MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasncls Structured version   Visualization version   GIF version

Theorem imasncls 23628
Description: If a relation graph is closed, then an image set of a singleton is also closed. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Hypotheses
Ref Expression
imasnopn.1 𝑋 = 𝐽
imasnopn.2 𝑌 = 𝐾
Assertion
Ref Expression
imasncls (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((cls‘𝐾)‘(𝑅 “ {𝐴})) ⊆ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}))

Proof of Theorem imasncls
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 imasnopn.2 . . . . . . 7 𝑌 = 𝐾
21toptopon 22853 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
32biimpi 216 . . . . 5 (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘𝑌))
43ad2antlr 727 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → 𝐾 ∈ (TopOn‘𝑌))
5 imasnopn.1 . . . . . . . 8 𝑋 = 𝐽
65toptopon 22853 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
76biimpi 216 . . . . . 6 (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘𝑋))
87ad2antrr 726 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
9 simprr 772 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → 𝐴𝑋)
104, 8, 9cnmptc 23598 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐽))
114cnmptid 23597 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦𝑌𝑦) ∈ (𝐾 Cn 𝐾))
124, 10, 11cnmpt1t 23601 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) ∈ (𝐾 Cn (𝐽 ×t 𝐾)))
13 simprl 770 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → 𝑅 ⊆ (𝑋 × 𝑌))
145, 1txuni 23528 . . . . 5 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑋 × 𝑌) = (𝐽 ×t 𝐾))
1514adantr 480 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑋 × 𝑌) = (𝐽 ×t 𝐾))
1613, 15sseqtrd 3995 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → 𝑅 (𝐽 ×t 𝐾))
17 eqid 2735 . . . 4 (𝐽 ×t 𝐾) = (𝐽 ×t 𝐾)
1817cncls2i 23206 . . 3 (((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) ∈ (𝐾 Cn (𝐽 ×t 𝐾)) ∧ 𝑅 (𝐽 ×t 𝐾)) → ((cls‘𝐾)‘((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅)) ⊆ ((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ ((cls‘(𝐽 ×t 𝐾))‘𝑅)))
1912, 16, 18syl2anc 584 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((cls‘𝐾)‘((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅)) ⊆ ((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ ((cls‘(𝐽 ×t 𝐾))‘𝑅)))
20 nfv 1914 . . . . 5 𝑦((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋))
21 nfcv 2898 . . . . 5 𝑦(𝑅 “ {𝐴})
22 nfrab1 3436 . . . . 5 𝑦{𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅}
23 imass1 6088 . . . . . . . . . . 11 (𝑅 ⊆ (𝑋 × 𝑌) → (𝑅 “ {𝐴}) ⊆ ((𝑋 × 𝑌) “ {𝐴}))
2413, 23syl 17 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) ⊆ ((𝑋 × 𝑌) “ {𝐴}))
25 xpimasn 6174 . . . . . . . . . . 11 (𝐴𝑋 → ((𝑋 × 𝑌) “ {𝐴}) = 𝑌)
2625ad2antll 729 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((𝑋 × 𝑌) “ {𝐴}) = 𝑌)
2724, 26sseqtrd 3995 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) ⊆ 𝑌)
2827sseld 3957 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) → 𝑦𝑌))
2928pm4.71rd 562 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ (𝑦𝑌𝑦 ∈ (𝑅 “ {𝐴}))))
30 elimasng 6076 . . . . . . . . . 10 ((𝐴𝑋𝑦 ∈ V) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
3130elvd 3465 . . . . . . . . 9 (𝐴𝑋 → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
3231ad2antll 729 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
3332anbi2d 630 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((𝑦𝑌𝑦 ∈ (𝑅 “ {𝐴})) ↔ (𝑦𝑌 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝑅)))
3429, 33bitrd 279 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ (𝑦𝑌 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝑅)))
35 rabid 3437 . . . . . 6 (𝑦 ∈ {𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅} ↔ (𝑦𝑌 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
3634, 35bitr4di 289 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ 𝑦 ∈ {𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅}))
3720, 21, 22, 36eqrd 3978 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) = {𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅})
38 eqid 2735 . . . . 5 (𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) = (𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩)
3938mptpreima 6227 . . . 4 ((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅) = {𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅}
4037, 39eqtr4di 2788 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) = ((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅))
4140fveq2d 6879 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((cls‘𝐾)‘(𝑅 “ {𝐴})) = ((cls‘𝐾)‘((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅)))
42 nfcv 2898 . . . 4 𝑦(((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴})
43 nfrab1 3436 . . . 4 𝑦{𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)}
44 txtop 23505 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ×t 𝐾) ∈ Top)
4544adantr 480 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝐽 ×t 𝐾) ∈ Top)
4617clsss3 22995 . . . . . . . . . . . 12 (((𝐽 ×t 𝐾) ∈ Top ∧ 𝑅 (𝐽 ×t 𝐾)) → ((cls‘(𝐽 ×t 𝐾))‘𝑅) ⊆ (𝐽 ×t 𝐾))
4745, 16, 46syl2anc 584 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((cls‘(𝐽 ×t 𝐾))‘𝑅) ⊆ (𝐽 ×t 𝐾))
4847, 15sseqtrrd 3996 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((cls‘(𝐽 ×t 𝐾))‘𝑅) ⊆ (𝑋 × 𝑌))
49 imass1 6088 . . . . . . . . . 10 (((cls‘(𝐽 ×t 𝐾))‘𝑅) ⊆ (𝑋 × 𝑌) → (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ⊆ ((𝑋 × 𝑌) “ {𝐴}))
5048, 49syl 17 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ⊆ ((𝑋 × 𝑌) “ {𝐴}))
5150, 26sseqtrd 3995 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ⊆ 𝑌)
5251sseld 3957 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) → 𝑦𝑌))
5352pm4.71rd 562 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ↔ (𝑦𝑌𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}))))
54 elimasng 6076 . . . . . . . . 9 ((𝐴𝑋𝑦 ∈ V) → (𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)))
5554elvd 3465 . . . . . . . 8 (𝐴𝑋 → (𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)))
5655ad2antll 729 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)))
5756anbi2d 630 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((𝑦𝑌𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴})) ↔ (𝑦𝑌 ∧ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅))))
5853, 57bitrd 279 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ↔ (𝑦𝑌 ∧ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅))))
59 rabid 3437 . . . . 5 (𝑦 ∈ {𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)} ↔ (𝑦𝑌 ∧ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)))
6058, 59bitr4di 289 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ↔ 𝑦 ∈ {𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)}))
6120, 42, 43, 60eqrd 3978 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) = {𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)})
6238mptpreima 6227 . . 3 ((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ ((cls‘(𝐽 ×t 𝐾))‘𝑅)) = {𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)}
6361, 62eqtr4di 2788 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) = ((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ ((cls‘(𝐽 ×t 𝐾))‘𝑅)))
6419, 41, 633sstr4d 4014 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((cls‘𝐾)‘(𝑅 “ {𝐴})) ⊆ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  wss 3926  {csn 4601  cop 4607   cuni 4883  cmpt 5201   × cxp 5652  ccnv 5653  cima 5657  cfv 6530  (class class class)co 7403  Topctop 22829  TopOnctopon 22846  clsccl 22954   Cn ccn 23160   ×t ctx 23496
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-map 8840  df-topgen 17455  df-top 22830  df-topon 22847  df-bases 22882  df-cld 22955  df-cls 22957  df-cn 23163  df-cnp 23164  df-tx 23498
This theorem is referenced by:  utopreg  24189
  Copyright terms: Public domain W3C validator