Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > en1 | Structured version Visualization version GIF version |
Description: A set is equinumerous to ordinal one iff it is a singleton. (Contributed by NM, 25-Jul-2004.) |
Ref | Expression |
---|---|
en1 | ⊢ (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df1o2 8126 | . . . . 5 ⊢ 1o = {∅} | |
2 | 1 | breq2i 5040 | . . . 4 ⊢ (𝐴 ≈ 1o ↔ 𝐴 ≈ {∅}) |
3 | bren 8536 | . . . 4 ⊢ (𝐴 ≈ {∅} ↔ ∃𝑓 𝑓:𝐴–1-1-onto→{∅}) | |
4 | 2, 3 | bitri 278 | . . 3 ⊢ (𝐴 ≈ 1o ↔ ∃𝑓 𝑓:𝐴–1-1-onto→{∅}) |
5 | f1ocnv 6614 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→{∅} → ◡𝑓:{∅}–1-1-onto→𝐴) | |
6 | f1ofo 6609 | . . . . . . 7 ⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ◡𝑓:{∅}–onto→𝐴) | |
7 | forn 6579 | . . . . . . 7 ⊢ (◡𝑓:{∅}–onto→𝐴 → ran ◡𝑓 = 𝐴) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ran ◡𝑓 = 𝐴) |
9 | f1of 6602 | . . . . . . . . 9 ⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ◡𝑓:{∅}⟶𝐴) | |
10 | 0ex 5177 | . . . . . . . . . . 11 ⊢ ∅ ∈ V | |
11 | 10 | fsn2 6889 | . . . . . . . . . 10 ⊢ (◡𝑓:{∅}⟶𝐴 ↔ ((◡𝑓‘∅) ∈ 𝐴 ∧ ◡𝑓 = {〈∅, (◡𝑓‘∅)〉})) |
12 | 11 | simprbi 500 | . . . . . . . . 9 ⊢ (◡𝑓:{∅}⟶𝐴 → ◡𝑓 = {〈∅, (◡𝑓‘∅)〉}) |
13 | 9, 12 | syl 17 | . . . . . . . 8 ⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ◡𝑓 = {〈∅, (◡𝑓‘∅)〉}) |
14 | 13 | rneqd 5779 | . . . . . . 7 ⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ran ◡𝑓 = ran {〈∅, (◡𝑓‘∅)〉}) |
15 | 10 | rnsnop 6053 | . . . . . . 7 ⊢ ran {〈∅, (◡𝑓‘∅)〉} = {(◡𝑓‘∅)} |
16 | 14, 15 | eqtrdi 2809 | . . . . . 6 ⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → ran ◡𝑓 = {(◡𝑓‘∅)}) |
17 | 8, 16 | eqtr3d 2795 | . . . . 5 ⊢ (◡𝑓:{∅}–1-1-onto→𝐴 → 𝐴 = {(◡𝑓‘∅)}) |
18 | fvex 6671 | . . . . . 6 ⊢ (◡𝑓‘∅) ∈ V | |
19 | sneq 4532 | . . . . . . 7 ⊢ (𝑥 = (◡𝑓‘∅) → {𝑥} = {(◡𝑓‘∅)}) | |
20 | 19 | eqeq2d 2769 | . . . . . 6 ⊢ (𝑥 = (◡𝑓‘∅) → (𝐴 = {𝑥} ↔ 𝐴 = {(◡𝑓‘∅)})) |
21 | 18, 20 | spcev 3525 | . . . . 5 ⊢ (𝐴 = {(◡𝑓‘∅)} → ∃𝑥 𝐴 = {𝑥}) |
22 | 5, 17, 21 | 3syl 18 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥}) |
23 | 22 | exlimiv 1931 | . . 3 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→{∅} → ∃𝑥 𝐴 = {𝑥}) |
24 | 4, 23 | sylbi 220 | . 2 ⊢ (𝐴 ≈ 1o → ∃𝑥 𝐴 = {𝑥}) |
25 | vex 3413 | . . . . 5 ⊢ 𝑥 ∈ V | |
26 | 25 | ensn1 8592 | . . . 4 ⊢ {𝑥} ≈ 1o |
27 | breq1 5035 | . . . 4 ⊢ (𝐴 = {𝑥} → (𝐴 ≈ 1o ↔ {𝑥} ≈ 1o)) | |
28 | 26, 27 | mpbiri 261 | . . 3 ⊢ (𝐴 = {𝑥} → 𝐴 ≈ 1o) |
29 | 28 | exlimiv 1931 | . 2 ⊢ (∃𝑥 𝐴 = {𝑥} → 𝐴 ≈ 1o) |
30 | 24, 29 | impbii 212 | 1 ⊢ (𝐴 ≈ 1o ↔ ∃𝑥 𝐴 = {𝑥}) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1538 ∃wex 1781 ∈ wcel 2111 ∅c0 4225 {csn 4522 〈cop 4528 class class class wbr 5032 ◡ccnv 5523 ran crn 5525 ⟶wf 6331 –onto→wfo 6333 –1-1-onto→wf1o 6334 ‘cfv 6335 1oc1o 8105 ≈ cen 8524 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-br 5033 df-opab 5095 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-1o 8112 df-en 8528 |
This theorem is referenced by: en1b 8596 reuen1 8597 en2 8790 card1 9430 pm54.43 9463 hash1elsn 13782 hash1snb 13830 ufildom1 22626 unidifsnel 30405 unidifsnne 30406 funen1cnv 32585 lfuhgr3 32597 snen1g 40605 |
Copyright terms: Public domain | W3C validator |