Step | Hyp | Ref
| Expression |
1 | | df1o2 8279 |
. . . . 5
⊢
1o = {∅} |
2 | 1 | breq2i 5078 |
. . . 4
⊢ (𝐴 ≈ 1o ↔
𝐴 ≈
{∅}) |
3 | | encv 8699 |
. . . . . 6
⊢ (𝐴 ≈ {∅} → (𝐴 ∈ V ∧ {∅} ∈
V)) |
4 | | breng 8700 |
. . . . . 6
⊢ ((𝐴 ∈ V ∧ {∅} ∈
V) → (𝐴 ≈
{∅} ↔ ∃𝑓
𝑓:𝐴–1-1-onto→{∅})) |
5 | 3, 4 | syl 17 |
. . . . 5
⊢ (𝐴 ≈ {∅} → (𝐴 ≈ {∅} ↔
∃𝑓 𝑓:𝐴–1-1-onto→{∅})) |
6 | 5 | ibi 266 |
. . . 4
⊢ (𝐴 ≈ {∅} →
∃𝑓 𝑓:𝐴–1-1-onto→{∅}) |
7 | 2, 6 | sylbi 216 |
. . 3
⊢ (𝐴 ≈ 1o →
∃𝑓 𝑓:𝐴–1-1-onto→{∅}) |
8 | | f1ocnv 6712 |
. . . . 5
⊢ (𝑓:𝐴–1-1-onto→{∅} → ◡𝑓:{∅}–1-1-onto→𝐴) |
9 | | f1ofo 6707 |
. . . . . . 7
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ◡𝑓:{∅}–onto→𝐴) |
10 | | forn 6675 |
. . . . . . 7
⊢ (◡𝑓:{∅}–onto→𝐴 → ran ◡𝑓 = 𝐴) |
11 | 9, 10 | syl 17 |
. . . . . 6
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ran ◡𝑓 = 𝐴) |
12 | | f1of 6700 |
. . . . . . . . 9
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ◡𝑓:{∅}⟶𝐴) |
13 | | 0ex 5226 |
. . . . . . . . . . 11
⊢ ∅
∈ V |
14 | 13 | fsn2 6990 |
. . . . . . . . . 10
⊢ (◡𝑓:{∅}⟶𝐴 ↔ ((◡𝑓‘∅) ∈ 𝐴 ∧ ◡𝑓 = {〈∅, (◡𝑓‘∅)〉})) |
15 | 14 | simprbi 496 |
. . . . . . . . 9
⊢ (◡𝑓:{∅}⟶𝐴 → ◡𝑓 = {〈∅, (◡𝑓‘∅)〉}) |
16 | 12, 15 | syl 17 |
. . . . . . . 8
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ◡𝑓 = {〈∅, (◡𝑓‘∅)〉}) |
17 | 16 | rneqd 5836 |
. . . . . . 7
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ran ◡𝑓 = ran {〈∅, (◡𝑓‘∅)〉}) |
18 | 13 | rnsnop 6116 |
. . . . . . 7
⊢ ran
{〈∅, (◡𝑓‘∅)〉} = {(◡𝑓‘∅)} |
19 | 17, 18 | eqtrdi 2795 |
. . . . . 6
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ran ◡𝑓 = {(◡𝑓‘∅)}) |
20 | 11, 19 | eqtr3d 2780 |
. . . . 5
⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → 𝐴 = {(◡𝑓‘∅)}) |
21 | | fvex 6769 |
. . . . . 6
⊢ (◡𝑓‘∅) ∈ V |
22 | | sneq 4568 |
. . . . . . 7
⊢ (𝑥 = (◡𝑓‘∅) → {𝑥} = {(◡𝑓‘∅)}) |
23 | 22 | eqeq2d 2749 |
. . . . . 6
⊢ (𝑥 = (◡𝑓‘∅) → (𝐴 = {𝑥} ↔ 𝐴 = {(◡𝑓‘∅)})) |
24 | 21, 23 | spcev 3535 |
. . . . 5
⊢ (𝐴 = {(◡𝑓‘∅)} → ∃𝑥 𝐴 = {𝑥}) |
25 | 8, 20, 24 | 3syl 18 |
. . . 4
⊢ (𝑓:𝐴–1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥}) |
26 | 25 | exlimiv 1934 |
. . 3
⊢
(∃𝑓 𝑓:𝐴–1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥}) |
27 | 7, 26 | syl 17 |
. 2
⊢ (𝐴 ≈ 1o →
∃𝑥 𝐴 = {𝑥}) |
28 | | vex 3426 |
. . . . 5
⊢ 𝑥 ∈ V |
29 | 28 | ensn1 8761 |
. . . 4
⊢ {𝑥} ≈
1o |
30 | | breq1 5073 |
. . . 4
⊢ (𝐴 = {𝑥} → (𝐴 ≈ 1o ↔ {𝑥} ≈
1o)) |
31 | 29, 30 | mpbiri 257 |
. . 3
⊢ (𝐴 = {𝑥} → 𝐴 ≈ 1o) |
32 | 31 | exlimiv 1934 |
. 2
⊢
(∃𝑥 𝐴 = {𝑥} → 𝐴 ≈ 1o) |
33 | 27, 32 | impbii 208 |
1
⊢ (𝐴 ≈ 1o ↔
∃𝑥 𝐴 = {𝑥}) |