| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rfcnpre2 | Structured version Visualization version GIF version | ||
| Description: If 𝐹 is a continuous function with respect to the standard topology, then the preimage A of the values smaller than a given extended real 𝐵, is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
| Ref | Expression |
|---|---|
| rfcnpre2.1 | ⊢ Ⅎ𝑥𝐵 |
| rfcnpre2.2 | ⊢ Ⅎ𝑥𝐹 |
| rfcnpre2.3 | ⊢ Ⅎ𝑥𝜑 |
| rfcnpre2.4 | ⊢ 𝐾 = (topGen‘ran (,)) |
| rfcnpre2.5 | ⊢ 𝑋 = ∪ 𝐽 |
| rfcnpre2.6 | ⊢ 𝐴 = {𝑥 ∈ 𝑋 ∣ (𝐹‘𝑥) < 𝐵} |
| rfcnpre2.7 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
| rfcnpre2.8 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
| Ref | Expression |
|---|---|
| rfcnpre2 | ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rfcnpre2.3 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rfcnpre2.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
| 3 | 2 | nfcnv 5845 | . . . . 5 ⊢ Ⅎ𝑥◡𝐹 |
| 4 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑥-∞ | |
| 5 | nfcv 2892 | . . . . . 6 ⊢ Ⅎ𝑥(,) | |
| 6 | rfcnpre2.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
| 7 | 4, 5, 6 | nfov 7420 | . . . . 5 ⊢ Ⅎ𝑥(-∞(,)𝐵) |
| 8 | 3, 7 | nfima 6042 | . . . 4 ⊢ Ⅎ𝑥(◡𝐹 “ (-∞(,)𝐵)) |
| 9 | nfrab1 3429 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∈ 𝑋 ∣ (𝐹‘𝑥) < 𝐵} | |
| 10 | rfcnpre2.4 | . . . . . . . . 9 ⊢ 𝐾 = (topGen‘ran (,)) | |
| 11 | rfcnpre2.5 | . . . . . . . . 9 ⊢ 𝑋 = ∪ 𝐽 | |
| 12 | eqid 2730 | . . . . . . . . 9 ⊢ (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾) | |
| 13 | rfcnpre2.8 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
| 14 | 10, 11, 12, 13 | fcnre 45026 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
| 15 | 14 | ffvelcdmda 7059 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ℝ) |
| 16 | rfcnpre2.7 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
| 17 | elioomnf 13412 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ* → ((𝐹‘𝑥) ∈ (-∞(,)𝐵) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < 𝐵))) | |
| 18 | 16, 17 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((𝐹‘𝑥) ∈ (-∞(,)𝐵) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < 𝐵))) |
| 19 | 18 | baibd 539 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ∈ ℝ) → ((𝐹‘𝑥) ∈ (-∞(,)𝐵) ↔ (𝐹‘𝑥) < 𝐵)) |
| 20 | 15, 19 | syldan 591 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥) ∈ (-∞(,)𝐵) ↔ (𝐹‘𝑥) < 𝐵)) |
| 21 | 20 | pm5.32da 579 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ (-∞(,)𝐵)) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) < 𝐵))) |
| 22 | ffn 6691 | . . . . . 6 ⊢ (𝐹:𝑋⟶ℝ → 𝐹 Fn 𝑋) | |
| 23 | elpreima 7033 | . . . . . 6 ⊢ (𝐹 Fn 𝑋 → (𝑥 ∈ (◡𝐹 “ (-∞(,)𝐵)) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ (-∞(,)𝐵)))) | |
| 24 | 14, 22, 23 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (◡𝐹 “ (-∞(,)𝐵)) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ (-∞(,)𝐵)))) |
| 25 | rabid 3430 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ 𝑋 ∣ (𝐹‘𝑥) < 𝐵} ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) < 𝐵)) | |
| 26 | 25 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ 𝑋 ∣ (𝐹‘𝑥) < 𝐵} ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) < 𝐵))) |
| 27 | 21, 24, 26 | 3bitr4d 311 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (◡𝐹 “ (-∞(,)𝐵)) ↔ 𝑥 ∈ {𝑥 ∈ 𝑋 ∣ (𝐹‘𝑥) < 𝐵})) |
| 28 | 1, 8, 9, 27 | eqrd 3969 | . . 3 ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝐵)) = {𝑥 ∈ 𝑋 ∣ (𝐹‘𝑥) < 𝐵}) |
| 29 | rfcnpre2.6 | . . 3 ⊢ 𝐴 = {𝑥 ∈ 𝑋 ∣ (𝐹‘𝑥) < 𝐵} | |
| 30 | 28, 29 | eqtr4di 2783 | . 2 ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝐵)) = 𝐴) |
| 31 | iooretop 24660 | . . . . 5 ⊢ (-∞(,)𝐵) ∈ (topGen‘ran (,)) | |
| 32 | 31 | a1i 11 | . . . 4 ⊢ (𝜑 → (-∞(,)𝐵) ∈ (topGen‘ran (,))) |
| 33 | 32, 10 | eleqtrrdi 2840 | . . 3 ⊢ (𝜑 → (-∞(,)𝐵) ∈ 𝐾) |
| 34 | cnima 23159 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (-∞(,)𝐵) ∈ 𝐾) → (◡𝐹 “ (-∞(,)𝐵)) ∈ 𝐽) | |
| 35 | 13, 33, 34 | syl2anc 584 | . 2 ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝐵)) ∈ 𝐽) |
| 36 | 30, 35 | eqeltrrd 2830 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 Ⅎwnfc 2877 {crab 3408 ∪ cuni 4874 class class class wbr 5110 ◡ccnv 5640 ran crn 5642 “ cima 5644 Fn wfn 6509 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ℝcr 11074 -∞cmnf 11213 ℝ*cxr 11214 < clt 11215 (,)cioo 13313 topGenctg 17407 Cn ccn 23118 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-en 8922 df-dom 8923 df-sdom 8924 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-n0 12450 df-z 12537 df-uz 12801 df-q 12915 df-ioo 13317 df-topgen 17413 df-top 22788 df-topon 22805 df-bases 22840 df-cn 23121 |
| This theorem is referenced by: stoweidlem52 46057 cnfsmf 46745 |
| Copyright terms: Public domain | W3C validator |