| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ensucne0OLD | Structured version Visualization version GIF version | ||
| Description: A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| ensucne0OLD | ⊢ (𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv 8993 | . . 3 ⊢ (𝐴 ≈ suc 𝐵 → (𝐴 ∈ V ∧ suc 𝐵 ∈ V)) | |
| 2 | 1 | simprd 495 | . 2 ⊢ (𝐴 ≈ suc 𝐵 → suc 𝐵 ∈ V) |
| 3 | en0 9058 | . . . . . . 7 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | |
| 4 | 3 | biimpri 228 | . . . . . 6 ⊢ (𝐴 = ∅ → 𝐴 ≈ ∅) |
| 5 | 4 | a1i 11 | . . . . 5 ⊢ (suc 𝐵 ∈ V → (𝐴 = ∅ → 𝐴 ≈ ∅)) |
| 6 | nsuceq0 6467 | . . . . . 6 ⊢ suc 𝐵 ≠ ∅ | |
| 7 | 0sdomg 9144 | . . . . . 6 ⊢ (suc 𝐵 ∈ V → (∅ ≺ suc 𝐵 ↔ suc 𝐵 ≠ ∅)) | |
| 8 | 6, 7 | mpbiri 258 | . . . . 5 ⊢ (suc 𝐵 ∈ V → ∅ ≺ suc 𝐵) |
| 9 | 5, 8 | jctird 526 | . . . 4 ⊢ (suc 𝐵 ∈ V → (𝐴 = ∅ → (𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵))) |
| 10 | ensdomtr 9153 | . . . . 5 ⊢ ((𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵) → 𝐴 ≺ suc 𝐵) | |
| 11 | sdomnen 9021 | . . . . 5 ⊢ (𝐴 ≺ suc 𝐵 → ¬ 𝐴 ≈ suc 𝐵) | |
| 12 | 10, 11 | syl 17 | . . . 4 ⊢ ((𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵) → ¬ 𝐴 ≈ suc 𝐵) |
| 13 | 9, 12 | syl6 35 | . . 3 ⊢ (suc 𝐵 ∈ V → (𝐴 = ∅ → ¬ 𝐴 ≈ suc 𝐵)) |
| 14 | 13 | necon2ad 2955 | . 2 ⊢ (suc 𝐵 ∈ V → (𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅)) |
| 15 | 2, 14 | mpcom 38 | 1 ⊢ (𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2940 Vcvv 3480 ∅c0 4333 class class class wbr 5143 suc csuc 6386 ≈ cen 8982 ≺ csdm 8984 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-suc 6390 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-er 8745 df-en 8986 df-dom 8987 df-sdom 8988 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |