Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rfcnpre2 Structured version   Visualization version   GIF version

Theorem rfcnpre2 42574
Description: If 𝐹 is a continuous function with respect to the standard topology, then the preimage A of the values smaller than a given extended real 𝐵, is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
Hypotheses
Ref Expression
rfcnpre2.1 𝑥𝐵
rfcnpre2.2 𝑥𝐹
rfcnpre2.3 𝑥𝜑
rfcnpre2.4 𝐾 = (topGen‘ran (,))
rfcnpre2.5 𝑋 = 𝐽
rfcnpre2.6 𝐴 = {𝑥𝑋 ∣ (𝐹𝑥) < 𝐵}
rfcnpre2.7 (𝜑𝐵 ∈ ℝ*)
rfcnpre2.8 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
Assertion
Ref Expression
rfcnpre2 (𝜑𝐴𝐽)

Proof of Theorem rfcnpre2
StepHypRef Expression
1 rfcnpre2.3 . . . 4 𝑥𝜑
2 rfcnpre2.2 . . . . . 6 𝑥𝐹
32nfcnv 5787 . . . . 5 𝑥𝐹
4 nfcv 2907 . . . . . 6 𝑥-∞
5 nfcv 2907 . . . . . 6 𝑥(,)
6 rfcnpre2.1 . . . . . 6 𝑥𝐵
74, 5, 6nfov 7305 . . . . 5 𝑥(-∞(,)𝐵)
83, 7nfima 5977 . . . 4 𝑥(𝐹 “ (-∞(,)𝐵))
9 nfrab1 3317 . . . 4 𝑥{𝑥𝑋 ∣ (𝐹𝑥) < 𝐵}
10 rfcnpre2.4 . . . . . . . . 9 𝐾 = (topGen‘ran (,))
11 rfcnpre2.5 . . . . . . . . 9 𝑋 = 𝐽
12 eqid 2738 . . . . . . . . 9 (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾)
13 rfcnpre2.8 . . . . . . . . 9 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
1410, 11, 12, 13fcnre 42568 . . . . . . . 8 (𝜑𝐹:𝑋⟶ℝ)
1514ffvelrnda 6961 . . . . . . 7 ((𝜑𝑥𝑋) → (𝐹𝑥) ∈ ℝ)
16 rfcnpre2.7 . . . . . . . . 9 (𝜑𝐵 ∈ ℝ*)
17 elioomnf 13176 . . . . . . . . 9 (𝐵 ∈ ℝ* → ((𝐹𝑥) ∈ (-∞(,)𝐵) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < 𝐵)))
1816, 17syl 17 . . . . . . . 8 (𝜑 → ((𝐹𝑥) ∈ (-∞(,)𝐵) ↔ ((𝐹𝑥) ∈ ℝ ∧ (𝐹𝑥) < 𝐵)))
1918baibd 540 . . . . . . 7 ((𝜑 ∧ (𝐹𝑥) ∈ ℝ) → ((𝐹𝑥) ∈ (-∞(,)𝐵) ↔ (𝐹𝑥) < 𝐵))
2015, 19syldan 591 . . . . . 6 ((𝜑𝑥𝑋) → ((𝐹𝑥) ∈ (-∞(,)𝐵) ↔ (𝐹𝑥) < 𝐵))
2120pm5.32da 579 . . . . 5 (𝜑 → ((𝑥𝑋 ∧ (𝐹𝑥) ∈ (-∞(,)𝐵)) ↔ (𝑥𝑋 ∧ (𝐹𝑥) < 𝐵)))
22 ffn 6600 . . . . . 6 (𝐹:𝑋⟶ℝ → 𝐹 Fn 𝑋)
23 elpreima 6935 . . . . . 6 (𝐹 Fn 𝑋 → (𝑥 ∈ (𝐹 “ (-∞(,)𝐵)) ↔ (𝑥𝑋 ∧ (𝐹𝑥) ∈ (-∞(,)𝐵))))
2414, 22, 233syl 18 . . . . 5 (𝜑 → (𝑥 ∈ (𝐹 “ (-∞(,)𝐵)) ↔ (𝑥𝑋 ∧ (𝐹𝑥) ∈ (-∞(,)𝐵))))
25 rabid 3310 . . . . . 6 (𝑥 ∈ {𝑥𝑋 ∣ (𝐹𝑥) < 𝐵} ↔ (𝑥𝑋 ∧ (𝐹𝑥) < 𝐵))
2625a1i 11 . . . . 5 (𝜑 → (𝑥 ∈ {𝑥𝑋 ∣ (𝐹𝑥) < 𝐵} ↔ (𝑥𝑋 ∧ (𝐹𝑥) < 𝐵)))
2721, 24, 263bitr4d 311 . . . 4 (𝜑 → (𝑥 ∈ (𝐹 “ (-∞(,)𝐵)) ↔ 𝑥 ∈ {𝑥𝑋 ∣ (𝐹𝑥) < 𝐵}))
281, 8, 9, 27eqrd 3940 . . 3 (𝜑 → (𝐹 “ (-∞(,)𝐵)) = {𝑥𝑋 ∣ (𝐹𝑥) < 𝐵})
29 rfcnpre2.6 . . 3 𝐴 = {𝑥𝑋 ∣ (𝐹𝑥) < 𝐵}
3028, 29eqtr4di 2796 . 2 (𝜑 → (𝐹 “ (-∞(,)𝐵)) = 𝐴)
31 iooretop 23929 . . . . 5 (-∞(,)𝐵) ∈ (topGen‘ran (,))
3231a1i 11 . . . 4 (𝜑 → (-∞(,)𝐵) ∈ (topGen‘ran (,)))
3332, 10eleqtrrdi 2850 . . 3 (𝜑 → (-∞(,)𝐵) ∈ 𝐾)
34 cnima 22416 . . 3 ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (-∞(,)𝐵) ∈ 𝐾) → (𝐹 “ (-∞(,)𝐵)) ∈ 𝐽)
3513, 33, 34syl2anc 584 . 2 (𝜑 → (𝐹 “ (-∞(,)𝐵)) ∈ 𝐽)
3630, 35eqeltrrd 2840 1 (𝜑𝐴𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wnf 1786  wcel 2106  wnfc 2887  {crab 3068   cuni 4839   class class class wbr 5074  ccnv 5588  ran crn 5590  cima 5592   Fn wfn 6428  wf 6429  cfv 6433  (class class class)co 7275  cr 10870  -∞cmnf 11007  *cxr 11008   < clt 11009  (,)cioo 13079  topGenctg 17148   Cn ccn 22375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-q 12689  df-ioo 13083  df-topgen 17154  df-top 22043  df-topon 22060  df-bases 22096  df-cn 22378
This theorem is referenced by:  stoweidlem52  43593  cnfsmf  44276
  Copyright terms: Public domain W3C validator