Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfcnpre1 Structured version   Visualization version   GIF version

Theorem rfcnpre1 43025
Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than a given extended real B is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
rfcnpre1.1 𝑥𝐵
rfcnpre1.2 𝑥𝐹
rfcnpre1.3 𝑥𝜑
rfcnpre1.4 𝐾 = (topGen‘ran (,))
rfcnpre1.5 𝑋 = 𝐽
rfcnpre1.6 𝐴 = {𝑥𝑋𝐵 < (𝐹𝑥)}
rfcnpre1.7 (𝜑𝐵 ∈ ℝ*)
rfcnpre1.8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
rfcnpre1 (𝜑𝐴𝐽)

Proof of Theorem rfcnpre1
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 rfcnpre1.3 . . . 4 𝑥𝜑
2 rfcnpre1.2 . . . . . 6 𝑥𝐹
32nfcnv 5831 . . . . 5 𝑥𝐹
4 rfcnpre1.1 . . . . . 6 𝑥𝐵
5 nfcv 2906 . . . . . 6 𝑥(,)
6 nfcv 2906 . . . . . 6 𝑥+∞
74, 5, 6nfov 7380 . . . . 5 𝑥(𝐵(,)+∞)
83, 7nfima 6018 . . . 4 𝑥(𝐹 “ (𝐵(,)+∞))
9 nfrab1 3425 . . . 4 𝑥{𝑥𝑋𝐵 < (𝐹𝑥)}
10 rfcnpre1.8 . . . . . . . . . 10 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
11 cntop1 22519 . . . . . . . . . . . . 13 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
1210, 11syl 17 . . . . . . . . . . . 12 (𝜑𝐽 ∈ Top)
13 rfcnpre1.5 . . . . . . . . . . . 12 𝑋 = 𝐽
14 istopon 22189 . . . . . . . . . . . 12 (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝐽))
1512, 13, 14sylanblrc 591 . . . . . . . . . . 11 (𝜑𝐽 ∈ (TopOn‘𝑋))
16 rfcnpre1.4 . . . . . . . . . . . 12 𝐾 = (topGen‘ran (,))
17 retopon 24055 . . . . . . . . . . . 12 (topGen‘ran (,)) ∈ (TopOn‘ℝ)
1816, 17eqeltri 2835 . . . . . . . . . . 11 𝐾 ∈ (TopOn‘ℝ)
19 iscn 22514 . . . . . . . . . . 11 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℝ)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
2015, 18, 19sylancl 587 . . . . . . . . . 10 (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽)))
2110, 20mpbid 231 . . . . . . . . 9 (𝜑 → (𝐹:𝑋⟶ℝ ∧ ∀𝑦𝐾 (𝐹𝑦) ∈ 𝐽))
2221simpld 496 . . . . . . . 8 (𝜑𝐹:𝑋⟶ℝ)
2322ffvelcdmda 7030 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
24 rfcnpre1.7 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
25 elioopnf 13290 . . . . . . . . 9 (𝐵 ∈ ℝ* → ((𝐹𝑥) ∈ (𝐵(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝐵 < (𝐹𝑥))))
2624, 25syl 17 . . . . . . . 8 (𝜑 → ((𝐹𝑥) ∈ (𝐵(,)+∞) ↔ ((𝐹𝑥) ∈ ℝ ∧ 𝐵 < (𝐹𝑥))))
2726baibd 541 . . . . . . 7 ((𝜑 ∧ (𝐹𝑥) ∈ ℝ) → ((𝐹𝑥) ∈ (𝐵(,)+∞) ↔ 𝐵 < (𝐹𝑥)))
2823, 27syldan 592 . . . . . 6 ((𝜑𝑥𝑋) → ((𝐹𝑥) ∈ (𝐵(,)+∞) ↔ 𝐵 < (𝐹𝑥)))
2928pm5.32da 580 . . . . 5 (𝜑 → ((𝑥𝑋 ∧ (𝐹𝑥) ∈ (𝐵(,)+∞)) ↔ (𝑥𝑋𝐵 < (𝐹𝑥))))
30 ffn 6664 . . . . . 6 (𝐹:𝑋⟶ℝ → 𝐹 Fn 𝑋)
31 elpreima 7004 . . . . . 6 (𝐹 Fn 𝑋 → (𝑥 ∈ (𝐹 “ (𝐵(,)+∞)) ↔ (𝑥𝑋 ∧ (𝐹𝑥) ∈ (𝐵(,)+∞))))
3222, 30, 313syl 18 . . . . 5 (𝜑 → (𝑥 ∈ (𝐹 “ (𝐵(,)+∞)) ↔ (𝑥𝑋 ∧ (𝐹𝑥) ∈ (𝐵(,)+∞))))
33 rabid 3426 . . . . . 6 (𝑥 ∈ {𝑥𝑋𝐵 < (𝐹𝑥)} ↔ (𝑥𝑋𝐵 < (𝐹𝑥)))
3433a1i 11 . . . . 5 (𝜑 → (𝑥 ∈ {𝑥𝑋𝐵 < (𝐹𝑥)} ↔ (𝑥𝑋𝐵 < (𝐹𝑥))))
3529, 32, 343bitr4d 311 . . . 4 (𝜑 → (𝑥 ∈ (𝐹 “ (𝐵(,)+∞)) ↔ 𝑥 ∈ {𝑥𝑋𝐵 < (𝐹𝑥)}))
361, 8, 9, 35eqrd 3962 . . 3 (𝜑 → (𝐹 “ (𝐵(,)+∞)) = {𝑥𝑋𝐵 < (𝐹𝑥)})
37 rfcnpre1.6 . . 3 𝐴 = {𝑥𝑋𝐵 < (𝐹𝑥)}
3836, 37eqtr4di 2796 . 2 (𝜑 → (𝐹 “ (𝐵(,)+∞)) = 𝐴)
39 iooretop 24057 . . . 4 (𝐵(,)+∞) ∈ (topGen‘ran (,))
4039, 16eleqtrri 2838 . . 3 (𝐵(,)+∞) ∈ 𝐾
41 cnima 22544 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐵(,)+∞) ∈ 𝐾) → (𝐹 “ (𝐵(,)+∞)) ∈ 𝐽)
4210, 40, 41sylancl 587 . 2 (𝜑 → (𝐹 “ (𝐵(,)+∞)) ∈ 𝐽)
4338, 42eqeltrrd 2840 1 (𝜑𝐴𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wnf 1786  wcel 2107  wnfc 2886  wral 3063  {crab 3406   cuni 4864   class class class wbr 5104  ccnv 5630  ran crn 5632  cima 5634   Fn wfn 6487  wf 6488  cfv 6492  (class class class)co 7350  cr 10984  +∞cpnf 11120  *cxr 11122   < clt 11123  (,)cioo 13194  topGenctg 17255  Topctop 22170  TopOnctopon 22187   Cn ccn 22503
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-cnex 11041  ax-resscn 11042  ax-1cn 11043  ax-icn 11044  ax-addcl 11045  ax-addrcl 11046  ax-mulcl 11047  ax-mulrcl 11048  ax-mulcom 11049  ax-addass 11050  ax-mulass 11051  ax-distr 11052  ax-i2m1 11053  ax-1ne0 11054  ax-1rid 11055  ax-rnegex 11056  ax-rrecex 11057  ax-cnre 11058  ax-pre-lttri 11059  ax-pre-lttrn 11060  ax-pre-ltadd 11061  ax-pre-mulgt0 11062  ax-pre-sup 11063
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4865  df-iun 4955  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6250  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-riota 7306  df-ov 7353  df-oprab 7354  df-mpo 7355  df-om 7794  df-1st 7912  df-2nd 7913  df-frecs 8180  df-wrecs 8211  df-recs 8285  df-rdg 8324  df-er 8582  df-map 8701  df-en 8818  df-dom 8819  df-sdom 8820  df-sup 9312  df-inf 9313  df-pnf 11125  df-mnf 11126  df-xr 11127  df-ltxr 11128  df-le 11129  df-sub 11321  df-neg 11322  df-div 11747  df-nn 12088  df-n0 12348  df-z 12434  df-uz 12698  df-q 12804  df-ioo 13198  df-topgen 17261  df-top 22171  df-topon 22188  df-bases 22224  df-cn 22506
This theorem is referenced by:  stoweidlem46  44078
  Copyright terms: Public domain W3C validator