Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfcnpre1 Structured version   Visualization version   GIF version

Theorem rfcnpre1 42451
Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than a given extended real B is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
rfcnpre1.1 𝑥𝐵
rfcnpre1.2 𝑥𝐹
rfcnpre1.3 𝑥𝜑
rfcnpre1.4 𝐾 = (topGen‘ran (,))
rfcnpre1.5 𝑋 = 𝐽
rfcnpre1.6 𝐴 = {𝑥𝑋𝐵 < (𝐹𝑥)}
rfcnpre1.7 (𝜑𝐵 ∈ ℝ*)
rfcnpre1.8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
rfcnpre1 (𝜑𝐴𝐽)

Proof of Theorem rfcnpre1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rfcnpre1.3 . . . 4 𝑥𝜑
2 rfcnpre1.2 . . . . . 6 𝑥𝐹
32nfcnv 5776 . . . . 5 𝑥𝐹
4 rfcnpre1.1 . . . . . 6 𝑥𝐵
5 nfcv 2906 . . . . . 6 𝑥(,)
6 nfcv 2906 . . . . . 6 𝑥+∞
74, 5, 6nfov 7285 . . . . 5 𝑥(𝐵(,)+∞)
83, 7nfima 5966 . . . 4 𝑥(𝐹 “ (𝐵(,)+∞))
9 nfrab1 3310 . . . 4 𝑥{𝑥𝑋𝐵 < (𝐹𝑥)}
10 rfcnpre1.8 . . . . . . . . . 10 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
11 cntop1 22299 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
1210, 11syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ Top)
13 rfcnpre1.5 . . . . . . . . . . . 12 𝑋 = 𝐽
14 istopon 21969 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝐽))
1512, 13, 14sylanblrc 589 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝑋))
16 rfcnpre1.4 . . . . . . . . . . . 12 𝐾 = (topGen‘ran (,))
17 retopon 23833 . . . . . . . . . . . 12 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
1816, 17eqeltri 2835 . . . . . . . . . . 11 𝐾 ∈ (TopOn‘ℝ)
19 iscn 22294 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℝ)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
2015, 18, 19sylancl 585 . . . . . . . . . 10 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
2110, 20mpbid 231 . . . . . . . . 9 (𝜑 → (𝐹:𝑋⟶ℝ ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽))
2221simpld 494 . . . . . . . 8 (𝜑𝐹:𝑋⟶ℝ)
2322ffvelrnda 6943 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
24 rfcnpre1.7 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
25 elioopnf 13104 . . . . . . . . 9 (𝐵 ∈ ℝ* → ((𝐹𝑥) ∈ (𝐵(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝐵 < (𝐹𝑥))))
2624, 25syl 17 . . . . . . . 8 (𝜑 → ((𝐹𝑥) ∈ (𝐵(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝐵 < (𝐹𝑥))))
2726baibd 539 . . . . . . 7 ((𝜑 ∧ (𝐹𝑥) ∈ ℝ) → ((𝐹𝑥) ∈ (𝐵(,)+∞) ↔ 𝐵 < (𝐹𝑥)))
2823, 27syldan 590 . . . . . 6 ((𝜑𝑥𝑋) → ((𝐹𝑥) ∈ (𝐵(,)+∞) ↔ 𝐵 < (𝐹𝑥)))
2928pm5.32da 578 . . . . 5 (𝜑 → ((𝑥𝑋 ∧ (𝐹𝑥) ∈ (𝐵(,)+∞)) ↔ (𝑥𝑋𝐵 < (𝐹𝑥))))
30 ffn 6584 . . . . . 6 (𝐹:𝑋⟶ℝ → 𝐹 Fn 𝑋)
31 elpreima 6917 . . . . . 6 (𝐹 Fn 𝑋 → (𝑥 ∈ (𝐹 “ (𝐵(,)+∞)) ↔ (𝑥𝑋 ∧ (𝐹𝑥) ∈ (𝐵(,)+∞))))
3222, 30, 313syl 18 . . . . 5 (𝜑 → (𝑥 ∈ (𝐹 “ (𝐵(,)+∞)) ↔ (𝑥𝑋 ∧ (𝐹𝑥) ∈ (𝐵(,)+∞))))
33 rabid 3304 . . . . . 6 (𝑥 ∈ {𝑥𝑋𝐵 < (𝐹𝑥)} ↔ (𝑥𝑋𝐵 < (𝐹𝑥)))
3433a1i 11 . . . . 5 (𝜑 → (𝑥 ∈ {𝑥𝑋𝐵 < (𝐹𝑥)} ↔ (𝑥𝑋𝐵 < (𝐹𝑥))))
3529, 32, 343bitr4d 310 . . . 4 (𝜑 → (𝑥 ∈ (𝐹 “ (𝐵(,)+∞)) ↔ 𝑥 ∈ {𝑥𝑋𝐵 < (𝐹𝑥)}))
361, 8, 9, 35eqrd 3936 . . 3 (𝜑 → (𝐹 “ (𝐵(,)+∞)) = {𝑥𝑋𝐵 < (𝐹𝑥)})
37 rfcnpre1.6 . . 3 𝐴 = {𝑥𝑋𝐵 < (𝐹𝑥)}
3836, 37eqtr4di 2797 . 2 (𝜑 → (𝐹 “ (𝐵(,)+∞)) = 𝐴)
39 iooretop 23835 . . . 4 (𝐵(,)+∞) ∈ (topGen‘ran (,))
4039, 16eleqtrri 2838 . . 3 (𝐵(,)+∞) ∈ 𝐾
41 cnima 22324 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐵(,)+∞) ∈ 𝐾) → (𝐹 “ (𝐵(,)+∞)) ∈ 𝐽)
4210, 40, 41sylancl 585 . 2 (𝜑 → (𝐹 “ (𝐵(,)+∞)) ∈ 𝐽)
4338, 42eqeltrrd 2840 1 (𝜑𝐴𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wnf 1787  wcel 2108  wnfc 2886  wral 3063  {crab 3067   cuni 4836   class class class wbr 5070  ccnv 5579  ran crn 5581  cima 5583   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  cr 10801  +∞cpnf 10937  *cxr 10939   < clt 10940  (,)cioo 13008  topGenctg 17065  Topctop 21950  TopOnctopon 21967   Cn ccn 22283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-map 8575  df-en 8692  df-dom 8693  df-sdom 8694  df-sup 9131  df-inf 9132  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-ioo 13012  df-topgen 17071  df-top 21951  df-topon 21968  df-bases 22004  df-cn 22286
This theorem is referenced by:  stoweidlem46  43477
  Copyright terms: Public domain W3C validator