Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ensucne0OLD | Structured version Visualization version GIF version |
Description: A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ensucne0OLD | ⊢ (𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | encv 8761 | . . 3 ⊢ (𝐴 ≈ suc 𝐵 → (𝐴 ∈ V ∧ suc 𝐵 ∈ V)) | |
2 | 1 | simprd 495 | . 2 ⊢ (𝐴 ≈ suc 𝐵 → suc 𝐵 ∈ V) |
3 | en0 8827 | . . . . . . 7 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | |
4 | 3 | biimpri 227 | . . . . . 6 ⊢ (𝐴 = ∅ → 𝐴 ≈ ∅) |
5 | 4 | a1i 11 | . . . . 5 ⊢ (suc 𝐵 ∈ V → (𝐴 = ∅ → 𝐴 ≈ ∅)) |
6 | nsuceq0 6352 | . . . . . 6 ⊢ suc 𝐵 ≠ ∅ | |
7 | 0sdomg 8916 | . . . . . 6 ⊢ (suc 𝐵 ∈ V → (∅ ≺ suc 𝐵 ↔ suc 𝐵 ≠ ∅)) | |
8 | 6, 7 | mpbiri 257 | . . . . 5 ⊢ (suc 𝐵 ∈ V → ∅ ≺ suc 𝐵) |
9 | 5, 8 | jctird 526 | . . . 4 ⊢ (suc 𝐵 ∈ V → (𝐴 = ∅ → (𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵))) |
10 | ensdomtr 8925 | . . . . 5 ⊢ ((𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵) → 𝐴 ≺ suc 𝐵) | |
11 | sdomnen 8791 | . . . . 5 ⊢ (𝐴 ≺ suc 𝐵 → ¬ 𝐴 ≈ suc 𝐵) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ ((𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵) → ¬ 𝐴 ≈ suc 𝐵) |
13 | 9, 12 | syl6 35 | . . 3 ⊢ (suc 𝐵 ∈ V → (𝐴 = ∅ → ¬ 𝐴 ≈ suc 𝐵)) |
14 | 13 | necon2ad 2953 | . 2 ⊢ (suc 𝐵 ∈ V → (𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅)) |
15 | 2, 14 | mpcom 38 | 1 ⊢ (𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2101 ≠ wne 2938 Vcvv 3434 ∅c0 4259 class class class wbr 5077 suc csuc 6272 ≈ cen 8750 ≺ csdm 8752 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2103 ax-9 2111 ax-10 2132 ax-11 2149 ax-12 2166 ax-ext 2704 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7608 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2063 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2884 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3224 df-v 3436 df-dif 3892 df-un 3894 df-in 3896 df-ss 3906 df-nul 4260 df-if 4463 df-pw 4538 df-sn 4565 df-pr 4567 df-op 4571 df-uni 4842 df-br 5078 df-opab 5140 df-id 5491 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-suc 6276 df-fun 6449 df-fn 6450 df-f 6451 df-f1 6452 df-fo 6453 df-f1o 6454 df-er 8518 df-en 8754 df-dom 8755 df-sdom 8756 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |