| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rfcnpre1 | Structured version Visualization version GIF version | ||
| Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than a given extended real B is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| rfcnpre1.1 | ⊢ Ⅎ𝑥𝐵 |
| rfcnpre1.2 | ⊢ Ⅎ𝑥𝐹 |
| rfcnpre1.3 | ⊢ Ⅎ𝑥𝜑 |
| rfcnpre1.4 | ⊢ 𝐾 = (topGen‘ran (,)) |
| rfcnpre1.5 | ⊢ 𝑋 = ∪ 𝐽 |
| rfcnpre1.6 | ⊢ 𝐴 = {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} |
| rfcnpre1.7 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| rfcnpre1.8 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| Ref | Expression |
|---|---|
| rfcnpre1 | ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rfcnpre1.3 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rfcnpre1.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
| 3 | 2 | nfcnv 5825 | . . . . 5 ⊢ Ⅎ𝑥◡𝐹 |
| 4 | rfcnpre1.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
| 5 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑥(,) | |
| 6 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑥+∞ | |
| 7 | 4, 5, 6 | nfov 7383 | . . . . 5 ⊢ Ⅎ𝑥(𝐵(,)+∞) |
| 8 | 3, 7 | nfima 6023 | . . . 4 ⊢ Ⅎ𝑥(◡𝐹 “ (𝐵(,)+∞)) |
| 9 | nfrab1 3417 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} | |
| 10 | rfcnpre1.8 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 11 | cntop1 23143 | . . . . . . . . . . . . 13 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 12 | 10, 11 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 13 | rfcnpre1.5 | . . . . . . . . . . . 12 ⊢ 𝑋 = ∪ 𝐽 | |
| 14 | istopon 22815 | . . . . . . . . . . . 12 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
| 15 | 12, 13, 14 | sylanblrc 590 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 16 | rfcnpre1.4 | . . . . . . . . . . . 12 ⊢ 𝐾 = (topGen‘ran (,)) | |
| 17 | retopon 24667 | . . . . . . . . . . . 12 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
| 18 | 16, 17 | eqeltri 2824 | . . . . . . . . . . 11 ⊢ 𝐾 ∈ (TopOn‘ℝ) |
| 19 | iscn 23138 | . . . . . . . . . . 11 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℝ)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) | |
| 20 | 15, 18, 19 | sylancl 586 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
| 21 | 10, 20 | mpbid 232 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹:𝑋⟶ℝ ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
| 22 | 21 | simpld 494 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
| 23 | 22 | ffvelcdmda 7022 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ℝ) |
| 24 | rfcnpre1.7 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 25 | elioopnf 13364 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ* → ((𝐹‘𝑥) ∈ (𝐵(,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 𝐵 < (𝐹‘𝑥)))) | |
| 26 | 24, 25 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((𝐹‘𝑥) ∈ (𝐵(,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 𝐵 < (𝐹‘𝑥)))) |
| 27 | 26 | baibd 539 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ∈ ℝ) → ((𝐹‘𝑥) ∈ (𝐵(,)+∞) ↔ 𝐵 < (𝐹‘𝑥))) |
| 28 | 23, 27 | syldan 591 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥) ∈ (𝐵(,)+∞) ↔ 𝐵 < (𝐹‘𝑥))) |
| 29 | 28 | pm5.32da 579 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ (𝐵(,)+∞)) ↔ (𝑥 ∈ 𝑋 ∧ 𝐵 < (𝐹‘𝑥)))) |
| 30 | ffn 6656 | . . . . . 6 ⊢ (𝐹:𝑋⟶ℝ → 𝐹 Fn 𝑋) | |
| 31 | elpreima 6996 | . . . . . 6 ⊢ (𝐹 Fn 𝑋 → (𝑥 ∈ (◡𝐹 “ (𝐵(,)+∞)) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ (𝐵(,)+∞)))) | |
| 32 | 22, 30, 31 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (◡𝐹 “ (𝐵(,)+∞)) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ (𝐵(,)+∞)))) |
| 33 | rabid 3418 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} ↔ (𝑥 ∈ 𝑋 ∧ 𝐵 < (𝐹‘𝑥))) | |
| 34 | 33 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} ↔ (𝑥 ∈ 𝑋 ∧ 𝐵 < (𝐹‘𝑥)))) |
| 35 | 29, 32, 34 | 3bitr4d 311 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (◡𝐹 “ (𝐵(,)+∞)) ↔ 𝑥 ∈ {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)})) |
| 36 | 1, 8, 9, 35 | eqrd 3957 | . . 3 ⊢ (𝜑 → (◡𝐹 “ (𝐵(,)+∞)) = {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)}) |
| 37 | rfcnpre1.6 | . . 3 ⊢ 𝐴 = {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} | |
| 38 | 36, 37 | eqtr4di 2782 | . 2 ⊢ (𝜑 → (◡𝐹 “ (𝐵(,)+∞)) = 𝐴) |
| 39 | iooretop 24669 | . . . 4 ⊢ (𝐵(,)+∞) ∈ (topGen‘ran (,)) | |
| 40 | 39, 16 | eleqtrri 2827 | . . 3 ⊢ (𝐵(,)+∞) ∈ 𝐾 |
| 41 | cnima 23168 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐵(,)+∞) ∈ 𝐾) → (◡𝐹 “ (𝐵(,)+∞)) ∈ 𝐽) | |
| 42 | 10, 40, 41 | sylancl 586 | . 2 ⊢ (𝜑 → (◡𝐹 “ (𝐵(,)+∞)) ∈ 𝐽) |
| 43 | 38, 42 | eqeltrrd 2829 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 ∀wral 3044 {crab 3396 ∪ cuni 4861 class class class wbr 5095 ◡ccnv 5622 ran crn 5624 “ cima 5626 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7353 ℝcr 11027 +∞cpnf 11165 ℝ*cxr 11167 < clt 11168 (,)cioo 13266 topGenctg 17359 Topctop 22796 TopOnctopon 22813 Cn ccn 23127 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 ax-pre-sup 11106 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-om 7807 df-1st 7931 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-er 8632 df-map 8762 df-en 8880 df-dom 8881 df-sdom 8882 df-sup 9351 df-inf 9352 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-div 11796 df-nn 12147 df-n0 12403 df-z 12490 df-uz 12754 df-q 12868 df-ioo 13270 df-topgen 17365 df-top 22797 df-topon 22814 df-bases 22849 df-cn 23130 |
| This theorem is referenced by: stoweidlem46 46028 |
| Copyright terms: Public domain | W3C validator |