MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blval2 Structured version   Visualization version   GIF version

Theorem blval2 24591
Description: The ball around a point 𝑃, alternative definition. (Contributed by Thierry Arnoux, 7-Dec-2017.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blval2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) = ((𝐷 “ (0[,)𝑅)) “ {𝑃}))

Proof of Theorem blval2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rpxr 13042 . . 3 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
2 blvalps 24411 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
31, 2syl3an3 1164 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
4 nfv 1912 . . 3 𝑥(𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+)
5 nfcv 2903 . . 3 𝑥((𝐷 “ (0[,)𝑅)) “ {𝑃})
6 nfrab1 3454 . . 3 𝑥{𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}
7 psmetf 24332 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
8 ffn 6737 . . . . . . 7 (𝐷:(𝑋 × 𝑋)⟶ℝ*𝐷 Fn (𝑋 × 𝑋))
9 elpreima 7078 . . . . . . 7 (𝐷 Fn (𝑋 × 𝑋) → (⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅)) ↔ (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅))))
107, 8, 93syl 18 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → (⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅)) ↔ (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅))))
11103ad2ant1 1132 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅)) ↔ (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅))))
12 opelxp 5725 . . . . . . . . . 10 (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ↔ (𝑃𝑋𝑥𝑋))
1312baib 535 . . . . . . . . 9 (𝑃𝑋 → (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ↔ 𝑥𝑋))
14133ad2ant2 1133 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ↔ 𝑥𝑋))
1514biimpd 229 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) → 𝑥𝑋))
1615adantrd 491 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → ((⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅)) → 𝑥𝑋))
17 simprl 771 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)) → 𝑥𝑋)
1817ex 412 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 𝑥𝑋))
19 simpl2 1191 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑃𝑋)
2019, 13syl 17 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ↔ 𝑥𝑋))
21 df-ov 7434 . . . . . . . . . 10 (𝑃𝐷𝑥) = (𝐷‘⟨𝑃, 𝑥⟩)
2221eleq1i 2830 . . . . . . . . 9 ((𝑃𝐷𝑥) ∈ (0[,)𝑅) ↔ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅))
23 0xr 11306 . . . . . . . . . . 11 0 ∈ ℝ*
24 simpl3 1192 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ+)
2524rpxrd 13076 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ*)
26 elico1 13427 . . . . . . . . . . 11 ((0 ∈ ℝ*𝑅 ∈ ℝ*) → ((𝑃𝐷𝑥) ∈ (0[,)𝑅) ↔ ((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅)))
2723, 25, 26sylancr 587 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) ∈ (0[,)𝑅) ↔ ((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅)))
28 df-3an 1088 . . . . . . . . . . 11 (((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅) ↔ (((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥)) ∧ (𝑃𝐷𝑥) < 𝑅))
29 simpl1 1190 . . . . . . . . . . . . . 14 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 𝐷 ∈ (PsMet‘𝑋))
30 simpr 484 . . . . . . . . . . . . . 14 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑥𝑋)
31 psmetcl 24333 . . . . . . . . . . . . . 14 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
3229, 19, 30, 31syl3anc 1370 . . . . . . . . . . . . 13 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
33 psmetge0 24338 . . . . . . . . . . . . . 14 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → 0 ≤ (𝑃𝐷𝑥))
3429, 19, 30, 33syl3anc 1370 . . . . . . . . . . . . 13 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 0 ≤ (𝑃𝐷𝑥))
3532, 34jca 511 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥)))
3635biantrurd 532 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) < 𝑅 ↔ (((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥)) ∧ (𝑃𝐷𝑥) < 𝑅)))
3728, 36bitr4id 290 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → (((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅) ↔ (𝑃𝐷𝑥) < 𝑅))
3827, 37bitrd 279 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) ∈ (0[,)𝑅) ↔ (𝑃𝐷𝑥) < 𝑅))
3922, 38bitr3id 285 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅) ↔ (𝑃𝐷𝑥) < 𝑅))
4020, 39anbi12d 632 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅)) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
4140ex 412 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑥𝑋 → ((⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅)) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))))
4216, 18, 41pm5.21ndd 379 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → ((⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅)) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
4311, 42bitrd 279 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅)) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
44 elimasng 6109 . . . . . 6 ((𝑃𝑋𝑥 ∈ V) → (𝑥 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝑃}) ↔ ⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅))))
4544elvd 3484 . . . . 5 (𝑃𝑋 → (𝑥 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝑃}) ↔ ⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅))))
46453ad2ant2 1133 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑥 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝑃}) ↔ ⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅))))
47 rabid 3455 . . . . 5 (𝑥 ∈ {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))
4847a1i 11 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑥 ∈ {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
4943, 46, 483bitr4d 311 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑥 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝑃}) ↔ 𝑥 ∈ {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}))
504, 5, 6, 49eqrd 4015 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → ((𝐷 “ (0[,)𝑅)) “ {𝑃}) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
513, 50eqtr4d 2778 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) = ((𝐷 “ (0[,)𝑅)) “ {𝑃}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  {crab 3433  Vcvv 3478  {csn 4631  cop 4637   class class class wbr 5148   × cxp 5687  ccnv 5688  cima 5692   Fn wfn 6558  wf 6559  cfv 6563  (class class class)co 7431  0cc0 11153  *cxr 11292   < clt 11293  cle 11294  +crp 13032  [,)cico 13386  PsMetcpsmet 21366  ballcbl 21369
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-po 5597  df-so 5598  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1st 8013  df-2nd 8014  df-er 8744  df-map 8867  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-2 12327  df-rp 13033  df-xneg 13152  df-xadd 13153  df-xmul 13154  df-ico 13390  df-psmet 21374  df-bl 21377
This theorem is referenced by:  elbl4  24592  metustbl  24595  psmetutop  24596
  Copyright terms: Public domain W3C validator