 6sylbi 217 . . 3 (𝐴 ≈ 1o → ∃𝑓 𝑓:𝐴1-1-onto→{∅})
8 f1ocnv 6812 . . . . 5 (𝑓:𝐴1-1-onto→{∅} → 𝑓:{∅}–1-1-onto𝐴)
9 f1ofo 6807 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴𝑓:{∅}–onto𝐴)
10 forn 6775 . . . . . . 7 (𝑓:{∅}–onto𝐴 → ran 𝑓 = 𝐴)
119, 10syl 17 . . . . . 6 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = 𝐴)
12 f1of 6800 . . . . . . . . 9 (𝑓:{∅}–1-1-onto𝐴𝑓:{∅}⟶𝐴)
13 0ex 5262 . . . . . . . . . . 11 ∅ ∈ V
1413fsn2 7108 . . . . . . . . . 10 (𝑓:{∅}⟶𝐴 ↔ ((𝑓‘∅) ∈ 𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩}))
1514simprbi 496 . . . . . . . . 9 (𝑓:{∅}⟶𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩})
1612, 15syl 17 . . . . . . . 8 (𝑓:{∅}–1-1-onto𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩})
1716rneqd 5902 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = ran {⟨∅, (𝑓‘∅)⟩})
1813rnsnop 6197 . . . . . . 7 ran {⟨∅, (𝑓‘∅)⟩} = {(𝑓‘∅)}
1917, 18eqtrdi 2780 . . . . . 6 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = {(𝑓‘∅)})
2011, 19eqtr3d 2766 . . . . 5 (𝑓:{∅}–1-1-onto𝐴𝐴 = {(𝑓‘∅)})
21 fvex 6871 . . . . . 6 (𝑓‘∅) ∈ V
22 sneq 4599 . . . . . . 7 (𝑥 = (𝑓‘∅) → {𝑥} = {(𝑓‘∅)})
2322eqeq2d 2740 . . . . . 6 (𝑥 = (𝑓‘∅) → (𝐴 = {𝑥} ↔ 𝐴 = {(𝑓‘∅)}))
2421, 23spcev 3572 . . . . 5 (𝐴 = {(𝑓‘∅)} → ∃𝑥 𝐴 = {𝑥})
258, 20, 243syl 18 . . . 4 (𝑓:𝐴1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥})
2625exlimiv 1930 . . 3 (∃𝑓 𝑓:𝐴1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥})
277, 26syl 17 . 2 (𝐴 ≈ 1o → ∃𝑥 𝐴 = {𝑥})
28 vex 3451 . . . . 5 𝑥 ∈ V
2928ensn1 8992 . . . 4 {𝑥} ≈ 1o
30 breq1 5110 . . . 4 (𝐴 = {𝑥} → (𝐴 ≈ 1o ↔ {𝑥} ≈ 1o))
3129, 30mpbiri 258 . . 3 (𝐴 = {𝑥} → 𝐴 ≈ 1o)
3231exlimiv 1930 . 2 (∃𝑥 𝐴 = {𝑥} → 𝐴 ≈ 1o)
3327, 32impbii 209 1 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3447  c0 4296  {csn 4589  cop 4595   class class class wbr 5107  ccnv 5637  ran crn 5639  wf 6507  ontowfo 6509  1-1-ontowf1o 6510  cfv 6511  1oc1o 8427  cen 8915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-1o 8434  df-en 8919
This theorem is referenced by:  en1b  8996  reuen1  8997  en1eqsn  9219  en2  9226  card1  9921  pm54.43  9954  hash1elsn  14336  hash1snb  14384  ufildom1  23813  unidifsnel  32464  unidifsnne  32465  funen1cnv  35078  lfuhgr3  35107  snen1g  43513  istermc3  49465
  Copyright terms: Public domain W3C validator