MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imasncld Structured version   Visualization version   GIF version

Theorem imasncld 23623
Description: If a relation graph is closed, then an image set of a singleton is also closed. Corollary of Proposition 4 of [BourbakiTop1] p. I.26. (Contributed by Thierry Arnoux, 14-Jan-2018.)
Hypothesis
Ref Expression
imasnopn.1 𝑋 = βˆͺ 𝐽
Assertion
Ref Expression
imasncld (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)) ∧ 𝐴 ∈ 𝑋)) β†’ (𝑅 β€œ {𝐴}) ∈ (Clsdβ€˜πΎ))

Proof of Theorem imasncld
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 nfv 1909 . . . 4 Ⅎ𝑦((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)) ∧ 𝐴 ∈ 𝑋))
2 nfcv 2899 . . . 4 Ⅎ𝑦(𝑅 β€œ {𝐴})
3 nfrab1 3450 . . . 4 Ⅎ𝑦{𝑦 ∈ βˆͺ 𝐾 ∣ ⟨𝐴, π‘¦βŸ© ∈ 𝑅}
4 simprl 769 . . . . . . . . . . . 12 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)) ∧ 𝐴 ∈ 𝑋)) β†’ 𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)))
5 eqid 2728 . . . . . . . . . . . . 13 βˆͺ (𝐽 Γ—t 𝐾) = βˆͺ (𝐽 Γ—t 𝐾)
65cldss 22961 . . . . . . . . . . . 12 (𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)) β†’ 𝑅 βŠ† βˆͺ (𝐽 Γ—t 𝐾))
74, 6syl 17 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)) ∧ 𝐴 ∈ 𝑋)) β†’ 𝑅 βŠ† βˆͺ (𝐽 Γ—t 𝐾))
8 imasnopn.1 . . . . . . . . . . . . 13 𝑋 = βˆͺ 𝐽
9 eqid 2728 . . . . . . . . . . . . 13 βˆͺ 𝐾 = βˆͺ 𝐾
108, 9txuni 23524 . . . . . . . . . . . 12 ((𝐽 ∈ Top ∧ 𝐾 ∈ Top) β†’ (𝑋 Γ— βˆͺ 𝐾) = βˆͺ (𝐽 Γ—t 𝐾))
1110adantr 479 . . . . . . . . . . 11 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)) ∧ 𝐴 ∈ 𝑋)) β†’ (𝑋 Γ— βˆͺ 𝐾) = βˆͺ (𝐽 Γ—t 𝐾))
127, 11sseqtrrd 4023 . . . . . . . . . 10 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)) ∧ 𝐴 ∈ 𝑋)) β†’ 𝑅 βŠ† (𝑋 Γ— βˆͺ 𝐾))
13 imass1 6110 . . . . . . . . . 10 (𝑅 βŠ† (𝑋 Γ— βˆͺ 𝐾) β†’ (𝑅 β€œ {𝐴}) βŠ† ((𝑋 Γ— βˆͺ 𝐾) β€œ {𝐴}))
1412, 13syl 17 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)) ∧ 𝐴 ∈ 𝑋)) β†’ (𝑅 β€œ {𝐴}) βŠ† ((𝑋 Γ— βˆͺ 𝐾) β€œ {𝐴}))
15 xpimasn 6194 . . . . . . . . . 10 (𝐴 ∈ 𝑋 β†’ ((𝑋 Γ— βˆͺ 𝐾) β€œ {𝐴}) = βˆͺ 𝐾)
1615ad2antll 727 . . . . . . . . 9 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)) ∧ 𝐴 ∈ 𝑋)) β†’ ((𝑋 Γ— βˆͺ 𝐾) β€œ {𝐴}) = βˆͺ 𝐾)
1714, 16sseqtrd 4022 . . . . . . . 8 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)) ∧ 𝐴 ∈ 𝑋)) β†’ (𝑅 β€œ {𝐴}) βŠ† βˆͺ 𝐾)
1817sseld 3981 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)) ∧ 𝐴 ∈ 𝑋)) β†’ (𝑦 ∈ (𝑅 β€œ {𝐴}) β†’ 𝑦 ∈ βˆͺ 𝐾))
1918pm4.71rd 561 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)) ∧ 𝐴 ∈ 𝑋)) β†’ (𝑦 ∈ (𝑅 β€œ {𝐴}) ↔ (𝑦 ∈ βˆͺ 𝐾 ∧ 𝑦 ∈ (𝑅 β€œ {𝐴}))))
20 elimasng 6097 . . . . . . . . 9 ((𝐴 ∈ 𝑋 ∧ 𝑦 ∈ V) β†’ (𝑦 ∈ (𝑅 β€œ {𝐴}) ↔ ⟨𝐴, π‘¦βŸ© ∈ 𝑅))
2120elvd 3480 . . . . . . . 8 (𝐴 ∈ 𝑋 β†’ (𝑦 ∈ (𝑅 β€œ {𝐴}) ↔ ⟨𝐴, π‘¦βŸ© ∈ 𝑅))
2221ad2antll 727 . . . . . . 7 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)) ∧ 𝐴 ∈ 𝑋)) β†’ (𝑦 ∈ (𝑅 β€œ {𝐴}) ↔ ⟨𝐴, π‘¦βŸ© ∈ 𝑅))
2322anbi2d 628 . . . . . 6 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)) ∧ 𝐴 ∈ 𝑋)) β†’ ((𝑦 ∈ βˆͺ 𝐾 ∧ 𝑦 ∈ (𝑅 β€œ {𝐴})) ↔ (𝑦 ∈ βˆͺ 𝐾 ∧ ⟨𝐴, π‘¦βŸ© ∈ 𝑅)))
2419, 23bitrd 278 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)) ∧ 𝐴 ∈ 𝑋)) β†’ (𝑦 ∈ (𝑅 β€œ {𝐴}) ↔ (𝑦 ∈ βˆͺ 𝐾 ∧ ⟨𝐴, π‘¦βŸ© ∈ 𝑅)))
25 rabid 3451 . . . . 5 (𝑦 ∈ {𝑦 ∈ βˆͺ 𝐾 ∣ ⟨𝐴, π‘¦βŸ© ∈ 𝑅} ↔ (𝑦 ∈ βˆͺ 𝐾 ∧ ⟨𝐴, π‘¦βŸ© ∈ 𝑅))
2624, 25bitr4di 288 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)) ∧ 𝐴 ∈ 𝑋)) β†’ (𝑦 ∈ (𝑅 β€œ {𝐴}) ↔ 𝑦 ∈ {𝑦 ∈ βˆͺ 𝐾 ∣ ⟨𝐴, π‘¦βŸ© ∈ 𝑅}))
271, 2, 3, 26eqrd 4001 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)) ∧ 𝐴 ∈ 𝑋)) β†’ (𝑅 β€œ {𝐴}) = {𝑦 ∈ βˆͺ 𝐾 ∣ ⟨𝐴, π‘¦βŸ© ∈ 𝑅})
28 eqid 2728 . . . 4 (𝑦 ∈ βˆͺ 𝐾 ↦ ⟨𝐴, π‘¦βŸ©) = (𝑦 ∈ βˆͺ 𝐾 ↦ ⟨𝐴, π‘¦βŸ©)
2928mptpreima 6247 . . 3 (β—‘(𝑦 ∈ βˆͺ 𝐾 ↦ ⟨𝐴, π‘¦βŸ©) β€œ 𝑅) = {𝑦 ∈ βˆͺ 𝐾 ∣ ⟨𝐴, π‘¦βŸ© ∈ 𝑅}
3027, 29eqtr4di 2786 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)) ∧ 𝐴 ∈ 𝑋)) β†’ (𝑅 β€œ {𝐴}) = (β—‘(𝑦 ∈ βˆͺ 𝐾 ↦ ⟨𝐴, π‘¦βŸ©) β€œ 𝑅))
319toptopon 22847 . . . . . 6 (𝐾 ∈ Top ↔ 𝐾 ∈ (TopOnβ€˜βˆͺ 𝐾))
3231biimpi 215 . . . . 5 (𝐾 ∈ Top β†’ 𝐾 ∈ (TopOnβ€˜βˆͺ 𝐾))
3332ad2antlr 725 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)) ∧ 𝐴 ∈ 𝑋)) β†’ 𝐾 ∈ (TopOnβ€˜βˆͺ 𝐾))
348toptopon 22847 . . . . . . 7 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOnβ€˜π‘‹))
3534biimpi 215 . . . . . 6 (𝐽 ∈ Top β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
3635ad2antrr 724 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)) ∧ 𝐴 ∈ 𝑋)) β†’ 𝐽 ∈ (TopOnβ€˜π‘‹))
37 simprr 771 . . . . 5 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)) ∧ 𝐴 ∈ 𝑋)) β†’ 𝐴 ∈ 𝑋)
3833, 36, 37cnmptc 23594 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)) ∧ 𝐴 ∈ 𝑋)) β†’ (𝑦 ∈ βˆͺ 𝐾 ↦ 𝐴) ∈ (𝐾 Cn 𝐽))
3933cnmptid 23593 . . . 4 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)) ∧ 𝐴 ∈ 𝑋)) β†’ (𝑦 ∈ βˆͺ 𝐾 ↦ 𝑦) ∈ (𝐾 Cn 𝐾))
4033, 38, 39cnmpt1t 23597 . . 3 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)) ∧ 𝐴 ∈ 𝑋)) β†’ (𝑦 ∈ βˆͺ 𝐾 ↦ ⟨𝐴, π‘¦βŸ©) ∈ (𝐾 Cn (𝐽 Γ—t 𝐾)))
41 cnclima 23200 . . 3 (((𝑦 ∈ βˆͺ 𝐾 ↦ ⟨𝐴, π‘¦βŸ©) ∈ (𝐾 Cn (𝐽 Γ—t 𝐾)) ∧ 𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾))) β†’ (β—‘(𝑦 ∈ βˆͺ 𝐾 ↦ ⟨𝐴, π‘¦βŸ©) β€œ 𝑅) ∈ (Clsdβ€˜πΎ))
4240, 4, 41syl2anc 582 . 2 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)) ∧ 𝐴 ∈ 𝑋)) β†’ (β—‘(𝑦 ∈ βˆͺ 𝐾 ↦ ⟨𝐴, π‘¦βŸ©) β€œ 𝑅) ∈ (Clsdβ€˜πΎ))
4330, 42eqeltrd 2829 1 (((𝐽 ∈ Top ∧ 𝐾 ∈ Top) ∧ (𝑅 ∈ (Clsdβ€˜(𝐽 Γ—t 𝐾)) ∧ 𝐴 ∈ 𝑋)) β†’ (𝑅 β€œ {𝐴}) ∈ (Clsdβ€˜πΎ))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1533   ∈ wcel 2098  {crab 3430  Vcvv 3473   βŠ† wss 3949  {csn 4632  βŸ¨cop 4638  βˆͺ cuni 4912   ↦ cmpt 5235   Γ— cxp 5680  β—‘ccnv 5681   β€œ cima 5685  β€˜cfv 6553  (class class class)co 7426  Topctop 22823  TopOnctopon 22840  Clsdccld 22948   Cn ccn 23156   Γ—t ctx 23492
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-iun 5002  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-ov 7429  df-oprab 7430  df-mpo 7431  df-1st 8001  df-2nd 8002  df-map 8855  df-topgen 17434  df-top 22824  df-topon 22841  df-bases 22877  df-cld 22951  df-cn 23159  df-cnp 23160  df-tx 23494
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator