Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprdifc Structured version   Visualization version   GIF version

Theorem reprdifc 32586
Description: Express the representations as a sum of integers in a difference of sets using conditions on each of the indices. (Contributed by Thierry Arnoux, 27-Dec-2021.)
Hypotheses
Ref Expression
reprdifc.c 𝐶 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵}
reprdifc.a (𝜑𝐴 ⊆ ℕ)
reprdifc.b (𝜑𝐵 ⊆ ℕ)
reprdifc.m (𝜑𝑀 ∈ ℕ0)
reprdifc.s (𝜑𝑆 ∈ ℕ0)
Assertion
Ref Expression
reprdifc (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = 𝑥 ∈ (0..^𝑆)𝐶)
Distinct variable groups:   𝐴,𝑐,𝑥   𝐵,𝑐,𝑥   𝑀,𝑐,𝑥   𝑆,𝑐,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑐)   𝐶(𝑥,𝑐)

Proof of Theorem reprdifc
Dummy variables 𝑑 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1920 . . 3 𝑑𝜑
2 nfrab1 3315 . . 3 𝑑{𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀}
3 nfcv 2908 . . 3 𝑑 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵}
4 reprdifc.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℕ)
5 reprdifc.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ0)
65nn0zd 12406 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
7 reprdifc.s . . . . . . . . . . 11 (𝜑𝑆 ∈ ℕ0)
84, 6, 7reprval 32569 . . . . . . . . . 10 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑑 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀})
98eleq2d 2825 . . . . . . . . 9 (𝜑 → (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ↔ 𝑑 ∈ {𝑑 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀}))
10 rabid 3308 . . . . . . . . 9 (𝑑 ∈ {𝑑 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀} ↔ (𝑑 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀))
119, 10bitrdi 286 . . . . . . . 8 (𝜑 → (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ↔ (𝑑 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀)))
1211anbi1d 629 . . . . . . 7 (𝜑 → ((𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆))) ↔ ((𝑑 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆)))))
13 eldif 3901 . . . . . . . . . 10 (𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ↔ (𝑑 ∈ (𝐴m (0..^𝑆)) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆))))
1413anbi1i 623 . . . . . . . . 9 ((𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴m (0..^𝑆)) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀))
15 an32 642 . . . . . . . . 9 (((𝑑 ∈ (𝐴m (0..^𝑆)) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆))))
1614, 15bitri 274 . . . . . . . 8 ((𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆))))
1716a1i 11 . . . . . . 7 (𝜑 → ((𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆)))))
1812, 17bitr4d 281 . . . . . 6 (𝜑 → ((𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆))) ↔ (𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀)))
19 nnex 11962 . . . . . . . . . . . . . 14 ℕ ∈ V
2019a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℕ ∈ V)
21 reprdifc.b . . . . . . . . . . . . 13 (𝜑𝐵 ⊆ ℕ)
2220, 21ssexd 5251 . . . . . . . . . . . 12 (𝜑𝐵 ∈ V)
23 ovexd 7303 . . . . . . . . . . . 12 (𝜑 → (0..^𝑆) ∈ V)
24 elmapg 8602 . . . . . . . . . . . 12 ((𝐵 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑑 ∈ (𝐵m (0..^𝑆)) ↔ 𝑑:(0..^𝑆)⟶𝐵))
2522, 23, 24syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝑑 ∈ (𝐵m (0..^𝑆)) ↔ 𝑑:(0..^𝑆)⟶𝐵))
2625adantr 480 . . . . . . . . . 10 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (𝑑 ∈ (𝐵m (0..^𝑆)) ↔ 𝑑:(0..^𝑆)⟶𝐵))
27 ffnfv 6986 . . . . . . . . . . 11 (𝑑:(0..^𝑆)⟶𝐵 ↔ (𝑑 Fn (0..^𝑆) ∧ ∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵))
284adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝐴 ⊆ ℕ)
296adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑀 ∈ ℤ)
307adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑆 ∈ ℕ0)
31 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑑 ∈ (𝐴(repr‘𝑆)𝑀))
3228, 29, 30, 31reprf 32571 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑑:(0..^𝑆)⟶𝐴)
3332ffnd 6597 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑑 Fn (0..^𝑆))
3433biantrurd 532 . . . . . . . . . . 11 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵 ↔ (𝑑 Fn (0..^𝑆) ∧ ∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵)))
3527, 34bitr4id 289 . . . . . . . . . 10 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (𝑑:(0..^𝑆)⟶𝐵 ↔ ∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵))
3626, 35bitrd 278 . . . . . . . . 9 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (𝑑 ∈ (𝐵m (0..^𝑆)) ↔ ∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵))
3736notbid 317 . . . . . . . 8 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (¬ 𝑑 ∈ (𝐵m (0..^𝑆)) ↔ ¬ ∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵))
38 rexnal 3167 . . . . . . . 8 (∃𝑥 ∈ (0..^𝑆) ¬ (𝑑𝑥) ∈ 𝐵 ↔ ¬ ∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵)
3937, 38bitr4di 288 . . . . . . 7 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (¬ 𝑑 ∈ (𝐵m (0..^𝑆)) ↔ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑𝑥) ∈ 𝐵))
4039pm5.32da 578 . . . . . 6 (𝜑 → ((𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆))) ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑𝑥) ∈ 𝐵)))
4118, 40bitr3d 280 . . . . 5 (𝜑 → ((𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑𝑥) ∈ 𝐵)))
42 fveq1 6767 . . . . . . . . . 10 (𝑐 = 𝑑 → (𝑐𝑥) = (𝑑𝑥))
4342eleq1d 2824 . . . . . . . . 9 (𝑐 = 𝑑 → ((𝑐𝑥) ∈ 𝐵 ↔ (𝑑𝑥) ∈ 𝐵))
4443notbid 317 . . . . . . . 8 (𝑐 = 𝑑 → (¬ (𝑐𝑥) ∈ 𝐵 ↔ ¬ (𝑑𝑥) ∈ 𝐵))
4544elrab 3625 . . . . . . 7 (𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵} ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑𝑥) ∈ 𝐵))
4645rexbii 3179 . . . . . 6 (∃𝑥 ∈ (0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵} ↔ ∃𝑥 ∈ (0..^𝑆)(𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑𝑥) ∈ 𝐵))
47 r19.42v 3278 . . . . . 6 (∃𝑥 ∈ (0..^𝑆)(𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑𝑥) ∈ 𝐵) ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑𝑥) ∈ 𝐵))
4846, 47bitri 274 . . . . 5 (∃𝑥 ∈ (0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵} ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑𝑥) ∈ 𝐵))
4941, 48bitr4di 288 . . . 4 (𝜑 → ((𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ↔ ∃𝑥 ∈ (0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵}))
50 rabid 3308 . . . 4 (𝑑 ∈ {𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀} ↔ (𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀))
51 eliun 4933 . . . 4 (𝑑 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵} ↔ ∃𝑥 ∈ (0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵})
5249, 50, 513bitr4g 313 . . 3 (𝜑 → (𝑑 ∈ {𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀} ↔ 𝑑 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵}))
531, 2, 3, 52eqrd 3944 . 2 (𝜑 → {𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀} = 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵})
5421, 6, 7reprval 32569 . . . 4 (𝜑 → (𝐵(repr‘𝑆)𝑀) = {𝑑 ∈ (𝐵m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀})
558, 54difeq12d 4062 . . 3 (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = ({𝑑 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀} ∖ {𝑑 ∈ (𝐵m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀}))
56 difrab2 30824 . . 3 ({𝑑 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀} ∖ {𝑑 ∈ (𝐵m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀}) = {𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀}
5755, 56eqtrdi 2795 . 2 (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = {𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀})
58 reprdifc.c . . . 4 𝐶 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵}
5958a1i 11 . . 3 (𝜑𝐶 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵})
6059iuneq2d 4958 . 2 (𝜑 𝑥 ∈ (0..^𝑆)𝐶 = 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵})
6153, 57, 603eqtr4d 2789 1 (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = 𝑥 ∈ (0..^𝑆)𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1541  wcel 2109  wral 3065  wrex 3066  {crab 3069  Vcvv 3430  cdif 3888  wss 3891   ciun 4929   Fn wfn 6425  wf 6426  cfv 6430  (class class class)co 7268  m cmap 8589  0cc0 10855  cn 11956  0cn0 12216  cz 12302  ..^cfzo 13364  Σcsu 15378  reprcrepr 32567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-rep 5213  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-i2m1 10923  ax-1ne0 10924  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-pss 3910  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-tp 4571  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-tr 5196  df-id 5488  df-eprel 5494  df-po 5502  df-so 5503  df-fr 5543  df-we 5545  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-pred 6199  df-ord 6266  df-on 6267  df-lim 6268  df-suc 6269  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-ov 7271  df-oprab 7272  df-mpo 7273  df-om 7701  df-1st 7817  df-2nd 7818  df-frecs 8081  df-wrecs 8112  df-recs 8186  df-rdg 8225  df-map 8591  df-neg 11191  df-nn 11957  df-n0 12217  df-z 12303  df-seq 13703  df-sum 15379  df-repr 32568
This theorem is referenced by:  hgt750lema  32616
  Copyright terms: Public domain W3C validator