Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ensucne0OLD Structured version   Visualization version   GIF version

Theorem ensucne0OLD 40822
Description: A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ensucne0OLD (𝐴 ≈ suc 𝐵𝐴 ≠ ∅)

Proof of Theorem ensucne0OLD
StepHypRef Expression
1 encv 8634 . . 3 (𝐴 ≈ suc 𝐵 → (𝐴 ∈ V ∧ suc 𝐵 ∈ V))
21simprd 499 . 2 (𝐴 ≈ suc 𝐵 → suc 𝐵 ∈ V)
3 en0 8691 . . . . . . 7 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
43biimpri 231 . . . . . 6 (𝐴 = ∅ → 𝐴 ≈ ∅)
54a1i 11 . . . . 5 (suc 𝐵 ∈ V → (𝐴 = ∅ → 𝐴 ≈ ∅))
6 nsuceq0 6293 . . . . . 6 suc 𝐵 ≠ ∅
7 0sdomg 8775 . . . . . 6 (suc 𝐵 ∈ V → (∅ ≺ suc 𝐵 ↔ suc 𝐵 ≠ ∅))
86, 7mpbiri 261 . . . . 5 (suc 𝐵 ∈ V → ∅ ≺ suc 𝐵)
95, 8jctird 530 . . . 4 (suc 𝐵 ∈ V → (𝐴 = ∅ → (𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵)))
10 ensdomtr 8782 . . . . 5 ((𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵) → 𝐴 ≺ suc 𝐵)
11 sdomnen 8657 . . . . 5 (𝐴 ≺ suc 𝐵 → ¬ 𝐴 ≈ suc 𝐵)
1210, 11syl 17 . . . 4 ((𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵) → ¬ 𝐴 ≈ suc 𝐵)
139, 12syl6 35 . . 3 (suc 𝐵 ∈ V → (𝐴 = ∅ → ¬ 𝐴 ≈ suc 𝐵))
1413necon2ad 2955 . 2 (suc 𝐵 ∈ V → (𝐴 ≈ suc 𝐵𝐴 ≠ ∅))
152, 14mpcom 38 1 (𝐴 ≈ suc 𝐵𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2110  wne 2940  Vcvv 3408  c0 4237   class class class wbr 5053  suc csuc 6215  cen 8623  csdm 8625
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3410  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-id 5455  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-suc 6219  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator