![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en1 | Structured version Visualization version GIF version |
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.) |
Ref | Expression |
---|---|
en1 | ⊢ (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 7967 | . . . . 5 ⊢ 1o = {∅} | |
2 | 1 | breq2i 4970 | . . . 4 ⊢ (𝐴 ≈ 1o ↔ 𝐴 ≈ {∅}) |
3 | bren 8366 | . . . 4 ⊢ (𝐴 ≈ {∅} ↔ ∃𝑓 𝑓:𝐴–1-1-onto→{∅}) | |
4 | 2, 3 | bitri 276 | . . 3 ⊢ (𝐴 ≈ 1o ↔ ∃𝑓 𝑓:𝐴–1-1-onto→{∅}) |
5 | f1ocnv 6495 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→{∅} → ◡𝑓:{∅}–1-1-onto→𝐴) | |
6 | f1ofo 6490 | . . . . . . 7 ⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ◡𝑓:{∅}–onto→𝐴) | |
7 | forn 6461 | . . . . . . 7 ⊢ (◡𝑓:{∅}–onto→𝐴 → ran ◡𝑓 = 𝐴) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ran ◡𝑓 = 𝐴) |
9 | f1of 6483 | . . . . . . . . 9 ⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ◡𝑓:{∅}⟶𝐴) | |
10 | 0ex 5102 | . . . . . . . . . . 11 ⊢ ∅ ∈ V | |
11 | 10 | fsn2 6761 | . . . . . . . . . 10 ⊢ (◡𝑓:{∅}⟶𝐴 ↔ ((◡𝑓‘∅) ∈ 𝐴 ∧ ◡𝑓 = {〈∅, (◡𝑓‘∅)〉})) |
12 | 11 | simprbi 497 | . . . . . . . . 9 ⊢ (◡𝑓:{∅}⟶𝐴 → ◡𝑓 = {〈∅, (◡𝑓‘∅)〉}) |
13 | 9, 12 | syl 17 | . . . . . . . 8 ⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ◡𝑓 = {〈∅, (◡𝑓‘∅)〉}) |
14 | 13 | rneqd 5690 | . . . . . . 7 ⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ran ◡𝑓 = ran {〈∅, (◡𝑓‘∅)〉}) |
15 | 10 | rnsnop 5956 | . . . . . . 7 ⊢ ran {〈∅, (◡𝑓‘∅)〉} = {(◡𝑓‘∅)} |
16 | 14, 15 | syl6eq 2847 | . . . . . 6 ⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ran ◡𝑓 = {(◡𝑓‘∅)}) |
17 | 8, 16 | eqtr3d 2833 | . . . . 5 ⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → 𝐴 = {(◡𝑓‘∅)}) |
18 | fvex 6551 | . . . . . 6 ⊢ (◡𝑓‘∅) ∈ V | |
19 | sneq 4482 | . . . . . . 7 ⊢ (𝑥 = (◡𝑓‘∅) → {𝑥} = {(◡𝑓‘∅)}) | |
20 | 19 | eqeq2d 2805 | . . . . . 6 ⊢ (𝑥 = (◡𝑓‘∅) → (𝐴 = {𝑥} ↔ 𝐴 = {(◡𝑓‘∅)})) |
21 | 18, 20 | spcev 3549 | . . . . 5 ⊢ (𝐴 = {(◡𝑓‘∅)} → ∃𝑥 𝐴 = {𝑥}) |
22 | 5, 17, 21 | 3syl 18 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥}) |
23 | 22 | exlimiv 1908 | . . 3 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥}) |
24 | 4, 23 | sylbi 218 | . 2 ⊢ (𝐴 ≈ 1o → ∃𝑥 𝐴 = {𝑥}) |
25 | vex 3440 | . . . . 5 ⊢ 𝑥 ∈ V | |
26 | 25 | ensn1 8421 | . . . 4 ⊢ {𝑥} ≈ 1o |
27 | breq1 4965 | . . . 4 ⊢ (𝐴 = {𝑥} → (𝐴 ≈ 1o ↔ {𝑥} ≈ 1o)) | |
28 | 26, 27 | mpbiri 259 | . . 3 ⊢ (𝐴 = {𝑥} → 𝐴 ≈ 1o) |
29 | 28 | exlimiv 1908 | . 2 ⊢ (∃𝑥 𝐴 = {𝑥} → 𝐴 ≈ 1o) |
30 | 24, 29 | impbii 210 | 1 ⊢ (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 207 = wceq 1522 ∃wex 1761 ∈ wcel 2081 ∅c0 4211 {csn 4472 〈cop 4478 class class class wbr 4962 ◡ccnv 5442 ran crn 5444 ⟶wf 6221 –onto→wfo 6223 –1-1-onto→wf1o 6224 ‘cfv 6225 1oc1o 7946 ≈ cen 8354 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-reu 3112 df-rab 3114 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-suc 6072 df-iota 6189 df-fun 6227 df-fn 6228 df-f 6229 df-f1 6230 df-fo 6231 df-f1o 6232 df-fv 6233 df-1o 7953 df-en 8358 |
This theorem is referenced by: en1b 8425 reuen1 8426 en2 8600 card1 9243 pm54.43 9275 hash1snb 13628 ufildom1 22218 unidifsnel 29984 unidifsnne 29985 funen1cnv 31971 lfuhgr3 31978 snen1g 39375 hash1elsn 40057 |
Copyright terms: Public domain | W3C validator |