Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rfcnpre2 | Structured version Visualization version GIF version |
Description: If 𝐹 is a continuous function with respect to the standard topology, then the preimage A of the values smaller than a given extended real 𝐵, is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
rfcnpre2.1 | ⊢ Ⅎ𝑥𝐵 |
rfcnpre2.2 | ⊢ Ⅎ𝑥𝐹 |
rfcnpre2.3 | ⊢ Ⅎ𝑥𝜑 |
rfcnpre2.4 | ⊢ 𝐾 = (topGen‘ran (,)) |
rfcnpre2.5 | ⊢ 𝑋 = ∪ 𝐽 |
rfcnpre2.6 | ⊢ 𝐴 = {𝑥 ∈ 𝑋 ∣ (𝐹‘𝑥) < 𝐵} |
rfcnpre2.7 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
rfcnpre2.8 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
Ref | Expression |
---|---|
rfcnpre2 | ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rfcnpre2.3 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | rfcnpre2.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
3 | 2 | nfcnv 5776 | . . . . 5 ⊢ Ⅎ𝑥◡𝐹 |
4 | nfcv 2906 | . . . . . 6 ⊢ Ⅎ𝑥-∞ | |
5 | nfcv 2906 | . . . . . 6 ⊢ Ⅎ𝑥(,) | |
6 | rfcnpre2.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
7 | 4, 5, 6 | nfov 7285 | . . . . 5 ⊢ Ⅎ𝑥(-∞(,)𝐵) |
8 | 3, 7 | nfima 5966 | . . . 4 ⊢ Ⅎ𝑥(◡𝐹 “ (-∞(,)𝐵)) |
9 | nfrab1 3310 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∈ 𝑋 ∣ (𝐹‘𝑥) < 𝐵} | |
10 | rfcnpre2.4 | . . . . . . . . 9 ⊢ 𝐾 = (topGen‘ran (,)) | |
11 | rfcnpre2.5 | . . . . . . . . 9 ⊢ 𝑋 = ∪ 𝐽 | |
12 | eqid 2738 | . . . . . . . . 9 ⊢ (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾) | |
13 | rfcnpre2.8 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
14 | 10, 11, 12, 13 | fcnre 42457 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
15 | 14 | ffvelrnda 6943 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ℝ) |
16 | rfcnpre2.7 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
17 | elioomnf 13105 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ* → ((𝐹‘𝑥) ∈ (-∞(,)𝐵) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < 𝐵))) | |
18 | 16, 17 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((𝐹‘𝑥) ∈ (-∞(,)𝐵) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < 𝐵))) |
19 | 18 | baibd 539 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ∈ ℝ) → ((𝐹‘𝑥) ∈ (-∞(,)𝐵) ↔ (𝐹‘𝑥) < 𝐵)) |
20 | 15, 19 | syldan 590 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥) ∈ (-∞(,)𝐵) ↔ (𝐹‘𝑥) < 𝐵)) |
21 | 20 | pm5.32da 578 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ (-∞(,)𝐵)) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) < 𝐵))) |
22 | ffn 6584 | . . . . . 6 ⊢ (𝐹:𝑋⟶ℝ → 𝐹 Fn 𝑋) | |
23 | elpreima 6917 | . . . . . 6 ⊢ (𝐹 Fn 𝑋 → (𝑥 ∈ (◡𝐹 “ (-∞(,)𝐵)) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ (-∞(,)𝐵)))) | |
24 | 14, 22, 23 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (◡𝐹 “ (-∞(,)𝐵)) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ (-∞(,)𝐵)))) |
25 | rabid 3304 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ 𝑋 ∣ (𝐹‘𝑥) < 𝐵} ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) < 𝐵)) | |
26 | 25 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ 𝑋 ∣ (𝐹‘𝑥) < 𝐵} ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) < 𝐵))) |
27 | 21, 24, 26 | 3bitr4d 310 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (◡𝐹 “ (-∞(,)𝐵)) ↔ 𝑥 ∈ {𝑥 ∈ 𝑋 ∣ (𝐹‘𝑥) < 𝐵})) |
28 | 1, 8, 9, 27 | eqrd 3936 | . . 3 ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝐵)) = {𝑥 ∈ 𝑋 ∣ (𝐹‘𝑥) < 𝐵}) |
29 | rfcnpre2.6 | . . 3 ⊢ 𝐴 = {𝑥 ∈ 𝑋 ∣ (𝐹‘𝑥) < 𝐵} | |
30 | 28, 29 | eqtr4di 2797 | . 2 ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝐵)) = 𝐴) |
31 | iooretop 23835 | . . . . 5 ⊢ (-∞(,)𝐵) ∈ (topGen‘ran (,)) | |
32 | 31 | a1i 11 | . . . 4 ⊢ (𝜑 → (-∞(,)𝐵) ∈ (topGen‘ran (,))) |
33 | 32, 10 | eleqtrrdi 2850 | . . 3 ⊢ (𝜑 → (-∞(,)𝐵) ∈ 𝐾) |
34 | cnima 22324 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (-∞(,)𝐵) ∈ 𝐾) → (◡𝐹 “ (-∞(,)𝐵)) ∈ 𝐽) | |
35 | 13, 33, 34 | syl2anc 583 | . 2 ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝐵)) ∈ 𝐽) |
36 | 30, 35 | eqeltrrd 2840 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 {crab 3067 ∪ cuni 4836 class class class wbr 5070 ◡ccnv 5579 ran crn 5581 “ cima 5583 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 -∞cmnf 10938 ℝ*cxr 10939 < clt 10940 (,)cioo 13008 topGenctg 17065 Cn ccn 22283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-n0 12164 df-z 12250 df-uz 12512 df-q 12618 df-ioo 13012 df-topgen 17071 df-top 21951 df-topon 21968 df-bases 22004 df-cn 22286 |
This theorem is referenced by: stoweidlem52 43483 cnfsmf 44163 |
Copyright terms: Public domain | W3C validator |