| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rfcnpre1 | Structured version Visualization version GIF version | ||
| Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than a given extended real B is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| rfcnpre1.1 | ⊢ Ⅎ𝑥𝐵 |
| rfcnpre1.2 | ⊢ Ⅎ𝑥𝐹 |
| rfcnpre1.3 | ⊢ Ⅎ𝑥𝜑 |
| rfcnpre1.4 | ⊢ 𝐾 = (topGen‘ran (,)) |
| rfcnpre1.5 | ⊢ 𝑋 = ∪ 𝐽 |
| rfcnpre1.6 | ⊢ 𝐴 = {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} |
| rfcnpre1.7 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| rfcnpre1.8 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| Ref | Expression |
|---|---|
| rfcnpre1 | ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rfcnpre1.3 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rfcnpre1.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
| 3 | 2 | nfcnv 5822 | . . . . 5 ⊢ Ⅎ𝑥◡𝐹 |
| 4 | rfcnpre1.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
| 5 | nfcv 2895 | . . . . . 6 ⊢ Ⅎ𝑥(,) | |
| 6 | nfcv 2895 | . . . . . 6 ⊢ Ⅎ𝑥+∞ | |
| 7 | 4, 5, 6 | nfov 7382 | . . . . 5 ⊢ Ⅎ𝑥(𝐵(,)+∞) |
| 8 | 3, 7 | nfima 6021 | . . . 4 ⊢ Ⅎ𝑥(◡𝐹 “ (𝐵(,)+∞)) |
| 9 | nfrab1 3416 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} | |
| 10 | rfcnpre1.8 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 11 | cntop1 23156 | . . . . . . . . . . . . 13 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 12 | 10, 11 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 13 | rfcnpre1.5 | . . . . . . . . . . . 12 ⊢ 𝑋 = ∪ 𝐽 | |
| 14 | istopon 22828 | . . . . . . . . . . . 12 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
| 15 | 12, 13, 14 | sylanblrc 590 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 16 | rfcnpre1.4 | . . . . . . . . . . . 12 ⊢ 𝐾 = (topGen‘ran (,)) | |
| 17 | retopon 24679 | . . . . . . . . . . . 12 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
| 18 | 16, 17 | eqeltri 2829 | . . . . . . . . . . 11 ⊢ 𝐾 ∈ (TopOn‘ℝ) |
| 19 | iscn 23151 | . . . . . . . . . . 11 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℝ)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) | |
| 20 | 15, 18, 19 | sylancl 586 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
| 21 | 10, 20 | mpbid 232 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹:𝑋⟶ℝ ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
| 22 | 21 | simpld 494 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
| 23 | 22 | ffvelcdmda 7023 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ℝ) |
| 24 | rfcnpre1.7 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 25 | elioopnf 13345 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ* → ((𝐹‘𝑥) ∈ (𝐵(,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 𝐵 < (𝐹‘𝑥)))) | |
| 26 | 24, 25 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((𝐹‘𝑥) ∈ (𝐵(,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 𝐵 < (𝐹‘𝑥)))) |
| 27 | 26 | baibd 539 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ∈ ℝ) → ((𝐹‘𝑥) ∈ (𝐵(,)+∞) ↔ 𝐵 < (𝐹‘𝑥))) |
| 28 | 23, 27 | syldan 591 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥) ∈ (𝐵(,)+∞) ↔ 𝐵 < (𝐹‘𝑥))) |
| 29 | 28 | pm5.32da 579 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ (𝐵(,)+∞)) ↔ (𝑥 ∈ 𝑋 ∧ 𝐵 < (𝐹‘𝑥)))) |
| 30 | ffn 6656 | . . . . . 6 ⊢ (𝐹:𝑋⟶ℝ → 𝐹 Fn 𝑋) | |
| 31 | elpreima 6997 | . . . . . 6 ⊢ (𝐹 Fn 𝑋 → (𝑥 ∈ (◡𝐹 “ (𝐵(,)+∞)) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ (𝐵(,)+∞)))) | |
| 32 | 22, 30, 31 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (◡𝐹 “ (𝐵(,)+∞)) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ (𝐵(,)+∞)))) |
| 33 | rabid 3417 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} ↔ (𝑥 ∈ 𝑋 ∧ 𝐵 < (𝐹‘𝑥))) | |
| 34 | 33 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} ↔ (𝑥 ∈ 𝑋 ∧ 𝐵 < (𝐹‘𝑥)))) |
| 35 | 29, 32, 34 | 3bitr4d 311 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (◡𝐹 “ (𝐵(,)+∞)) ↔ 𝑥 ∈ {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)})) |
| 36 | 1, 8, 9, 35 | eqrd 3950 | . . 3 ⊢ (𝜑 → (◡𝐹 “ (𝐵(,)+∞)) = {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)}) |
| 37 | rfcnpre1.6 | . . 3 ⊢ 𝐴 = {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} | |
| 38 | 36, 37 | eqtr4di 2786 | . 2 ⊢ (𝜑 → (◡𝐹 “ (𝐵(,)+∞)) = 𝐴) |
| 39 | iooretop 24681 | . . . 4 ⊢ (𝐵(,)+∞) ∈ (topGen‘ran (,)) | |
| 40 | 39, 16 | eleqtrri 2832 | . . 3 ⊢ (𝐵(,)+∞) ∈ 𝐾 |
| 41 | cnima 23181 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐵(,)+∞) ∈ 𝐾) → (◡𝐹 “ (𝐵(,)+∞)) ∈ 𝐽) | |
| 42 | 10, 40, 41 | sylancl 586 | . 2 ⊢ (𝜑 → (◡𝐹 “ (𝐵(,)+∞)) ∈ 𝐽) |
| 43 | 38, 42 | eqeltrrd 2834 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2113 Ⅎwnfc 2880 ∀wral 3048 {crab 3396 ∪ cuni 4858 class class class wbr 5093 ◡ccnv 5618 ran crn 5620 “ cima 5622 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 (class class class)co 7352 ℝcr 11012 +∞cpnf 11150 ℝ*cxr 11152 < clt 11153 (,)cioo 13247 topGenctg 17343 Topctop 22809 TopOnctopon 22826 Cn ccn 23140 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 ax-pre-sup 11091 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-map 8758 df-en 8876 df-dom 8877 df-sdom 8878 df-sup 9333 df-inf 9334 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-div 11782 df-nn 12133 df-n0 12389 df-z 12476 df-uz 12739 df-q 12849 df-ioo 13251 df-topgen 17349 df-top 22810 df-topon 22827 df-bases 22862 df-cn 23143 |
| This theorem is referenced by: stoweidlem46 46168 |
| Copyright terms: Public domain | W3C validator |