Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprdifc Structured version   Visualization version   GIF version

Theorem reprdifc 34659
Description: Express the representations as a sum of integers in a difference of sets using conditions on each of the indices. (Contributed by Thierry Arnoux, 27-Dec-2021.)
Hypotheses
Ref Expression
reprdifc.c 𝐶 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵}
reprdifc.a (𝜑𝐴 ⊆ ℕ)
reprdifc.b (𝜑𝐵 ⊆ ℕ)
reprdifc.m (𝜑𝑀 ∈ ℕ0)
reprdifc.s (𝜑𝑆 ∈ ℕ0)
Assertion
Ref Expression
reprdifc (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = 𝑥 ∈ (0..^𝑆)𝐶)
Distinct variable groups:   𝐴,𝑐,𝑥   𝐵,𝑐,𝑥   𝑀,𝑐,𝑥   𝑆,𝑐,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑐)   𝐶(𝑥,𝑐)

Proof of Theorem reprdifc
Dummy variables 𝑑 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . 3 𝑑𝜑
2 nfrab1 3436 . . 3 𝑑{𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀}
3 nfcv 2898 . . 3 𝑑 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵}
4 reprdifc.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℕ)
5 reprdifc.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ0)
65nn0zd 12614 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
7 reprdifc.s . . . . . . . . . . 11 (𝜑𝑆 ∈ ℕ0)
84, 6, 7reprval 34642 . . . . . . . . . 10 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑑 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀})
98eleq2d 2820 . . . . . . . . 9 (𝜑 → (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ↔ 𝑑 ∈ {𝑑 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀}))
10 rabid 3437 . . . . . . . . 9 (𝑑 ∈ {𝑑 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀} ↔ (𝑑 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀))
119, 10bitrdi 287 . . . . . . . 8 (𝜑 → (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ↔ (𝑑 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀)))
1211anbi1d 631 . . . . . . 7 (𝜑 → ((𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆))) ↔ ((𝑑 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆)))))
13 eldif 3936 . . . . . . . . . 10 (𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ↔ (𝑑 ∈ (𝐴m (0..^𝑆)) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆))))
1413anbi1i 624 . . . . . . . . 9 ((𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴m (0..^𝑆)) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀))
15 an32 646 . . . . . . . . 9 (((𝑑 ∈ (𝐴m (0..^𝑆)) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆))))
1614, 15bitri 275 . . . . . . . 8 ((𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆))))
1716a1i 11 . . . . . . 7 (𝜑 → ((𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆)))))
1812, 17bitr4d 282 . . . . . 6 (𝜑 → ((𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆))) ↔ (𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀)))
19 nnex 12246 . . . . . . . . . . . . . 14 ℕ ∈ V
2019a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℕ ∈ V)
21 reprdifc.b . . . . . . . . . . . . 13 (𝜑𝐵 ⊆ ℕ)
2220, 21ssexd 5294 . . . . . . . . . . . 12 (𝜑𝐵 ∈ V)
23 ovexd 7440 . . . . . . . . . . . 12 (𝜑 → (0..^𝑆) ∈ V)
24 elmapg 8853 . . . . . . . . . . . 12 ((𝐵 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑑 ∈ (𝐵m (0..^𝑆)) ↔ 𝑑:(0..^𝑆)⟶𝐵))
2522, 23, 24syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑑 ∈ (𝐵m (0..^𝑆)) ↔ 𝑑:(0..^𝑆)⟶𝐵))
2625adantr 480 . . . . . . . . . 10 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (𝑑 ∈ (𝐵m (0..^𝑆)) ↔ 𝑑:(0..^𝑆)⟶𝐵))
27 ffnfv 7109 . . . . . . . . . . 11 (𝑑:(0..^𝑆)⟶𝐵 ↔ (𝑑 Fn (0..^𝑆) ∧ ∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵))
284adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝐴 ⊆ ℕ)
296adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑀 ∈ ℤ)
307adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑆 ∈ ℕ0)
31 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑑 ∈ (𝐴(repr‘𝑆)𝑀))
3228, 29, 30, 31reprf 34644 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑑:(0..^𝑆)⟶𝐴)
3332ffnd 6707 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑑 Fn (0..^𝑆))
3433biantrurd 532 . . . . . . . . . . 11 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵 ↔ (𝑑 Fn (0..^𝑆) ∧ ∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵)))
3527, 34bitr4id 290 . . . . . . . . . 10 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (𝑑:(0..^𝑆)⟶𝐵 ↔ ∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵))
3626, 35bitrd 279 . . . . . . . . 9 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (𝑑 ∈ (𝐵m (0..^𝑆)) ↔ ∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵))
3736notbid 318 . . . . . . . 8 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (¬ 𝑑 ∈ (𝐵m (0..^𝑆)) ↔ ¬ ∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵))
38 rexnal 3089 . . . . . . . 8 (∃𝑥 ∈ (0..^𝑆) ¬ (𝑑𝑥) ∈ 𝐵 ↔ ¬ ∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵)
3937, 38bitr4di 289 . . . . . . 7 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (¬ 𝑑 ∈ (𝐵m (0..^𝑆)) ↔ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑𝑥) ∈ 𝐵))
4039pm5.32da 579 . . . . . 6 (𝜑 → ((𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆))) ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑𝑥) ∈ 𝐵)))
4118, 40bitr3d 281 . . . . 5 (𝜑 → ((𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑𝑥) ∈ 𝐵)))
42 fveq1 6875 . . . . . . . . . 10 (𝑐 = 𝑑 → (𝑐𝑥) = (𝑑𝑥))
4342eleq1d 2819 . . . . . . . . 9 (𝑐 = 𝑑 → ((𝑐𝑥) ∈ 𝐵 ↔ (𝑑𝑥) ∈ 𝐵))
4443notbid 318 . . . . . . . 8 (𝑐 = 𝑑 → (¬ (𝑐𝑥) ∈ 𝐵 ↔ ¬ (𝑑𝑥) ∈ 𝐵))
4544elrab 3671 . . . . . . 7 (𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵} ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑𝑥) ∈ 𝐵))
4645rexbii 3083 . . . . . 6 (∃𝑥 ∈ (0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵} ↔ ∃𝑥 ∈ (0..^𝑆)(𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑𝑥) ∈ 𝐵))
47 r19.42v 3176 . . . . . 6 (∃𝑥 ∈ (0..^𝑆)(𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑𝑥) ∈ 𝐵) ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑𝑥) ∈ 𝐵))
4846, 47bitri 275 . . . . 5 (∃𝑥 ∈ (0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵} ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑𝑥) ∈ 𝐵))
4941, 48bitr4di 289 . . . 4 (𝜑 → ((𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ↔ ∃𝑥 ∈ (0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵}))
50 rabid 3437 . . . 4 (𝑑 ∈ {𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀} ↔ (𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀))
51 eliun 4971 . . . 4 (𝑑 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵} ↔ ∃𝑥 ∈ (0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵})
5249, 50, 513bitr4g 314 . . 3 (𝜑 → (𝑑 ∈ {𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀} ↔ 𝑑 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵}))
531, 2, 3, 52eqrd 3978 . 2 (𝜑 → {𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀} = 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵})
5421, 6, 7reprval 34642 . . . 4 (𝜑 → (𝐵(repr‘𝑆)𝑀) = {𝑑 ∈ (𝐵m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀})
558, 54difeq12d 4102 . . 3 (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = ({𝑑 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀} ∖ {𝑑 ∈ (𝐵m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀}))
56 difrab2 32479 . . 3 ({𝑑 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀} ∖ {𝑑 ∈ (𝐵m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀}) = {𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀}
5755, 56eqtrdi 2786 . 2 (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = {𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀})
58 reprdifc.c . . . 4 𝐶 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵}
5958a1i 11 . . 3 (𝜑𝐶 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵})
6059iuneq2d 4998 . 2 (𝜑 𝑥 ∈ (0..^𝑆)𝐶 = 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵})
6153, 57, 603eqtr4d 2780 1 (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = 𝑥 ∈ (0..^𝑆)𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  cdif 3923  wss 3926   ciun 4967   Fn wfn 6526  wf 6527  cfv 6531  (class class class)co 7405  m cmap 8840  0cc0 11129  cn 12240  0cn0 12501  cz 12588  ..^cfzo 13671  Σcsu 15702  reprcrepr 34640
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-i2m1 11197  ax-1ne0 11198  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-map 8842  df-neg 11469  df-nn 12241  df-n0 12502  df-z 12589  df-seq 14020  df-sum 15703  df-repr 34641
This theorem is referenced by:  hgt750lema  34689
  Copyright terms: Public domain W3C validator