Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ensucne0OLD | Structured version Visualization version GIF version |
Description: A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ensucne0OLD | ⊢ (𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | encv 8634 | . . 3 ⊢ (𝐴 ≈ suc 𝐵 → (𝐴 ∈ V ∧ suc 𝐵 ∈ V)) | |
2 | 1 | simprd 499 | . 2 ⊢ (𝐴 ≈ suc 𝐵 → suc 𝐵 ∈ V) |
3 | en0 8691 | . . . . . . 7 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | |
4 | 3 | biimpri 231 | . . . . . 6 ⊢ (𝐴 = ∅ → 𝐴 ≈ ∅) |
5 | 4 | a1i 11 | . . . . 5 ⊢ (suc 𝐵 ∈ V → (𝐴 = ∅ → 𝐴 ≈ ∅)) |
6 | nsuceq0 6293 | . . . . . 6 ⊢ suc 𝐵 ≠ ∅ | |
7 | 0sdomg 8775 | . . . . . 6 ⊢ (suc 𝐵 ∈ V → (∅ ≺ suc 𝐵 ↔ suc 𝐵 ≠ ∅)) | |
8 | 6, 7 | mpbiri 261 | . . . . 5 ⊢ (suc 𝐵 ∈ V → ∅ ≺ suc 𝐵) |
9 | 5, 8 | jctird 530 | . . . 4 ⊢ (suc 𝐵 ∈ V → (𝐴 = ∅ → (𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵))) |
10 | ensdomtr 8782 | . . . . 5 ⊢ ((𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵) → 𝐴 ≺ suc 𝐵) | |
11 | sdomnen 8657 | . . . . 5 ⊢ (𝐴 ≺ suc 𝐵 → ¬ 𝐴 ≈ suc 𝐵) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ ((𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵) → ¬ 𝐴 ≈ suc 𝐵) |
13 | 9, 12 | syl6 35 | . . 3 ⊢ (suc 𝐵 ∈ V → (𝐴 = ∅ → ¬ 𝐴 ≈ suc 𝐵)) |
14 | 13 | necon2ad 2955 | . 2 ⊢ (suc 𝐵 ∈ V → (𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅)) |
15 | 2, 14 | mpcom 38 | 1 ⊢ (𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1543 ∈ wcel 2110 ≠ wne 2940 Vcvv 3408 ∅c0 4237 class class class wbr 5053 suc csuc 6215 ≈ cen 8623 ≺ csdm 8625 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-suc 6219 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |