MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1 Structured version   Visualization version   GIF version

Theorem en1 8972
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.) Avoid ax-un 7691. (Revised by BTernaryTau, 23-Sep-2024.)
Assertion
Ref Expression
en1 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem en1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df1o2 8418 . . . . 5 1o = {∅}
21breq2i 5110 . . . 4 (𝐴 ≈ 1o𝐴 ≈ {∅})
3 encv 8903 . . . . . 6 (𝐴 ≈ {∅} → (𝐴 ∈ V ∧ {∅} ∈ V))
4 breng 8904 . . . . . 6 ((𝐴 ∈ V ∧ {∅} ∈ V) → (𝐴 ≈ {∅} ↔ ∃𝑓 𝑓:𝐴1-1-onto→{∅}))
53, 4syl 17 . . . . 5 (𝐴 ≈ {∅} → (𝐴 ≈ {∅} ↔ ∃𝑓 𝑓:𝐴1-1-onto→{∅}))
65ibi 267 . . . 4 (𝐴 ≈ {∅} → ∃𝑓 𝑓:𝐴1-1-onto→{∅})
72, 6sylbi 217 . . 3 (𝐴 ≈ 1o → ∃𝑓 𝑓:𝐴1-1-onto→{∅})
8 f1ocnv 6794 . . . . 5 (𝑓:𝐴1-1-onto→{∅} → 𝑓:{∅}–1-1-onto𝐴)
9 f1ofo 6789 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴𝑓:{∅}–onto𝐴)
10 forn 6757 . . . . . . 7 (𝑓:{∅}–onto𝐴 → ran 𝑓 = 𝐴)
119, 10syl 17 . . . . . 6 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = 𝐴)
12 f1of 6782 . . . . . . . . 9 (𝑓:{∅}–1-1-onto𝐴𝑓:{∅}⟶𝐴)
13 0ex 5257 . . . . . . . . . . 11 ∅ ∈ V
1413fsn2 7090 . . . . . . . . . 10 (𝑓:{∅}⟶𝐴 ↔ ((𝑓‘∅) ∈ 𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩}))
1514simprbi 496 . . . . . . . . 9 (𝑓:{∅}⟶𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩})
1612, 15syl 17 . . . . . . . 8 (𝑓:{∅}–1-1-onto𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩})
1716rneqd 5891 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = ran {⟨∅, (𝑓‘∅)⟩})
1813rnsnop 6185 . . . . . . 7 ran {⟨∅, (𝑓‘∅)⟩} = {(𝑓‘∅)}
1917, 18eqtrdi 2780 . . . . . 6 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = {(𝑓‘∅)})
2011, 19eqtr3d 2766 . . . . 5 (𝑓:{∅}–1-1-onto𝐴𝐴 = {(𝑓‘∅)})
21 fvex 6853 . . . . . 6 (𝑓‘∅) ∈ V
22 sneq 4595 . . . . . . 7 (𝑥 = (𝑓‘∅) → {𝑥} = {(𝑓‘∅)})
2322eqeq2d 2740 . . . . . 6 (𝑥 = (𝑓‘∅) → (𝐴 = {𝑥} ↔ 𝐴 = {(𝑓‘∅)}))
2421, 23spcev 3569 . . . . 5 (𝐴 = {(𝑓‘∅)} → ∃𝑥 𝐴 = {𝑥})
258, 20, 243syl 18 . . . 4 (𝑓:𝐴1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥})
2625exlimiv 1930 . . 3 (∃𝑓 𝑓:𝐴1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥})
277, 26syl 17 . 2 (𝐴 ≈ 1o → ∃𝑥 𝐴 = {𝑥})
28 vex 3448 . . . . 5 𝑥 ∈ V
2928ensn1 8969 . . . 4 {𝑥} ≈ 1o
30 breq1 5105 . . . 4 (𝐴 = {𝑥} → (𝐴 ≈ 1o ↔ {𝑥} ≈ 1o))
3129, 30mpbiri 258 . . 3 (𝐴 = {𝑥} → 𝐴 ≈ 1o)
3231exlimiv 1930 . 2 (∃𝑥 𝐴 = {𝑥} → 𝐴 ≈ 1o)
3327, 32impbii 209 1 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3444  c0 4292  {csn 4585  cop 4591   class class class wbr 5102  ccnv 5630  ran crn 5632  wf 6495  ontowfo 6497  1-1-ontowf1o 6498  cfv 6499  1oc1o 8404  cen 8892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-1o 8411  df-en 8896
This theorem is referenced by:  en1b  8973  reuen1  8974  en1eqsn  9195  en2  9202  card1  9897  pm54.43  9930  hash1elsn  14312  hash1snb  14360  ufildom1  23789  unidifsnel  32437  unidifsnne  32438  funen1cnv  35051  lfuhgr3  35080  snen1g  43486  istermc3  49438
  Copyright terms: Public domain W3C validator