MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en1 Structured version   Visualization version   GIF version

Theorem en1 9021
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.) Avoid ax-un 7725. (Revised by BTernaryTau, 23-Sep-2024.)
Assertion
Ref Expression
en1 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
Distinct variable group:   𝑥,𝐴

Proof of Theorem en1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 df1o2 8473 . . . . 5 1o = {∅}
21breq2i 5157 . . . 4 (𝐴 ≈ 1o𝐴 ≈ {∅})
3 encv 8947 . . . . . 6 (𝐴 ≈ {∅} → (𝐴 ∈ V ∧ {∅} ∈ V))
4 breng 8948 . . . . . 6 ((𝐴 ∈ V ∧ {∅} ∈ V) → (𝐴 ≈ {∅} ↔ ∃𝑓 𝑓:𝐴1-1-onto→{∅}))
53, 4syl 17 . . . . 5 (𝐴 ≈ {∅} → (𝐴 ≈ {∅} ↔ ∃𝑓 𝑓:𝐴1-1-onto→{∅}))
65ibi 267 . . . 4 (𝐴 ≈ {∅} → ∃𝑓 𝑓:𝐴1-1-onto→{∅})
72, 6sylbi 216 . . 3 (𝐴 ≈ 1o → ∃𝑓 𝑓:𝐴1-1-onto→{∅})
8 f1ocnv 6846 . . . . 5 (𝑓:𝐴1-1-onto→{∅} → 𝑓:{∅}–1-1-onto𝐴)
9 f1ofo 6841 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴𝑓:{∅}–onto𝐴)
10 forn 6809 . . . . . . 7 (𝑓:{∅}–onto𝐴 → ran 𝑓 = 𝐴)
119, 10syl 17 . . . . . 6 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = 𝐴)
12 f1of 6834 . . . . . . . . 9 (𝑓:{∅}–1-1-onto𝐴𝑓:{∅}⟶𝐴)
13 0ex 5308 . . . . . . . . . . 11 ∅ ∈ V
1413fsn2 7134 . . . . . . . . . 10 (𝑓:{∅}⟶𝐴 ↔ ((𝑓‘∅) ∈ 𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩}))
1514simprbi 498 . . . . . . . . 9 (𝑓:{∅}⟶𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩})
1612, 15syl 17 . . . . . . . 8 (𝑓:{∅}–1-1-onto𝐴𝑓 = {⟨∅, (𝑓‘∅)⟩})
1716rneqd 5938 . . . . . . 7 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = ran {⟨∅, (𝑓‘∅)⟩})
1813rnsnop 6224 . . . . . . 7 ran {⟨∅, (𝑓‘∅)⟩} = {(𝑓‘∅)}
1917, 18eqtrdi 2789 . . . . . 6 (𝑓:{∅}–1-1-onto𝐴 → ran 𝑓 = {(𝑓‘∅)})
2011, 19eqtr3d 2775 . . . . 5 (𝑓:{∅}–1-1-onto𝐴𝐴 = {(𝑓‘∅)})
21 fvex 6905 . . . . . 6 (𝑓‘∅) ∈ V
22 sneq 4639 . . . . . . 7 (𝑥 = (𝑓‘∅) → {𝑥} = {(𝑓‘∅)})
2322eqeq2d 2744 . . . . . 6 (𝑥 = (𝑓‘∅) → (𝐴 = {𝑥} ↔ 𝐴 = {(𝑓‘∅)}))
2421, 23spcev 3597 . . . . 5 (𝐴 = {(𝑓‘∅)} → ∃𝑥 𝐴 = {𝑥})
258, 20, 243syl 18 . . . 4 (𝑓:𝐴1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥})
2625exlimiv 1934 . . 3 (∃𝑓 𝑓:𝐴1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥})
277, 26syl 17 . 2 (𝐴 ≈ 1o → ∃𝑥 𝐴 = {𝑥})
28 vex 3479 . . . . 5 𝑥 ∈ V
2928ensn1 9017 . . . 4 {𝑥} ≈ 1o
30 breq1 5152 . . . 4 (𝐴 = {𝑥} → (𝐴 ≈ 1o ↔ {𝑥} ≈ 1o))
3129, 30mpbiri 258 . . 3 (𝐴 = {𝑥} → 𝐴 ≈ 1o)
3231exlimiv 1934 . 2 (∃𝑥 𝐴 = {𝑥} → 𝐴 ≈ 1o)
3327, 32impbii 208 1 (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥})
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wex 1782  wcel 2107  Vcvv 3475  c0 4323  {csn 4629  cop 4635   class class class wbr 5149  ccnv 5676  ran crn 5678  wf 6540  ontowfo 6542  1-1-ontowf1o 6543  cfv 6544  1oc1o 8459  cen 8936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-1o 8466  df-en 8940
This theorem is referenced by:  en1b  9023  en1bOLD  9024  reuen1  9025  en1eqsn  9274  en2  9281  card1  9963  pm54.43  9996  hash1elsn  14331  hash1snb  14379  ufildom1  23430  unidifsnel  31772  unidifsnne  31773  funen1cnv  34091  lfuhgr3  34110  snen1g  42275
  Copyright terms: Public domain W3C validator