Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > ensucne0OLD | Structured version Visualization version GIF version |
Description: A class equinumerous to a successor is never empty. (Contributed by RP, 11-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ensucne0OLD | ⊢ (𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | encv 8699 | . . 3 ⊢ (𝐴 ≈ suc 𝐵 → (𝐴 ∈ V ∧ suc 𝐵 ∈ V)) | |
2 | 1 | simprd 495 | . 2 ⊢ (𝐴 ≈ suc 𝐵 → suc 𝐵 ∈ V) |
3 | en0 8758 | . . . . . . 7 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) | |
4 | 3 | biimpri 227 | . . . . . 6 ⊢ (𝐴 = ∅ → 𝐴 ≈ ∅) |
5 | 4 | a1i 11 | . . . . 5 ⊢ (suc 𝐵 ∈ V → (𝐴 = ∅ → 𝐴 ≈ ∅)) |
6 | nsuceq0 6331 | . . . . . 6 ⊢ suc 𝐵 ≠ ∅ | |
7 | 0sdomg 8842 | . . . . . 6 ⊢ (suc 𝐵 ∈ V → (∅ ≺ suc 𝐵 ↔ suc 𝐵 ≠ ∅)) | |
8 | 6, 7 | mpbiri 257 | . . . . 5 ⊢ (suc 𝐵 ∈ V → ∅ ≺ suc 𝐵) |
9 | 5, 8 | jctird 526 | . . . 4 ⊢ (suc 𝐵 ∈ V → (𝐴 = ∅ → (𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵))) |
10 | ensdomtr 8849 | . . . . 5 ⊢ ((𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵) → 𝐴 ≺ suc 𝐵) | |
11 | sdomnen 8724 | . . . . 5 ⊢ (𝐴 ≺ suc 𝐵 → ¬ 𝐴 ≈ suc 𝐵) | |
12 | 10, 11 | syl 17 | . . . 4 ⊢ ((𝐴 ≈ ∅ ∧ ∅ ≺ suc 𝐵) → ¬ 𝐴 ≈ suc 𝐵) |
13 | 9, 12 | syl6 35 | . . 3 ⊢ (suc 𝐵 ∈ V → (𝐴 = ∅ → ¬ 𝐴 ≈ suc 𝐵)) |
14 | 13 | necon2ad 2957 | . 2 ⊢ (suc 𝐵 ∈ V → (𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅)) |
15 | 2, 14 | mpcom 38 | 1 ⊢ (𝐴 ≈ suc 𝐵 → 𝐴 ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 Vcvv 3422 ∅c0 4253 class class class wbr 5070 suc csuc 6253 ≈ cen 8688 ≺ csdm 8690 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-suc 6257 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |