MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blval2 Structured version   Visualization version   GIF version

Theorem blval2 24063
Description: The ball around a point 𝑃, alternative definition. (Contributed by Thierry Arnoux, 7-Dec-2017.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blval2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) = ((𝐷 “ (0[,)𝑅)) “ {𝑃}))

Proof of Theorem blval2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rpxr 12980 . . 3 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
2 blvalps 23883 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
31, 2syl3an3 1166 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
4 nfv 1918 . . 3 𝑥(𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+)
5 nfcv 2904 . . 3 𝑥((𝐷 “ (0[,)𝑅)) “ {𝑃})
6 nfrab1 3452 . . 3 𝑥{𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}
7 psmetf 23804 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
8 ffn 6715 . . . . . . 7 (𝐷:(𝑋 × 𝑋)⟶ℝ*𝐷 Fn (𝑋 × 𝑋))
9 elpreima 7057 . . . . . . 7 (𝐷 Fn (𝑋 × 𝑋) → (⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅)) ↔ (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅))))
107, 8, 93syl 18 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → (⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅)) ↔ (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅))))
11103ad2ant1 1134 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅)) ↔ (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅))))
12 opelxp 5712 . . . . . . . . . 10 (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ↔ (𝑃𝑋𝑥𝑋))
1312baib 537 . . . . . . . . 9 (𝑃𝑋 → (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ↔ 𝑥𝑋))
14133ad2ant2 1135 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ↔ 𝑥𝑋))
1514biimpd 228 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) → 𝑥𝑋))
1615adantrd 493 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → ((⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅)) → 𝑥𝑋))
17 simprl 770 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)) → 𝑥𝑋)
1817ex 414 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 𝑥𝑋))
19 simpl2 1193 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑃𝑋)
2019, 13syl 17 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ↔ 𝑥𝑋))
21 df-ov 7409 . . . . . . . . . 10 (𝑃𝐷𝑥) = (𝐷‘⟨𝑃, 𝑥⟩)
2221eleq1i 2825 . . . . . . . . 9 ((𝑃𝐷𝑥) ∈ (0[,)𝑅) ↔ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅))
23 0xr 11258 . . . . . . . . . . 11 0 ∈ ℝ*
24 simpl3 1194 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ+)
2524rpxrd 13014 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ*)
26 elico1 13364 . . . . . . . . . . 11 ((0 ∈ ℝ*𝑅 ∈ ℝ*) → ((𝑃𝐷𝑥) ∈ (0[,)𝑅) ↔ ((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅)))
2723, 25, 26sylancr 588 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) ∈ (0[,)𝑅) ↔ ((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅)))
28 df-3an 1090 . . . . . . . . . . 11 (((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅) ↔ (((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥)) ∧ (𝑃𝐷𝑥) < 𝑅))
29 simpl1 1192 . . . . . . . . . . . . . 14 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 𝐷 ∈ (PsMet‘𝑋))
30 simpr 486 . . . . . . . . . . . . . 14 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑥𝑋)
31 psmetcl 23805 . . . . . . . . . . . . . 14 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
3229, 19, 30, 31syl3anc 1372 . . . . . . . . . . . . 13 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
33 psmetge0 23810 . . . . . . . . . . . . . 14 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → 0 ≤ (𝑃𝐷𝑥))
3429, 19, 30, 33syl3anc 1372 . . . . . . . . . . . . 13 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 0 ≤ (𝑃𝐷𝑥))
3532, 34jca 513 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥)))
3635biantrurd 534 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) < 𝑅 ↔ (((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥)) ∧ (𝑃𝐷𝑥) < 𝑅)))
3728, 36bitr4id 290 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → (((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅) ↔ (𝑃𝐷𝑥) < 𝑅))
3827, 37bitrd 279 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) ∈ (0[,)𝑅) ↔ (𝑃𝐷𝑥) < 𝑅))
3922, 38bitr3id 285 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅) ↔ (𝑃𝐷𝑥) < 𝑅))
4020, 39anbi12d 632 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅)) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
4140ex 414 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑥𝑋 → ((⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅)) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))))
4216, 18, 41pm5.21ndd 381 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → ((⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅)) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
4311, 42bitrd 279 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅)) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
44 elimasng 6085 . . . . . 6 ((𝑃𝑋𝑥 ∈ V) → (𝑥 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝑃}) ↔ ⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅))))
4544elvd 3482 . . . . 5 (𝑃𝑋 → (𝑥 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝑃}) ↔ ⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅))))
46453ad2ant2 1135 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑥 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝑃}) ↔ ⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅))))
47 rabid 3453 . . . . 5 (𝑥 ∈ {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))
4847a1i 11 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑥 ∈ {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
4943, 46, 483bitr4d 311 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑥 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝑃}) ↔ 𝑥 ∈ {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}))
504, 5, 6, 49eqrd 4001 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → ((𝐷 “ (0[,)𝑅)) “ {𝑃}) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
513, 50eqtr4d 2776 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) = ((𝐷 “ (0[,)𝑅)) “ {𝑃}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  w3a 1088   = wceq 1542  wcel 2107  {crab 3433  Vcvv 3475  {csn 4628  cop 4634   class class class wbr 5148   × cxp 5674  ccnv 5675  cima 5679   Fn wfn 6536  wf 6537  cfv 6541  (class class class)co 7406  0cc0 11107  *cxr 11244   < clt 11245  cle 11246  +crp 12971  [,)cico 13323  PsMetcpsmet 20921  ballcbl 20924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7722  ax-cnex 11163  ax-resscn 11164  ax-1cn 11165  ax-icn 11166  ax-addcl 11167  ax-addrcl 11168  ax-mulcl 11169  ax-mulrcl 11170  ax-mulcom 11171  ax-addass 11172  ax-mulass 11173  ax-distr 11174  ax-i2m1 11175  ax-1ne0 11176  ax-1rid 11177  ax-rnegex 11178  ax-rrecex 11179  ax-cnre 11180  ax-pre-lttri 11181  ax-pre-lttrn 11182  ax-pre-ltadd 11183  ax-pre-mulgt0 11184
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-po 5588  df-so 5589  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6493  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-fv 6549  df-riota 7362  df-ov 7409  df-oprab 7410  df-mpo 7411  df-1st 7972  df-2nd 7973  df-er 8700  df-map 8819  df-en 8937  df-dom 8938  df-sdom 8939  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-2 12272  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-ico 13327  df-psmet 20929  df-bl 20932
This theorem is referenced by:  elbl4  24064  metustbl  24067  psmetutop  24068
  Copyright terms: Public domain W3C validator