Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rfcnpre2 | Structured version Visualization version GIF version |
Description: If 𝐹 is a continuous function with respect to the standard topology, then the preimage A of the values smaller than a given extended real 𝐵, is an open set. (Contributed by Glauco Siliprandi, 20-Apr-2017.) |
Ref | Expression |
---|---|
rfcnpre2.1 | ⊢ Ⅎ𝑥𝐵 |
rfcnpre2.2 | ⊢ Ⅎ𝑥𝐹 |
rfcnpre2.3 | ⊢ Ⅎ𝑥𝜑 |
rfcnpre2.4 | ⊢ 𝐾 = (topGen‘ran (,)) |
rfcnpre2.5 | ⊢ 𝑋 = ∪ 𝐽 |
rfcnpre2.6 | ⊢ 𝐴 = {𝑥 ∈ 𝑋 ∣ (𝐹‘𝑥) < 𝐵} |
rfcnpre2.7 | ⊢ (𝜑 → 𝐵 ∈ ℝ*) |
rfcnpre2.8 | ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) |
Ref | Expression |
---|---|
rfcnpre2 | ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rfcnpre2.3 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
2 | rfcnpre2.2 | . . . . . 6 ⊢ Ⅎ𝑥𝐹 | |
3 | 2 | nfcnv 5787 | . . . . 5 ⊢ Ⅎ𝑥◡𝐹 |
4 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑥-∞ | |
5 | nfcv 2907 | . . . . . 6 ⊢ Ⅎ𝑥(,) | |
6 | rfcnpre2.1 | . . . . . 6 ⊢ Ⅎ𝑥𝐵 | |
7 | 4, 5, 6 | nfov 7305 | . . . . 5 ⊢ Ⅎ𝑥(-∞(,)𝐵) |
8 | 3, 7 | nfima 5977 | . . . 4 ⊢ Ⅎ𝑥(◡𝐹 “ (-∞(,)𝐵)) |
9 | nfrab1 3317 | . . . 4 ⊢ Ⅎ𝑥{𝑥 ∈ 𝑋 ∣ (𝐹‘𝑥) < 𝐵} | |
10 | rfcnpre2.4 | . . . . . . . . 9 ⊢ 𝐾 = (topGen‘ran (,)) | |
11 | rfcnpre2.5 | . . . . . . . . 9 ⊢ 𝑋 = ∪ 𝐽 | |
12 | eqid 2738 | . . . . . . . . 9 ⊢ (𝐽 Cn 𝐾) = (𝐽 Cn 𝐾) | |
13 | rfcnpre2.8 | . . . . . . . . 9 ⊢ (𝜑 → 𝐹 ∈ (𝐽 Cn 𝐾)) | |
14 | 10, 11, 12, 13 | fcnre 42568 | . . . . . . . 8 ⊢ (𝜑 → 𝐹:𝑋⟶ℝ) |
15 | 14 | ffvelrnda 6961 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → (𝐹‘𝑥) ∈ ℝ) |
16 | rfcnpre2.7 | . . . . . . . . 9 ⊢ (𝜑 → 𝐵 ∈ ℝ*) | |
17 | elioomnf 13176 | . . . . . . . . 9 ⊢ (𝐵 ∈ ℝ* → ((𝐹‘𝑥) ∈ (-∞(,)𝐵) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < 𝐵))) | |
18 | 16, 17 | syl 17 | . . . . . . . 8 ⊢ (𝜑 → ((𝐹‘𝑥) ∈ (-∞(,)𝐵) ↔ ((𝐹‘𝑥) ∈ ℝ ∧ (𝐹‘𝑥) < 𝐵))) |
19 | 18 | baibd 540 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝐹‘𝑥) ∈ ℝ) → ((𝐹‘𝑥) ∈ (-∞(,)𝐵) ↔ (𝐹‘𝑥) < 𝐵)) |
20 | 15, 19 | syldan 591 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ((𝐹‘𝑥) ∈ (-∞(,)𝐵) ↔ (𝐹‘𝑥) < 𝐵)) |
21 | 20 | pm5.32da 579 | . . . . 5 ⊢ (𝜑 → ((𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ (-∞(,)𝐵)) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) < 𝐵))) |
22 | ffn 6600 | . . . . . 6 ⊢ (𝐹:𝑋⟶ℝ → 𝐹 Fn 𝑋) | |
23 | elpreima 6935 | . . . . . 6 ⊢ (𝐹 Fn 𝑋 → (𝑥 ∈ (◡𝐹 “ (-∞(,)𝐵)) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ (-∞(,)𝐵)))) | |
24 | 14, 22, 23 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ (◡𝐹 “ (-∞(,)𝐵)) ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) ∈ (-∞(,)𝐵)))) |
25 | rabid 3310 | . . . . . 6 ⊢ (𝑥 ∈ {𝑥 ∈ 𝑋 ∣ (𝐹‘𝑥) < 𝐵} ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) < 𝐵)) | |
26 | 25 | a1i 11 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ {𝑥 ∈ 𝑋 ∣ (𝐹‘𝑥) < 𝐵} ↔ (𝑥 ∈ 𝑋 ∧ (𝐹‘𝑥) < 𝐵))) |
27 | 21, 24, 26 | 3bitr4d 311 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ (◡𝐹 “ (-∞(,)𝐵)) ↔ 𝑥 ∈ {𝑥 ∈ 𝑋 ∣ (𝐹‘𝑥) < 𝐵})) |
28 | 1, 8, 9, 27 | eqrd 3940 | . . 3 ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝐵)) = {𝑥 ∈ 𝑋 ∣ (𝐹‘𝑥) < 𝐵}) |
29 | rfcnpre2.6 | . . 3 ⊢ 𝐴 = {𝑥 ∈ 𝑋 ∣ (𝐹‘𝑥) < 𝐵} | |
30 | 28, 29 | eqtr4di 2796 | . 2 ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝐵)) = 𝐴) |
31 | iooretop 23929 | . . . . 5 ⊢ (-∞(,)𝐵) ∈ (topGen‘ran (,)) | |
32 | 31 | a1i 11 | . . . 4 ⊢ (𝜑 → (-∞(,)𝐵) ∈ (topGen‘ran (,))) |
33 | 32, 10 | eleqtrrdi 2850 | . . 3 ⊢ (𝜑 → (-∞(,)𝐵) ∈ 𝐾) |
34 | cnima 22416 | . . 3 ⊢ ((𝐹 ∈ (𝐽 Cn 𝐾) ∧ (-∞(,)𝐵) ∈ 𝐾) → (◡𝐹 “ (-∞(,)𝐵)) ∈ 𝐽) | |
35 | 13, 33, 34 | syl2anc 584 | . 2 ⊢ (𝜑 → (◡𝐹 “ (-∞(,)𝐵)) ∈ 𝐽) |
36 | 30, 35 | eqeltrrd 2840 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝐽) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 Ⅎwnf 1786 ∈ wcel 2106 Ⅎwnfc 2887 {crab 3068 ∪ cuni 4839 class class class wbr 5074 ◡ccnv 5588 ran crn 5590 “ cima 5592 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 -∞cmnf 11007 ℝ*cxr 11008 < clt 11009 (,)cioo 13079 topGenctg 17148 Cn ccn 22375 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-1st 7831 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-er 8498 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-n0 12234 df-z 12320 df-uz 12583 df-q 12689 df-ioo 13083 df-topgen 17154 df-top 22043 df-topon 22060 df-bases 22096 df-cn 22378 |
This theorem is referenced by: stoweidlem52 43593 cnfsmf 44276 |
Copyright terms: Public domain | W3C validator |