Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ensucne0OLD Structured version   Visualization version   GIF version

Theorem ensucne0OLD 41161
Description: A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ensucne0OLD (𝐴 ≈ suc 𝐵𝐴 ≠ ∅)

Proof of Theorem ensucne0OLD
StepHypRef Expression
1 encv 8761 . . 3 (𝐴 ≈ suc 𝐵 → (𝐴 ∈ V ∧ suc 𝐵 ∈ V))
21simprd 495 . 2 (𝐴 ≈ suc 𝐵 → suc 𝐵 ∈ V)
3 en0 8827 . . . . . . 7 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
43biimpri 227 . . . . . 6 (𝐴 = ∅ → 𝐴 ≈ ∅)
54a1i 11 . . . . 5 (suc 𝐵 ∈ V → (𝐴 = ∅ → 𝐴 ≈ ∅))
6 nsuceq0 6352 . . . . . 6 suc 𝐵 ≠ ∅
7 0sdomg 8916 . . . . . 6 (suc 𝐵 ∈ V → (∅ ≺ suc 𝐵 ↔ suc 𝐵 ≠ ∅))
86, 7mpbiri 257 . . . . 5 (suc 𝐵 ∈ V → ∅ ≺ suc 𝐵)
95, 8jctird 526 . . . 4 (suc 𝐵 ∈ V → (𝐴 = ∅ → (𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵)))
10 ensdomtr 8925 . . . . 5 ((𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵) → 𝐴 ≺ suc 𝐵)
11 sdomnen 8791 . . . . 5 (𝐴 ≺ suc 𝐵 → ¬ 𝐴 ≈ suc 𝐵)
1210, 11syl 17 . . . 4 ((𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵) → ¬ 𝐴 ≈ suc 𝐵)
139, 12syl6 35 . . 3 (suc 𝐵 ∈ V → (𝐴 = ∅ → ¬ 𝐴 ≈ suc 𝐵))
1413necon2ad 2953 . 2 (suc 𝐵 ∈ V → (𝐴 ≈ suc 𝐵𝐴 ≠ ∅))
152, 14mpcom 38 1 (𝐴 ≈ suc 𝐵𝐴 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wcel 2101  wne 2938  Vcvv 3434  c0 4259   class class class wbr 5077  suc csuc 6272  cen 8750  csdm 8752
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2103  ax-9 2111  ax-10 2132  ax-11 2149  ax-12 2166  ax-ext 2704  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7608
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2063  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2884  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3224  df-v 3436  df-dif 3892  df-un 3894  df-in 3896  df-ss 3906  df-nul 4260  df-if 4463  df-pw 4538  df-sn 4565  df-pr 4567  df-op 4571  df-uni 4842  df-br 5078  df-opab 5140  df-id 5491  df-xp 5597  df-rel 5598  df-cnv 5599  df-co 5600  df-dm 5601  df-rn 5602  df-res 5603  df-ima 5604  df-suc 6276  df-fun 6449  df-fn 6450  df-f 6451  df-f1 6452  df-fo 6453  df-f1o 6454  df-er 8518  df-en 8754  df-dom 8755  df-sdom 8756
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator