Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfcnpre1 Structured version   Visualization version   GIF version

Theorem rfcnpre1 45055
Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than a given extended real B is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
rfcnpre1.1 𝑥𝐵
rfcnpre1.2 𝑥𝐹
rfcnpre1.3 𝑥𝜑
rfcnpre1.4 𝐾 = (topGen‘ran (,))
rfcnpre1.5 𝑋 = 𝐽
rfcnpre1.6 𝐴 = {𝑥𝑋𝐵 < (𝐹𝑥)}
rfcnpre1.7 (𝜑𝐵 ∈ ℝ*)
rfcnpre1.8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
rfcnpre1 (𝜑𝐴𝐽)

Proof of Theorem rfcnpre1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rfcnpre1.3 . . . 4 𝑥𝜑
2 rfcnpre1.2 . . . . . 6 𝑥𝐹
32nfcnv 5818 . . . . 5 𝑥𝐹
4 rfcnpre1.1 . . . . . 6 𝑥𝐵
5 nfcv 2894 . . . . . 6 𝑥(,)
6 nfcv 2894 . . . . . 6 𝑥+∞
74, 5, 6nfov 7376 . . . . 5 𝑥(𝐵(,)+∞)
83, 7nfima 6017 . . . 4 𝑥(𝐹 “ (𝐵(,)+∞))
9 nfrab1 3415 . . . 4 𝑥{𝑥𝑋𝐵 < (𝐹𝑥)}
10 rfcnpre1.8 . . . . . . . . . 10 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
11 cntop1 23153 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
1210, 11syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ Top)
13 rfcnpre1.5 . . . . . . . . . . . 12 𝑋 = 𝐽
14 istopon 22825 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝐽))
1512, 13, 14sylanblrc 590 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝑋))
16 rfcnpre1.4 . . . . . . . . . . . 12 𝐾 = (topGen‘ran (,))
17 retopon 24676 . . . . . . . . . . . 12 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
1816, 17eqeltri 2827 . . . . . . . . . . 11 𝐾 ∈ (TopOn‘ℝ)
19 iscn 23148 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℝ)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
2015, 18, 19sylancl 586 . . . . . . . . . 10 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
2110, 20mpbid 232 . . . . . . . . 9 (𝜑 → (𝐹:𝑋⟶ℝ ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽))
2221simpld 494 . . . . . . . 8 (𝜑𝐹:𝑋⟶ℝ)
2322ffvelcdmda 7017 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
24 rfcnpre1.7 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
25 elioopnf 13340 . . . . . . . . 9 (𝐵 ∈ ℝ* → ((𝐹𝑥) ∈ (𝐵(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝐵 < (𝐹𝑥))))
2624, 25syl 17 . . . . . . . 8 (𝜑 → ((𝐹𝑥) ∈ (𝐵(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝐵 < (𝐹𝑥))))
2726baibd 539 . . . . . . 7 ((𝜑 ∧ (𝐹𝑥) ∈ ℝ) → ((𝐹𝑥) ∈ (𝐵(,)+∞) ↔ 𝐵 < (𝐹𝑥)))
2823, 27syldan 591 . . . . . 6 ((𝜑𝑥𝑋) → ((𝐹𝑥) ∈ (𝐵(,)+∞) ↔ 𝐵 < (𝐹𝑥)))
2928pm5.32da 579 . . . . 5 (𝜑 → ((𝑥𝑋 ∧ (𝐹𝑥) ∈ (𝐵(,)+∞)) ↔ (𝑥𝑋𝐵 < (𝐹𝑥))))
30 ffn 6651 . . . . . 6 (𝐹:𝑋⟶ℝ → 𝐹 Fn 𝑋)
31 elpreima 6991 . . . . . 6 (𝐹 Fn 𝑋 → (𝑥 ∈ (𝐹 “ (𝐵(,)+∞)) ↔ (𝑥𝑋 ∧ (𝐹𝑥) ∈ (𝐵(,)+∞))))
3222, 30, 313syl 18 . . . . 5 (𝜑 → (𝑥 ∈ (𝐹 “ (𝐵(,)+∞)) ↔ (𝑥𝑋 ∧ (𝐹𝑥) ∈ (𝐵(,)+∞))))
33 rabid 3416 . . . . . 6 (𝑥 ∈ {𝑥𝑋𝐵 < (𝐹𝑥)} ↔ (𝑥𝑋𝐵 < (𝐹𝑥)))
3433a1i 11 . . . . 5 (𝜑 → (𝑥 ∈ {𝑥𝑋𝐵 < (𝐹𝑥)} ↔ (𝑥𝑋𝐵 < (𝐹𝑥))))
3529, 32, 343bitr4d 311 . . . 4 (𝜑 → (𝑥 ∈ (𝐹 “ (𝐵(,)+∞)) ↔ 𝑥 ∈ {𝑥𝑋𝐵 < (𝐹𝑥)}))
361, 8, 9, 35eqrd 3954 . . 3 (𝜑 → (𝐹 “ (𝐵(,)+∞)) = {𝑥𝑋𝐵 < (𝐹𝑥)})
37 rfcnpre1.6 . . 3 𝐴 = {𝑥𝑋𝐵 < (𝐹𝑥)}
3836, 37eqtr4di 2784 . 2 (𝜑 → (𝐹 “ (𝐵(,)+∞)) = 𝐴)
39 iooretop 24678 . . . 4 (𝐵(,)+∞) ∈ (topGen‘ran (,))
4039, 16eleqtrri 2830 . . 3 (𝐵(,)+∞) ∈ 𝐾
41 cnima 23178 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐵(,)+∞) ∈ 𝐾) → (𝐹 “ (𝐵(,)+∞)) ∈ 𝐽)
4210, 40, 41sylancl 586 . 2 (𝜑 → (𝐹 “ (𝐵(,)+∞)) ∈ 𝐽)
4338, 42eqeltrrd 2832 1 (𝜑𝐴𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wnf 1784  wcel 2111  wnfc 2879  wral 3047  {crab 3395   cuni 4859   class class class wbr 5091  ccnv 5615  ran crn 5617  cima 5619   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  cr 11002  +∞cpnf 11140  *cxr 11142   < clt 11143  (,)cioo 13242  topGenctg 17338  Topctop 22806  TopOnctopon 22823   Cn ccn 23137
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080  ax-pre-sup 11081
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-sup 9326  df-inf 9327  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-nn 12123  df-n0 12379  df-z 12466  df-uz 12730  df-q 12844  df-ioo 13246  df-topgen 17344  df-top 22807  df-topon 22824  df-bases 22859  df-cn 23140
This theorem is referenced by:  stoweidlem46  46083
  Copyright terms: Public domain W3C validator