![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rfcnpre1 | Structured version Visualization version GIF version |
Description: If F is a continuous function with respect to the standard topology, then the preimage A of the values greater than a given extended real B is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
rfcnpre1.1 | ⊢ Ⅎ𝑥𝐵 |
rfcnpre1.2 | ⊢ Ⅎ𝑥𝐹 |
rfcnpre1.3 | ⊢ Ⅎ𝑥𝜑 |
rfcnpre1.4 | ⊢ 𝐾 = (topGen‘ran (,)) |
rfcnpre1.5 | ⊢ 𝑋 = ∪ 𝐽 |
rfcnpre1.6 | ⊢ 𝐴 = {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} |
rfcnpre1.7 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
rfcnpre1.8 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
Ref | Expression |
---|---|
rfcnpre1 | ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rfcnpre1.3 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | rfcnpre1.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
3 | 2 | nfcnv 5834 | . . . . 5 ⊢ Ⅎ𝑥◡𝐹 |
4 | rfcnpre1.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
5 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑥(,) | |
6 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑥+∞ | |
7 | 4, 5, 6 | nfov 7387 | . . . . 5 ⊢ Ⅎ𝑥(𝐵(,)+∞) |
8 | 3, 7 | nfima 6021 | . . . 4 ⊢ Ⅎ𝑥(◡𝐹 “ (𝐵(,)+∞)) |
9 | nfrab1 3426 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} | |
10 | rfcnpre1.8 | . . . . . . . . . 10 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
11 | cntop1 22591 | . . . . . . . . . . . . 13 ⊢ (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top) | |
12 | 10, 11 | syl 17 | . . . . . . . . . . . 12 ⊢ (𝜑 → 𝐽 ∈ Top) |
13 | rfcnpre1.5 | . . . . . . . . . . . 12 ⊢ 𝑋 = ∪ 𝐽 | |
14 | istopon 22261 | . . . . . . . . . . . 12 ⊢ (𝐽 ∈ (TopOn‘𝑋) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝐽)) | |
15 | 12, 13, 14 | sylanblrc 590 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝐽 ∈ (TopOn‘𝑋)) |
16 | rfcnpre1.4 | . . . . . . . . . . . 12 ⊢ 𝐾 = (topGen‘ran (,)) | |
17 | retopon 24127 | . . . . . . . . . . . 12 ⊢ (topGen‘ran (,)) ∈ (TopOn‘ℝ) | |
18 | 16, 17 | eqeltri 2834 | . . . . . . . . . . 11 ⊢ 𝐾 ∈ (TopOn‘ℝ) |
19 | iscn 22586 | . . . . . . . . . . 11 ⊢ ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐾 ∈ (TopOn‘ℝ)) → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) | |
20 | 15, 18, 19 | sylancl 586 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 ∈ (𝐽 Cn 𝐾) ↔ (𝐹:𝑋⟶ℝ ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽))) |
21 | 10, 20 | mpbid 231 | . . . . . . . . 9 ⊢ (𝜑 → (𝐹:𝑋⟶ℝ ∧ ∀𝑦 ∈ 𝐾 (◡𝐹 “ 𝑦) ∈ 𝐽)) |
22 | 21 | simpld 495 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
23 | 22 | ffvelcdmda 7035 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ℝ) |
24 | rfcnpre1.7 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
25 | elioopnf 13360 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ* → ((𝐹‘𝑥) ∈ (𝐵(,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 𝐵 < (𝐹‘𝑥)))) | |
26 | 24, 25 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((𝐹‘𝑥) ∈ (𝐵(,)+∞) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ 𝐵 < (𝐹‘𝑥)))) |
27 | 26 | baibd 540 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ∈ ℝ) → ((𝐹‘𝑥) ∈ (𝐵(,)+∞) ↔ 𝐵 < (𝐹‘𝑥))) |
28 | 23, 27 | syldan 591 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥) ∈ (𝐵(,)+∞) ↔ 𝐵 < (𝐹‘𝑥))) |
29 | 28 | pm5.32da 579 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ (𝐵(,)+∞)) ↔ (𝑥 ∈ 𝑋 ∧ 𝐵 < (𝐹‘𝑥)))) |
30 | ffn 6668 | . . . . . 6 ⊢ (𝐹:𝑋⟶ℝ → 𝐹 Fn 𝑋) | |
31 | elpreima 7008 | . . . . . 6 ⊢ (𝐹 Fn 𝑋 → (𝑥 ∈ (◡𝐹 “ (𝐵(,)+∞)) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ (𝐵(,)+∞)))) | |
32 | 22, 30, 31 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (◡𝐹 “ (𝐵(,)+∞)) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ (𝐵(,)+∞)))) |
33 | rabid 3427 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} ↔ (𝑥 ∈ 𝑋 ∧ 𝐵 < (𝐹‘𝑥))) | |
34 | 33 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} ↔ (𝑥 ∈ 𝑋 ∧ 𝐵 < (𝐹‘𝑥)))) |
35 | 29, 32, 34 | 3bitr4d 310 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (◡𝐹 “ (𝐵(,)+∞)) ↔ 𝑥 ∈ {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)})) |
36 | 1, 8, 9, 35 | eqrd 3963 | . . 3 ⊢ (𝜑 → (◡𝐹 “ (𝐵(,)+∞)) = {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)}) |
37 | rfcnpre1.6 | . . 3 ⊢ 𝐴 = {𝑥 ∈ 𝑋 ∣ 𝐵 < (𝐹‘𝑥)} | |
38 | 36, 37 | eqtr4di 2794 | . 2 ⊢ (𝜑 → (◡𝐹 “ (𝐵(,)+∞)) = 𝐴) |
39 | iooretop 24129 | . . . 4 ⊢ (𝐵(,)+∞) ∈ (topGen‘ran (,)) | |
40 | 39, 16 | eleqtrri 2837 | . . 3 ⊢ (𝐵(,)+∞) ∈ 𝐾 |
41 | cnima 22616 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (𝐵(,)+∞) ∈ 𝐾) → (◡𝐹 “ (𝐵(,)+∞)) ∈ 𝐽) | |
42 | 10, 40, 41 | sylancl 586 | . 2 ⊢ (𝜑 → (◡𝐹 “ (𝐵(,)+∞)) ∈ 𝐽) |
43 | 38, 42 | eqeltrrd 2839 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 Ⅎwnf 1785 ∈ wcel 2106 Ⅎwnfc 2887 ∀wral 3064 {crab 3407 ∪ cuni 4865 class class class wbr 5105 ◡ccnv 5632 ran crn 5634 “ cima 5636 Fn wfn 6491 ⟶wf 6492 ‘cfv 6496 (class class class)co 7357 ℝcr 11050 +∞cpnf 11186 ℝ*cxr 11188 < clt 11189 (,)cioo 13264 topGenctg 17319 Topctop 22242 TopOnctopon 22259 Cn ccn 22575 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 ax-cnex 11107 ax-resscn 11108 ax-1cn 11109 ax-icn 11110 ax-addcl 11111 ax-addrcl 11112 ax-mulcl 11113 ax-mulrcl 11114 ax-mulcom 11115 ax-addass 11116 ax-mulass 11117 ax-distr 11118 ax-i2m1 11119 ax-1ne0 11120 ax-1rid 11121 ax-rnegex 11122 ax-rrecex 11123 ax-cnre 11124 ax-pre-lttri 11125 ax-pre-lttrn 11126 ax-pre-ltadd 11127 ax-pre-mulgt0 11128 ax-pre-sup 11129 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3065 df-rex 3074 df-rmo 3353 df-reu 3354 df-rab 3408 df-v 3447 df-sbc 3740 df-csb 3856 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-pss 3929 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-iun 4956 df-br 5106 df-opab 5168 df-mpt 5189 df-tr 5223 df-id 5531 df-eprel 5537 df-po 5545 df-so 5546 df-fr 5588 df-we 5590 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-rn 5644 df-res 5645 df-ima 5646 df-pred 6253 df-ord 6320 df-on 6321 df-lim 6322 df-suc 6323 df-iota 6448 df-fun 6498 df-fn 6499 df-f 6500 df-f1 6501 df-fo 6502 df-f1o 6503 df-fv 6504 df-riota 7313 df-ov 7360 df-oprab 7361 df-mpo 7362 df-om 7803 df-1st 7921 df-2nd 7922 df-frecs 8212 df-wrecs 8243 df-recs 8317 df-rdg 8356 df-er 8648 df-map 8767 df-en 8884 df-dom 8885 df-sdom 8886 df-sup 9378 df-inf 9379 df-pnf 11191 df-mnf 11192 df-xr 11193 df-ltxr 11194 df-le 11195 df-sub 11387 df-neg 11388 df-div 11813 df-nn 12154 df-n0 12414 df-z 12500 df-uz 12764 df-q 12874 df-ioo 13268 df-topgen 17325 df-top 22243 df-topon 22260 df-bases 22296 df-cn 22578 |
This theorem is referenced by: stoweidlem46 44277 |
Copyright terms: Public domain | W3C validator |