| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rfcnpre1 | Structured version Visualization version GIF version | ||
| Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than a given extended real B is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| rfcnpre1.1 | ⊢ Ⅎ𝑥𝐵 |
| rfcnpre1.2 | ⊢ Ⅎ𝑥𝐹 |
| rfcnpre1.3 | ⊢ Ⅎ𝑥𝜑 |
| rfcnpre1.4 | ⊢ 𝐾 = (topGen‘ran (,)) |
| rfcnpre1.5 | ⊢ 𝑋 = ∪ 𝐽 |
| rfcnpre1.6 | ⊢ 𝐴 = {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} |
| rfcnpre1.7 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| rfcnpre1.8 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| Ref | Expression |
|---|---|
| rfcnpre1 | ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rfcnpre1.3 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rfcnpre1.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
| 3 | 2 | nfcnv 5842 | . . . . 5 ⊢ Ⅎ𝑥◡𝐹 |
| 4 | rfcnpre1.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
| 5 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑥(,) | |
| 6 | nfcv 2891 | . . . . . 6 ⊢ Ⅎ𝑥+∞ | |
| 7 | 4, 5, 6 | nfov 7417 | . . . . 5 ⊢ Ⅎ𝑥(𝐵(,)+∞) |
| 8 | 3, 7 | nfima 6039 | . . . 4 ⊢ Ⅎ𝑥(◡𝐹 “ (𝐵(,)+∞)) |
| 9 | nfrab1 3426 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} | |
| 10 | rfcnpre1.8 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 11 | cntop1 23127 | . . . . . . . . . . . . 13 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
| 12 | 10, 11 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐽 ∈ Top) |
| 13 | rfcnpre1.5 | . . . . . . . . . . . 12 ⊢ 𝑋 = ∪ 𝐽 | |
| 14 | istopon 22799 | . . . . . . . . . . . 12 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
| 15 | 12, 13, 14 | sylanblrc 590 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
| 16 | rfcnpre1.4 | . . . . . . . . . . . 12 ⊢ 𝐾 = (topGen‘ran (,)) | |
| 17 | retopon 24651 | . . . . . . . . . . . 12 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
| 18 | 16, 17 | eqeltri 2824 | . . . . . . . . . . 11 ⊢ 𝐾 ∈ (TopOn‘ℝ) |
| 19 | iscn 23122 | . . . . . . . . . . 11 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℝ)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) | |
| 20 | 15, 18, 19 | sylancl 586 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
| 21 | 10, 20 | mpbid 232 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹:𝑋⟶ℝ ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
| 22 | 21 | simpld 494 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
| 23 | 22 | ffvelcdmda 7056 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ℝ) |
| 24 | rfcnpre1.7 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 25 | elioopnf 13404 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ* → ((𝐹‘𝑥) ∈ (𝐵(,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 𝐵 < (𝐹‘𝑥)))) | |
| 26 | 24, 25 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((𝐹‘𝑥) ∈ (𝐵(,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 𝐵 < (𝐹‘𝑥)))) |
| 27 | 26 | baibd 539 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ∈ ℝ) → ((𝐹‘𝑥) ∈ (𝐵(,)+∞) ↔ 𝐵 < (𝐹‘𝑥))) |
| 28 | 23, 27 | syldan 591 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥) ∈ (𝐵(,)+∞) ↔ 𝐵 < (𝐹‘𝑥))) |
| 29 | 28 | pm5.32da 579 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ (𝐵(,)+∞)) ↔ (𝑥 ∈ 𝑋 ∧ 𝐵 < (𝐹‘𝑥)))) |
| 30 | ffn 6688 | . . . . . 6 ⊢ (𝐹:𝑋⟶ℝ → 𝐹 Fn 𝑋) | |
| 31 | elpreima 7030 | . . . . . 6 ⊢ (𝐹 Fn 𝑋 → (𝑥 ∈ (◡𝐹 “ (𝐵(,)+∞)) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ (𝐵(,)+∞)))) | |
| 32 | 22, 30, 31 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (◡𝐹 “ (𝐵(,)+∞)) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ (𝐵(,)+∞)))) |
| 33 | rabid 3427 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} ↔ (𝑥 ∈ 𝑋 ∧ 𝐵 < (𝐹‘𝑥))) | |
| 34 | 33 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} ↔ (𝑥 ∈ 𝑋 ∧ 𝐵 < (𝐹‘𝑥)))) |
| 35 | 29, 32, 34 | 3bitr4d 311 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (◡𝐹 “ (𝐵(,)+∞)) ↔ 𝑥 ∈ {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)})) |
| 36 | 1, 8, 9, 35 | eqrd 3966 | . . 3 ⊢ (𝜑 → (◡𝐹 “ (𝐵(,)+∞)) = {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)}) |
| 37 | rfcnpre1.6 | . . 3 ⊢ 𝐴 = {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} | |
| 38 | 36, 37 | eqtr4di 2782 | . 2 ⊢ (𝜑 → (◡𝐹 “ (𝐵(,)+∞)) = 𝐴) |
| 39 | iooretop 24653 | . . . 4 ⊢ (𝐵(,)+∞) ∈ (topGen‘ran (,)) | |
| 40 | 39, 16 | eleqtrri 2827 | . . 3 ⊢ (𝐵(,)+∞) ∈ 𝐾 |
| 41 | cnima 23152 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐵(,)+∞) ∈ 𝐾) → (◡𝐹 “ (𝐵(,)+∞)) ∈ 𝐽) | |
| 42 | 10, 40, 41 | sylancl 586 | . 2 ⊢ (𝜑 → (◡𝐹 “ (𝐵(,)+∞)) ∈ 𝐽) |
| 43 | 38, 42 | eqeltrrd 2829 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2876 ∀wral 3044 {crab 3405 ∪ cuni 4871 class class class wbr 5107 ◡ccnv 5637 ran crn 5639 “ cima 5641 Fn wfn 6506 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 ℝcr 11067 +∞cpnf 11205 ℝ*cxr 11207 < clt 11208 (,)cioo 13306 topGenctg 17400 Topctop 22780 TopOnctopon 22797 Cn ccn 23111 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-pre-sup 11146 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-sup 9393 df-inf 9394 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-div 11836 df-nn 12187 df-n0 12443 df-z 12530 df-uz 12794 df-q 12908 df-ioo 13310 df-topgen 17406 df-top 22781 df-topon 22798 df-bases 22833 df-cn 23114 |
| This theorem is referenced by: stoweidlem46 46044 |
| Copyright terms: Public domain | W3C validator |