MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blval2 Structured version   Visualization version   GIF version

Theorem blval2 24596
Description: The ball around a point 𝑃, alternative definition. (Contributed by Thierry Arnoux, 7-Dec-2017.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blval2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) = ((𝐷 “ (0[,)𝑅)) “ {𝑃}))

Proof of Theorem blval2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rpxr 13066 . . 3 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
2 blvalps 24416 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
31, 2syl3an3 1165 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
4 nfv 1913 . . 3 𝑥(𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+)
5 nfcv 2908 . . 3 𝑥((𝐷 “ (0[,)𝑅)) “ {𝑃})
6 nfrab1 3464 . . 3 𝑥{𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}
7 psmetf 24337 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
8 ffn 6747 . . . . . . 7 (𝐷:(𝑋 × 𝑋)⟶ℝ*𝐷 Fn (𝑋 × 𝑋))
9 elpreima 7091 . . . . . . 7 (𝐷 Fn (𝑋 × 𝑋) → (⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅)) ↔ (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅))))
107, 8, 93syl 18 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → (⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅)) ↔ (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅))))
11103ad2ant1 1133 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅)) ↔ (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅))))
12 opelxp 5736 . . . . . . . . . 10 (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ↔ (𝑃𝑋𝑥𝑋))
1312baib 535 . . . . . . . . 9 (𝑃𝑋 → (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ↔ 𝑥𝑋))
14133ad2ant2 1134 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ↔ 𝑥𝑋))
1514biimpd 229 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) → 𝑥𝑋))
1615adantrd 491 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → ((⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅)) → 𝑥𝑋))
17 simprl 770 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)) → 𝑥𝑋)
1817ex 412 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 𝑥𝑋))
19 simpl2 1192 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑃𝑋)
2019, 13syl 17 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ↔ 𝑥𝑋))
21 df-ov 7451 . . . . . . . . . 10 (𝑃𝐷𝑥) = (𝐷‘⟨𝑃, 𝑥⟩)
2221eleq1i 2835 . . . . . . . . 9 ((𝑃𝐷𝑥) ∈ (0[,)𝑅) ↔ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅))
23 0xr 11337 . . . . . . . . . . 11 0 ∈ ℝ*
24 simpl3 1193 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ+)
2524rpxrd 13100 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ*)
26 elico1 13450 . . . . . . . . . . 11 ((0 ∈ ℝ*𝑅 ∈ ℝ*) → ((𝑃𝐷𝑥) ∈ (0[,)𝑅) ↔ ((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅)))
2723, 25, 26sylancr 586 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) ∈ (0[,)𝑅) ↔ ((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅)))
28 df-3an 1089 . . . . . . . . . . 11 (((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅) ↔ (((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥)) ∧ (𝑃𝐷𝑥) < 𝑅))
29 simpl1 1191 . . . . . . . . . . . . . 14 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 𝐷 ∈ (PsMet‘𝑋))
30 simpr 484 . . . . . . . . . . . . . 14 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑥𝑋)
31 psmetcl 24338 . . . . . . . . . . . . . 14 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
3229, 19, 30, 31syl3anc 1371 . . . . . . . . . . . . 13 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
33 psmetge0 24343 . . . . . . . . . . . . . 14 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → 0 ≤ (𝑃𝐷𝑥))
3429, 19, 30, 33syl3anc 1371 . . . . . . . . . . . . 13 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 0 ≤ (𝑃𝐷𝑥))
3532, 34jca 511 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥)))
3635biantrurd 532 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) < 𝑅 ↔ (((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥)) ∧ (𝑃𝐷𝑥) < 𝑅)))
3728, 36bitr4id 290 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → (((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅) ↔ (𝑃𝐷𝑥) < 𝑅))
3827, 37bitrd 279 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) ∈ (0[,)𝑅) ↔ (𝑃𝐷𝑥) < 𝑅))
3922, 38bitr3id 285 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅) ↔ (𝑃𝐷𝑥) < 𝑅))
4020, 39anbi12d 631 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅)) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
4140ex 412 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑥𝑋 → ((⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅)) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))))
4216, 18, 41pm5.21ndd 379 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → ((⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅)) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
4311, 42bitrd 279 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅)) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
44 elimasng 6118 . . . . . 6 ((𝑃𝑋𝑥 ∈ V) → (𝑥 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝑃}) ↔ ⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅))))
4544elvd 3494 . . . . 5 (𝑃𝑋 → (𝑥 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝑃}) ↔ ⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅))))
46453ad2ant2 1134 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑥 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝑃}) ↔ ⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅))))
47 rabid 3465 . . . . 5 (𝑥 ∈ {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))
4847a1i 11 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑥 ∈ {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
4943, 46, 483bitr4d 311 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑥 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝑃}) ↔ 𝑥 ∈ {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}))
504, 5, 6, 49eqrd 4028 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → ((𝐷 “ (0[,)𝑅)) “ {𝑃}) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
513, 50eqtr4d 2783 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) = ((𝐷 “ (0[,)𝑅)) “ {𝑃}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  {crab 3443  Vcvv 3488  {csn 4648  cop 4654   class class class wbr 5166   × cxp 5698  ccnv 5699  cima 5703   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  0cc0 11184  *cxr 11323   < clt 11324  cle 11325  +crp 13057  [,)cico 13409  PsMetcpsmet 21371  ballcbl 21374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-2 12356  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-ico 13413  df-psmet 21379  df-bl 21382
This theorem is referenced by:  elbl4  24597  metustbl  24600  psmetutop  24601
  Copyright terms: Public domain W3C validator