MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  blval2 Structured version   Visualization version   GIF version

Theorem blval2 24475
Description: The ball around a point 𝑃, alternative definition. (Contributed by Thierry Arnoux, 7-Dec-2017.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blval2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) = ((𝐷 “ (0[,)𝑅)) “ {𝑃}))

Proof of Theorem blval2
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 rpxr 12897 . . 3 (𝑅 ∈ ℝ+𝑅 ∈ ℝ*)
2 blvalps 24298 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ*) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
31, 2syl3an3 1165 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
4 nfv 1915 . . 3 𝑥(𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+)
5 nfcv 2894 . . 3 𝑥((𝐷 “ (0[,)𝑅)) “ {𝑃})
6 nfrab1 3415 . . 3 𝑥{𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}
7 psmetf 24219 . . . . . . 7 (𝐷 ∈ (PsMet‘𝑋) → 𝐷:(𝑋 × 𝑋)⟶ℝ*)
8 ffn 6651 . . . . . . 7 (𝐷:(𝑋 × 𝑋)⟶ℝ*𝐷 Fn (𝑋 × 𝑋))
9 elpreima 6991 . . . . . . 7 (𝐷 Fn (𝑋 × 𝑋) → (⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅)) ↔ (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅))))
107, 8, 93syl 18 . . . . . 6 (𝐷 ∈ (PsMet‘𝑋) → (⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅)) ↔ (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅))))
11103ad2ant1 1133 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅)) ↔ (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅))))
12 opelxp 5652 . . . . . . . . . 10 (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ↔ (𝑃𝑋𝑥𝑋))
1312baib 535 . . . . . . . . 9 (𝑃𝑋 → (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ↔ 𝑥𝑋))
14133ad2ant2 1134 . . . . . . . 8 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ↔ 𝑥𝑋))
1514biimpd 229 . . . . . . 7 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) → 𝑥𝑋))
1615adantrd 491 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → ((⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅)) → 𝑥𝑋))
17 simprl 770 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)) → 𝑥𝑋)
1817ex 412 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → ((𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅) → 𝑥𝑋))
19 simpl2 1193 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑃𝑋)
2019, 13syl 17 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → (⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ↔ 𝑥𝑋))
21 df-ov 7349 . . . . . . . . . 10 (𝑃𝐷𝑥) = (𝐷‘⟨𝑃, 𝑥⟩)
2221eleq1i 2822 . . . . . . . . 9 ((𝑃𝐷𝑥) ∈ (0[,)𝑅) ↔ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅))
23 0xr 11156 . . . . . . . . . . 11 0 ∈ ℝ*
24 simpl3 1194 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ+)
2524rpxrd 12932 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑅 ∈ ℝ*)
26 elico1 13285 . . . . . . . . . . 11 ((0 ∈ ℝ*𝑅 ∈ ℝ*) → ((𝑃𝐷𝑥) ∈ (0[,)𝑅) ↔ ((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅)))
2723, 25, 26sylancr 587 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) ∈ (0[,)𝑅) ↔ ((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅)))
28 df-3an 1088 . . . . . . . . . . 11 (((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅) ↔ (((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥)) ∧ (𝑃𝐷𝑥) < 𝑅))
29 simpl1 1192 . . . . . . . . . . . . . 14 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 𝐷 ∈ (PsMet‘𝑋))
30 simpr 484 . . . . . . . . . . . . . 14 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 𝑥𝑋)
31 psmetcl 24220 . . . . . . . . . . . . . 14 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
3229, 19, 30, 31syl3anc 1373 . . . . . . . . . . . . 13 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → (𝑃𝐷𝑥) ∈ ℝ*)
33 psmetge0 24225 . . . . . . . . . . . . . 14 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑥𝑋) → 0 ≤ (𝑃𝐷𝑥))
3429, 19, 30, 33syl3anc 1373 . . . . . . . . . . . . 13 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → 0 ≤ (𝑃𝐷𝑥))
3532, 34jca 511 . . . . . . . . . . . 12 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥)))
3635biantrurd 532 . . . . . . . . . . 11 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) < 𝑅 ↔ (((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥)) ∧ (𝑃𝐷𝑥) < 𝑅)))
3728, 36bitr4id 290 . . . . . . . . . 10 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → (((𝑃𝐷𝑥) ∈ ℝ* ∧ 0 ≤ (𝑃𝐷𝑥) ∧ (𝑃𝐷𝑥) < 𝑅) ↔ (𝑃𝐷𝑥) < 𝑅))
3827, 37bitrd 279 . . . . . . . . 9 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝑃𝐷𝑥) ∈ (0[,)𝑅) ↔ (𝑃𝐷𝑥) < 𝑅))
3922, 38bitr3id 285 . . . . . . . 8 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅) ↔ (𝑃𝐷𝑥) < 𝑅))
4020, 39anbi12d 632 . . . . . . 7 (((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) ∧ 𝑥𝑋) → ((⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅)) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
4140ex 412 . . . . . 6 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑥𝑋 → ((⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅)) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))))
4216, 18, 41pm5.21ndd 379 . . . . 5 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → ((⟨𝑃, 𝑥⟩ ∈ (𝑋 × 𝑋) ∧ (𝐷‘⟨𝑃, 𝑥⟩) ∈ (0[,)𝑅)) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
4311, 42bitrd 279 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅)) ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
44 elimasng 6038 . . . . . 6 ((𝑃𝑋𝑥 ∈ V) → (𝑥 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝑃}) ↔ ⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅))))
4544elvd 3442 . . . . 5 (𝑃𝑋 → (𝑥 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝑃}) ↔ ⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅))))
46453ad2ant2 1134 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑥 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝑃}) ↔ ⟨𝑃, 𝑥⟩ ∈ (𝐷 “ (0[,)𝑅))))
47 rabid 3416 . . . . 5 (𝑥 ∈ {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅))
4847a1i 11 . . . 4 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑥 ∈ {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅} ↔ (𝑥𝑋 ∧ (𝑃𝐷𝑥) < 𝑅)))
4943, 46, 483bitr4d 311 . . 3 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑥 ∈ ((𝐷 “ (0[,)𝑅)) “ {𝑃}) ↔ 𝑥 ∈ {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅}))
504, 5, 6, 49eqrd 3954 . 2 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → ((𝐷 “ (0[,)𝑅)) “ {𝑃}) = {𝑥𝑋 ∣ (𝑃𝐷𝑥) < 𝑅})
513, 50eqtr4d 2769 1 ((𝐷 ∈ (PsMet‘𝑋) ∧ 𝑃𝑋𝑅 ∈ ℝ+) → (𝑃(ball‘𝐷)𝑅) = ((𝐷 “ (0[,)𝑅)) “ {𝑃}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  {crab 3395  Vcvv 3436  {csn 4576  cop 4582   class class class wbr 5091   × cxp 5614  ccnv 5615  cima 5619   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  0cc0 11003  *cxr 11142   < clt 11143  cle 11144  +crp 12887  [,)cico 13244  PsMetcpsmet 21273  ballcbl 21276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-id 5511  df-po 5524  df-so 5525  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-1st 7921  df-2nd 7922  df-er 8622  df-map 8752  df-en 8870  df-dom 8871  df-sdom 8872  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-div 11772  df-2 12185  df-rp 12888  df-xneg 13008  df-xadd 13009  df-xmul 13010  df-ico 13248  df-psmet 21281  df-bl 21284
This theorem is referenced by:  elbl4  24476  metustbl  24479  psmetutop  24480
  Copyright terms: Public domain W3C validator