MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasncls Structured version   Visualization version   GIF version

Theorem imasncls 22302
Description: If a relation graph is closed, then an image set of a singleton is also closed. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Hypotheses
Ref Expression
imasnopn.1 𝑋 = 𝐽
imasnopn.2 𝑌 = 𝐾
Assertion
Ref Expression
imasncls (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((cls‘𝐾)‘(𝑅 “ {𝐴})) ⊆ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}))

Proof of Theorem imasncls
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 imasnopn.2 . . . . . . 7 𝑌 = 𝐾
21toptopon 21527 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOn‘𝑌))
32biimpi 218 . . . . 5 (𝐾 ∈ Top → 𝐾 ∈ (TopOn‘𝑌))
43ad2antlr 725 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → 𝐾 ∈ (TopOn‘𝑌))
5 imasnopn.1 . . . . . . . 8 𝑋 = 𝐽
65toptopon 21527 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
76biimpi 218 . . . . . 6 (𝐽 ∈ Top → 𝐽 ∈ (TopOn‘𝑋))
87ad2antrr 724 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → 𝐽 ∈ (TopOn‘𝑋))
9 simprr 771 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → 𝐴𝑋)
104, 8, 9cnmptc 22272 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦𝑌𝐴) ∈ (𝐾 Cn 𝐽))
114cnmptid 22271 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦𝑌𝑦) ∈ (𝐾 Cn 𝐾))
124, 10, 11cnmpt1t 22275 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) ∈ (𝐾 Cn (𝐽 ×t 𝐾)))
13 simprl 769 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → 𝑅 ⊆ (𝑋 × 𝑌))
145, 1txuni 22202 . . . . 5 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝑋 × 𝑌) = (𝐽 ×t 𝐾))
1514adantr 483 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑋 × 𝑌) = (𝐽 ×t 𝐾))
1613, 15sseqtrd 4009 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → 𝑅 (𝐽 ×t 𝐾))
17 eqid 2823 . . . 4 (𝐽 ×t 𝐾) = (𝐽 ×t 𝐾)
1817cncls2i 21880 . . 3 (((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) ∈ (𝐾 Cn (𝐽 ×t 𝐾)) ∧ 𝑅 (𝐽 ×t 𝐾)) → ((cls‘𝐾)‘((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅)) ⊆ ((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ ((cls‘(𝐽 ×t 𝐾))‘𝑅)))
1912, 16, 18syl2anc 586 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((cls‘𝐾)‘((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅)) ⊆ ((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ ((cls‘(𝐽 ×t 𝐾))‘𝑅)))
20 nfv 1915 . . . . 5 𝑦((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋))
21 nfcv 2979 . . . . 5 𝑦(𝑅 “ {𝐴})
22 nfrab1 3386 . . . . 5 𝑦{𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅}
23 imass1 5966 . . . . . . . . . . 11 (𝑅 ⊆ (𝑋 × 𝑌) → (𝑅 “ {𝐴}) ⊆ ((𝑋 × 𝑌) “ {𝐴}))
2413, 23syl 17 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) ⊆ ((𝑋 × 𝑌) “ {𝐴}))
25 xpimasn 6044 . . . . . . . . . . 11 (𝐴𝑋 → ((𝑋 × 𝑌) “ {𝐴}) = 𝑌)
2625ad2antll 727 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((𝑋 × 𝑌) “ {𝐴}) = 𝑌)
2724, 26sseqtrd 4009 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) ⊆ 𝑌)
2827sseld 3968 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) → 𝑦𝑌))
2928pm4.71rd 565 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ (𝑦𝑌𝑦 ∈ (𝑅 “ {𝐴}))))
30 elimasng 5957 . . . . . . . . . 10 ((𝐴𝑋𝑦 ∈ V) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
3130elvd 3502 . . . . . . . . 9 (𝐴𝑋 → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
3231ad2antll 727 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
3332anbi2d 630 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((𝑦𝑌𝑦 ∈ (𝑅 “ {𝐴})) ↔ (𝑦𝑌 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝑅)))
3429, 33bitrd 281 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ (𝑦𝑌 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝑅)))
35 rabid 3380 . . . . . 6 (𝑦 ∈ {𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅} ↔ (𝑦𝑌 ∧ ⟨𝐴, 𝑦⟩ ∈ 𝑅))
3634, 35syl6bbr 291 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (𝑅 “ {𝐴}) ↔ 𝑦 ∈ {𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅}))
3720, 21, 22, 36eqrd 3988 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) = {𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅})
38 eqid 2823 . . . . 5 (𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) = (𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩)
3938mptpreima 6094 . . . 4 ((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅) = {𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ 𝑅}
4037, 39syl6eqr 2876 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑅 “ {𝐴}) = ((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅))
4140fveq2d 6676 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((cls‘𝐾)‘(𝑅 “ {𝐴})) = ((cls‘𝐾)‘((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ 𝑅)))
42 nfcv 2979 . . . 4 𝑦(((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴})
43 nfrab1 3386 . . . 4 𝑦{𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)}
44 txtop 22179 . . . . . . . . . . . . 13 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) → (𝐽 ×t 𝐾) ∈ Top)
4544adantr 483 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝐽 ×t 𝐾) ∈ Top)
4617clsss3 21669 . . . . . . . . . . . 12 (((𝐽 ×t 𝐾) ∈ Top ∧ 𝑅 (𝐽 ×t 𝐾)) → ((cls‘(𝐽 ×t 𝐾))‘𝑅) ⊆ (𝐽 ×t 𝐾))
4745, 16, 46syl2anc 586 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((cls‘(𝐽 ×t 𝐾))‘𝑅) ⊆ (𝐽 ×t 𝐾))
4847, 15sseqtrrd 4010 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((cls‘(𝐽 ×t 𝐾))‘𝑅) ⊆ (𝑋 × 𝑌))
49 imass1 5966 . . . . . . . . . 10 (((cls‘(𝐽 ×t 𝐾))‘𝑅) ⊆ (𝑋 × 𝑌) → (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ⊆ ((𝑋 × 𝑌) “ {𝐴}))
5048, 49syl 17 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ⊆ ((𝑋 × 𝑌) “ {𝐴}))
5150, 26sseqtrd 4009 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ⊆ 𝑌)
5251sseld 3968 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) → 𝑦𝑌))
5352pm4.71rd 565 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ↔ (𝑦𝑌𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}))))
54 elimasng 5957 . . . . . . . . 9 ((𝐴𝑋𝑦 ∈ V) → (𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)))
5554elvd 3502 . . . . . . . 8 (𝐴𝑋 → (𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)))
5655ad2antll 727 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ↔ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)))
5756anbi2d 630 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((𝑦𝑌𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴})) ↔ (𝑦𝑌 ∧ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅))))
5853, 57bitrd 281 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ↔ (𝑦𝑌 ∧ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅))))
59 rabid 3380 . . . . 5 (𝑦 ∈ {𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)} ↔ (𝑦𝑌 ∧ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)))
6058, 59syl6bbr 291 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (𝑦 ∈ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) ↔ 𝑦 ∈ {𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)}))
6120, 42, 43, 60eqrd 3988 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) = {𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)})
6238mptpreima 6094 . . 3 ((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ ((cls‘(𝐽 ×t 𝐾))‘𝑅)) = {𝑦𝑌 ∣ ⟨𝐴, 𝑦⟩ ∈ ((cls‘(𝐽 ×t 𝐾))‘𝑅)}
6361, 62syl6eqr 2876 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}) = ((𝑦𝑌 ↦ ⟨𝐴, 𝑦⟩) “ ((cls‘(𝐽 ×t 𝐾))‘𝑅)))
6419, 41, 633sstr4d 4016 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ⊆ (𝑋 × 𝑌) ∧ 𝐴𝑋)) → ((cls‘𝐾)‘(𝑅 “ {𝐴})) ⊆ (((cls‘(𝐽 ×t 𝐾))‘𝑅) “ {𝐴}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  {crab 3144  Vcvv 3496  wss 3938  {csn 4569  cop 4575   cuni 4840  cmpt 5148   × cxp 5555  ccnv 5556  cima 5560  cfv 6357  (class class class)co 7158  Topctop 21503  TopOnctopon 21520  clsccl 21628   Cn ccn 21834   ×t ctx 22170
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-ral 3145  df-rex 3146  df-reu 3147  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-id 5462  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-ov 7161  df-oprab 7162  df-mpo 7163  df-1st 7691  df-2nd 7692  df-map 8410  df-topgen 16719  df-top 21504  df-topon 21521  df-bases 21556  df-cld 21629  df-cls 21631  df-cn 21837  df-cnp 21838  df-tx 22172
This theorem is referenced by:  utopreg  22863
  Copyright terms: Public domain W3C validator