MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1 Structured version   Visualization version   GIF version

Theorem en1 8176
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.)
Assertion
Ref Expression
en1 (𝐴 ≈ 1𝑜 ↔ ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem en1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df1o2 7726 . . . . 5 1𝑜 = {∅}
21breq2i 4794 . . . 4 (𝐴 ≈ 1𝑜𝐴 ≈ {∅})
3 bren 8118 . . . 4 (𝐴 ≈ {∅} ↔ ∃𝑓 𝑓:𝐴1-1-onto→{∅})
42, 3bitri 264 . . 3 (𝐴 ≈ 1𝑜 ↔ ∃𝑓 𝑓:𝐴1-1-onto→{∅})
5 f1ocnv 6290 . . . . 5 (𝑓:𝐴1-1-onto→{∅} → 𝑓:{∅}–1-1-onto𝐴)
6 f1ofo 6285 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴𝑓:{∅}–onto𝐴)
7 forn 6259 . . . . . . 7 (𝑓:{∅}–onto𝐴 → ran 𝑓 = 𝐴)
86, 7syl 17 . . . . . 6 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = 𝐴)
9 f1of 6278 . . . . . . . . 9 (𝑓:{∅}–1-1-onto𝐴𝑓:{∅}⟶𝐴)
10 0ex 4924 . . . . . . . . . . 11 ∅ ∈ V
1110fsn2 6546 . . . . . . . . . 10 (𝑓:{∅}⟶𝐴 ↔ ((𝑓‘∅) ∈ 𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩}))
1211simprbi 484 . . . . . . . . 9 (𝑓:{∅}⟶𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩})
139, 12syl 17 . . . . . . . 8 (𝑓:{∅}–1-1-onto𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩})
1413rneqd 5491 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = ran {⟨∅, (𝑓‘∅)⟩})
1510rnsnop 5759 . . . . . . 7 ran {⟨∅, (𝑓‘∅)⟩} = {(𝑓‘∅)}
1614, 15syl6eq 2821 . . . . . 6 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = {(𝑓‘∅)})
178, 16eqtr3d 2807 . . . . 5 (𝑓:{∅}–1-1-onto𝐴𝐴 = {(𝑓‘∅)})
18 fvex 6342 . . . . . 6 (𝑓‘∅) ∈ V
19 sneq 4326 . . . . . . 7 (𝑥 = (𝑓‘∅) → {𝑥} = {(𝑓‘∅)})
2019eqeq2d 2781 . . . . . 6 (𝑥 = (𝑓‘∅) → (𝐴 = {𝑥} ↔ 𝐴 = {(𝑓‘∅)}))
2118, 20spcev 3451 . . . . 5 (𝐴 = {(𝑓‘∅)} → ∃𝑥 𝐴 = {𝑥})
225, 17, 213syl 18 . . . 4 (𝑓:𝐴1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥})
2322exlimiv 2010 . . 3 (∃𝑓 𝑓:𝐴1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥})
244, 23sylbi 207 . 2 (𝐴 ≈ 1𝑜 → ∃𝑥 𝐴 = {𝑥})
25 vex 3354 . . . . 5 𝑥 ∈ V
2625ensn1 8173 . . . 4 {𝑥} ≈ 1𝑜
27 breq1 4789 . . . 4 (𝐴 = {𝑥} → (𝐴 ≈ 1𝑜 ↔ {𝑥} ≈ 1𝑜))
2826, 27mpbiri 248 . . 3 (𝐴 = {𝑥} → 𝐴 ≈ 1𝑜)
2928exlimiv 2010 . 2 (∃𝑥 𝐴 = {𝑥} → 𝐴 ≈ 1𝑜)
3024, 29impbii 199 1 (𝐴 ≈ 1𝑜 ↔ ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 196   = wceq 1631  wex 1852  wcel 2145  c0 4063  {csn 4316  cop 4322   class class class wbr 4786  ccnv 5248  ran crn 5250  wf 6027  ontowfo 6029  1-1-ontowf1o 6030  cfv 6031  1𝑜c1o 7706  cen 8106
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4915  ax-nul 4923  ax-pr 5034  ax-un 7096
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4226  df-sn 4317  df-pr 4319  df-op 4323  df-uni 4575  df-br 4787  df-opab 4847  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-1o 7713  df-en 8110
This theorem is referenced by:  en1b  8177  reuen1  8178  en2  8352  card1  8994  pm54.43  9026  hash1snb  13409  ufildom1  21950
  Copyright terms: Public domain W3C validator