Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ensucne0OLD Structured version   Visualization version   GIF version

Theorem ensucne0OLD 43687
Description: A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ensucne0OLD (𝐴 ≈ suc 𝐵𝐴 ≠ ∅)

Proof of Theorem ensucne0OLD
StepHypRef Expression
1 encv 8887 . . 3 (𝐴 ≈ suc 𝐵 → (𝐴 ∈ V ∧ suc 𝐵 ∈ V))
21simprd 495 . 2 (𝐴 ≈ suc 𝐵 → suc 𝐵 ∈ V)
3 en0 8951 . . . . . . 7 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
43biimpri 228 . . . . . 6 (𝐴 = ∅ → 𝐴 ≈ ∅)
54a1i 11 . . . . 5 (suc 𝐵 ∈ V → (𝐴 = ∅ → 𝐴 ≈ ∅))
6 nsuceq0 6399 . . . . . 6 suc 𝐵 ≠ ∅
7 0sdomg 9030 . . . . . 6 (suc 𝐵 ∈ V → (∅ ≺ suc 𝐵 ↔ suc 𝐵 ≠ ∅))
86, 7mpbiri 258 . . . . 5 (suc 𝐵 ∈ V → ∅ ≺ suc 𝐵)
95, 8jctird 526 . . . 4 (suc 𝐵 ∈ V → (𝐴 = ∅ → (𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵)))
10 ensdomtr 9037 . . . . 5 ((𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵) → 𝐴 ≺ suc 𝐵)
11 sdomnen 8914 . . . . 5 (𝐴 ≺ suc 𝐵 → ¬ 𝐴 ≈ suc 𝐵)
1210, 11syl 17 . . . 4 ((𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵) → ¬ 𝐴 ≈ suc 𝐵)
139, 12syl6 35 . . 3 (suc 𝐵 ∈ V → (𝐴 = ∅ → ¬ 𝐴 ≈ suc 𝐵))
1413necon2ad 2944 . 2 (suc 𝐵 ∈ V → (𝐴 ≈ suc 𝐵𝐴 ≠ ∅))
152, 14mpcom 38 1 (𝐴 ≈ suc 𝐵𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1541  wcel 2113  wne 2929  Vcvv 3437  c0 4282   class class class wbr 5095  suc csuc 6316  cen 8876  csdm 8878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-suc 6320  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-er 8631  df-en 8880  df-dom 8881  df-sdom 8882
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator