MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1 Structured version   Visualization version   GIF version

Theorem en1 8811
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.) Avoid ax-un 7588. (Revised by BTernaryTau, 23-Sep-2024.)
Assertion
Ref Expression
en1 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem en1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df1o2 8304 . . . . 5 1o = {∅}
21breq2i 5082 . . . 4 (𝐴 ≈ 1o𝐴 ≈ {∅})
3 encv 8741 . . . . . 6 (𝐴 ≈ {∅} → (𝐴 ∈ V ∧ {∅} ∈ V))
4 breng 8742 . . . . . 6 ((𝐴 ∈ V ∧ {∅} ∈ V) → (𝐴 ≈ {∅} ↔ ∃𝑓 𝑓:𝐴1-1-onto→{∅}))
53, 4syl 17 . . . . 5 (𝐴 ≈ {∅} → (𝐴 ≈ {∅} ↔ ∃𝑓 𝑓:𝐴1-1-onto→{∅}))
65ibi 266 . . . 4 (𝐴 ≈ {∅} → ∃𝑓 𝑓:𝐴1-1-onto→{∅})
72, 6sylbi 216 . . 3 (𝐴 ≈ 1o → ∃𝑓 𝑓:𝐴1-1-onto→{∅})
8 f1ocnv 6728 . . . . 5 (𝑓:𝐴1-1-onto→{∅} → 𝑓:{∅}–1-1-onto𝐴)
9 f1ofo 6723 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴𝑓:{∅}–onto𝐴)
10 forn 6691 . . . . . . 7 (𝑓:{∅}–onto𝐴 → ran 𝑓 = 𝐴)
119, 10syl 17 . . . . . 6 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = 𝐴)
12 f1of 6716 . . . . . . . . 9 (𝑓:{∅}–1-1-onto𝐴𝑓:{∅}⟶𝐴)
13 0ex 5231 . . . . . . . . . . 11 ∅ ∈ V
1413fsn2 7008 . . . . . . . . . 10 (𝑓:{∅}⟶𝐴 ↔ ((𝑓‘∅) ∈ 𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩}))
1514simprbi 497 . . . . . . . . 9 (𝑓:{∅}⟶𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩})
1612, 15syl 17 . . . . . . . 8 (𝑓:{∅}–1-1-onto𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩})
1716rneqd 5847 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = ran {⟨∅, (𝑓‘∅)⟩})
1813rnsnop 6127 . . . . . . 7 ran {⟨∅, (𝑓‘∅)⟩} = {(𝑓‘∅)}
1917, 18eqtrdi 2794 . . . . . 6 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = {(𝑓‘∅)})
2011, 19eqtr3d 2780 . . . . 5 (𝑓:{∅}–1-1-onto𝐴𝐴 = {(𝑓‘∅)})
21 fvex 6787 . . . . . 6 (𝑓‘∅) ∈ V
22 sneq 4571 . . . . . . 7 (𝑥 = (𝑓‘∅) → {𝑥} = {(𝑓‘∅)})
2322eqeq2d 2749 . . . . . 6 (𝑥 = (𝑓‘∅) → (𝐴 = {𝑥} ↔ 𝐴 = {(𝑓‘∅)}))
2421, 23spcev 3545 . . . . 5 (𝐴 = {(𝑓‘∅)} → ∃𝑥 𝐴 = {𝑥})
258, 20, 243syl 18 . . . 4 (𝑓:𝐴1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥})
2625exlimiv 1933 . . 3 (∃𝑓 𝑓:𝐴1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥})
277, 26syl 17 . 2 (𝐴 ≈ 1o → ∃𝑥 𝐴 = {𝑥})
28 vex 3436 . . . . 5 𝑥 ∈ V
2928ensn1 8807 . . . 4 {𝑥} ≈ 1o
30 breq1 5077 . . . 4 (𝐴 = {𝑥} → (𝐴 ≈ 1o ↔ {𝑥} ≈ 1o))
3129, 30mpbiri 257 . . 3 (𝐴 = {𝑥} → 𝐴 ≈ 1o)
3231exlimiv 1933 . 2 (∃𝑥 𝐴 = {𝑥} → 𝐴 ≈ 1o)
3327, 32impbii 208 1 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 396   = wceq 1539  wex 1782  wcel 2106  Vcvv 3432  c0 4256  {csn 4561  cop 4567   class class class wbr 5074  ccnv 5588  ran crn 5590  wf 6429  ontowfo 6431  1-1-ontowf1o 6432  cfv 6433  1oc1o 8290  cen 8730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-1o 8297  df-en 8734
This theorem is referenced by:  en1b  8813  en1bOLD  8814  reuen1  8815  en2  9053  card1  9726  pm54.43  9759  hash1elsn  14086  hash1snb  14134  ufildom1  23077  unidifsnel  30883  unidifsnne  30884  funen1cnv  33060  lfuhgr3  33081  snen1g  41131
  Copyright terms: Public domain W3C validator