Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfcnpre2 Structured version   Visualization version   GIF version

Theorem rfcnpre2 43700
Description: If 𝐹 is a continuous function with respect to the standard topology, then the preimage A of the values smaller than a given extended real 𝐵, is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
rfcnpre2.1 𝑥𝐵
rfcnpre2.2 𝑥𝐹
rfcnpre2.3 𝑥𝜑
rfcnpre2.4 𝐾 = (topGen‘ran (,))
rfcnpre2.5 𝑋 = 𝐽
rfcnpre2.6 𝐴 = {𝑥𝑋 ∣ (𝐹𝑥) < 𝐵}
rfcnpre2.7 (𝜑𝐵 ∈ ℝ*)
rfcnpre2.8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
rfcnpre2 (𝜑𝐴𝐽)

Proof of Theorem rfcnpre2
StepHypRef Expression
1 rfcnpre2.3 . . . 4 𝑥𝜑
2 rfcnpre2.2 . . . . . 6 𝑥𝐹
32nfcnv 5876 . . . . 5 𝑥𝐹
4 nfcv 2903 . . . . . 6 𝑥-∞
5 nfcv 2903 . . . . . 6 𝑥(,)
6 rfcnpre2.1 . . . . . 6 𝑥𝐵
74, 5, 6nfov 7435 . . . . 5 𝑥(-∞(,)𝐵)
83, 7nfima 6065 . . . 4 𝑥(𝐹 “ (-∞(,)𝐵))
9 nfrab1 3451 . . . 4 𝑥{𝑥𝑋 ∣ (𝐹𝑥) < 𝐵}
10 rfcnpre2.4 . . . . . . . . 9 𝐾 = (topGen‘ran (,))
11 rfcnpre2.5 . . . . . . . . 9 𝑋 = 𝐽
12 eqid 2732 . . . . . . . . 9 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
13 rfcnpre2.8 . . . . . . . . 9 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
1410, 11, 12, 13fcnre 43694 . . . . . . . 8 (𝜑𝐹:𝑋⟶ℝ)
1514ffvelcdmda 7083 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
16 rfcnpre2.7 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
17 elioomnf 13417 . . . . . . . . 9 (𝐵 ∈ ℝ* → ((𝐹𝑥) ∈ (-∞(,)𝐵) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < 𝐵)))
1816, 17syl 17 . . . . . . . 8 (𝜑 → ((𝐹𝑥) ∈ (-∞(,)𝐵) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < 𝐵)))
1918baibd 540 . . . . . . 7 ((𝜑 ∧ (𝐹𝑥) ∈ ℝ) → ((𝐹𝑥) ∈ (-∞(,)𝐵) ↔ (𝐹𝑥) < 𝐵))
2015, 19syldan 591 . . . . . 6 ((𝜑𝑥𝑋) → ((𝐹𝑥) ∈ (-∞(,)𝐵) ↔ (𝐹𝑥) < 𝐵))
2120pm5.32da 579 . . . . 5 (𝜑 → ((𝑥𝑋 ∧ (𝐹𝑥) ∈ (-∞(,)𝐵)) ↔ (𝑥𝑋 ∧ (𝐹𝑥) < 𝐵)))
22 ffn 6714 . . . . . 6 (𝐹:𝑋⟶ℝ → 𝐹 Fn 𝑋)
23 elpreima 7056 . . . . . 6 (𝐹 Fn 𝑋 → (𝑥 ∈ (𝐹 “ (-∞(,)𝐵)) ↔ (𝑥𝑋 ∧ (𝐹𝑥) ∈ (-∞(,)𝐵))))
2414, 22, 233syl 18 . . . . 5 (𝜑 → (𝑥 ∈ (𝐹 “ (-∞(,)𝐵)) ↔ (𝑥𝑋 ∧ (𝐹𝑥) ∈ (-∞(,)𝐵))))
25 rabid 3452 . . . . . 6 (𝑥 ∈ {𝑥𝑋 ∣ (𝐹𝑥) < 𝐵} ↔ (𝑥𝑋 ∧ (𝐹𝑥) < 𝐵))
2625a1i 11 . . . . 5 (𝜑 → (𝑥 ∈ {𝑥𝑋 ∣ (𝐹𝑥) < 𝐵} ↔ (𝑥𝑋 ∧ (𝐹𝑥) < 𝐵)))
2721, 24, 263bitr4d 310 . . . 4 (𝜑 → (𝑥 ∈ (𝐹 “ (-∞(,)𝐵)) ↔ 𝑥 ∈ {𝑥𝑋 ∣ (𝐹𝑥) < 𝐵}))
281, 8, 9, 27eqrd 4000 . . 3 (𝜑 → (𝐹 “ (-∞(,)𝐵)) = {𝑥𝑋 ∣ (𝐹𝑥) < 𝐵})
29 rfcnpre2.6 . . 3 𝐴 = {𝑥𝑋 ∣ (𝐹𝑥) < 𝐵}
3028, 29eqtr4di 2790 . 2 (𝜑 → (𝐹 “ (-∞(,)𝐵)) = 𝐴)
31 iooretop 24273 . . . . 5 (-∞(,)𝐵) ∈ (topGen‘ran (,))
3231a1i 11 . . . 4 (𝜑 → (-∞(,)𝐵) ∈ (topGen‘ran (,)))
3332, 10eleqtrrdi 2844 . . 3 (𝜑 → (-∞(,)𝐵) ∈ 𝐾)
34 cnima 22760 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (-∞(,)𝐵) ∈ 𝐾) → (𝐹 “ (-∞(,)𝐵)) ∈ 𝐽)
3513, 33, 34syl2anc 584 . 2 (𝜑 → (𝐹 “ (-∞(,)𝐵)) ∈ 𝐽)
3630, 35eqeltrrd 2834 1 (𝜑𝐴𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wnf 1785  wcel 2106  wnfc 2883  {crab 3432   cuni 4907   class class class wbr 5147  ccnv 5674  ran crn 5676  cima 5678   Fn wfn 6535  wf 6536  cfv 6540  (class class class)co 7405  cr 11105  -∞cmnf 11242  *cxr 11243   < clt 11244  (,)cioo 13320  topGenctg 17379   Cn ccn 22719
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-map 8818  df-en 8936  df-dom 8937  df-sdom 8938  df-sup 9433  df-inf 9434  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-div 11868  df-nn 12209  df-n0 12469  df-z 12555  df-uz 12819  df-q 12929  df-ioo 13324  df-topgen 17385  df-top 22387  df-topon 22404  df-bases 22440  df-cn 22722
This theorem is referenced by:  stoweidlem52  44754  cnfsmf  45442
  Copyright terms: Public domain W3C validator