Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprdifc Structured version   Visualization version   GIF version

Theorem reprdifc 34618
Description: Express the representations as a sum of integers in a difference of sets using conditions on each of the indices. (Contributed by Thierry Arnoux, 27-Dec-2021.)
Hypotheses
Ref Expression
reprdifc.c 𝐶 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵}
reprdifc.a (𝜑𝐴 ⊆ ℕ)
reprdifc.b (𝜑𝐵 ⊆ ℕ)
reprdifc.m (𝜑𝑀 ∈ ℕ0)
reprdifc.s (𝜑𝑆 ∈ ℕ0)
Assertion
Ref Expression
reprdifc (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = 𝑥 ∈ (0..^𝑆)𝐶)
Distinct variable groups:   𝐴,𝑐,𝑥   𝐵,𝑐,𝑥   𝑀,𝑐,𝑥   𝑆,𝑐,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑐)   𝐶(𝑥,𝑐)

Proof of Theorem reprdifc
Dummy variables 𝑑 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1914 . . 3 𝑑𝜑
2 nfrab1 3426 . . 3 𝑑{𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀}
3 nfcv 2891 . . 3 𝑑 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵}
4 reprdifc.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℕ)
5 reprdifc.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ0)
65nn0zd 12555 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
7 reprdifc.s . . . . . . . . . . 11 (𝜑𝑆 ∈ ℕ0)
84, 6, 7reprval 34601 . . . . . . . . . 10 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑑 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀})
98eleq2d 2814 . . . . . . . . 9 (𝜑 → (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ↔ 𝑑 ∈ {𝑑 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀}))
10 rabid 3427 . . . . . . . . 9 (𝑑 ∈ {𝑑 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀} ↔ (𝑑 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀))
119, 10bitrdi 287 . . . . . . . 8 (𝜑 → (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ↔ (𝑑 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀)))
1211anbi1d 631 . . . . . . 7 (𝜑 → ((𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆))) ↔ ((𝑑 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆)))))
13 eldif 3924 . . . . . . . . . 10 (𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ↔ (𝑑 ∈ (𝐴m (0..^𝑆)) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆))))
1413anbi1i 624 . . . . . . . . 9 ((𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴m (0..^𝑆)) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀))
15 an32 646 . . . . . . . . 9 (((𝑑 ∈ (𝐴m (0..^𝑆)) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆))))
1614, 15bitri 275 . . . . . . . 8 ((𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆))))
1716a1i 11 . . . . . . 7 (𝜑 → ((𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆)))))
1812, 17bitr4d 282 . . . . . 6 (𝜑 → ((𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆))) ↔ (𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀)))
19 nnex 12192 . . . . . . . . . . . . . 14 ℕ ∈ V
2019a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℕ ∈ V)
21 reprdifc.b . . . . . . . . . . . . 13 (𝜑𝐵 ⊆ ℕ)
2220, 21ssexd 5279 . . . . . . . . . . . 12 (𝜑𝐵 ∈ V)
23 ovexd 7422 . . . . . . . . . . . 12 (𝜑 → (0..^𝑆) ∈ V)
24 elmapg 8812 . . . . . . . . . . . 12 ((𝐵 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑑 ∈ (𝐵m (0..^𝑆)) ↔ 𝑑:(0..^𝑆)⟶𝐵))
2522, 23, 24syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑑 ∈ (𝐵m (0..^𝑆)) ↔ 𝑑:(0..^𝑆)⟶𝐵))
2625adantr 480 . . . . . . . . . 10 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (𝑑 ∈ (𝐵m (0..^𝑆)) ↔ 𝑑:(0..^𝑆)⟶𝐵))
27 ffnfv 7091 . . . . . . . . . . 11 (𝑑:(0..^𝑆)⟶𝐵 ↔ (𝑑 Fn (0..^𝑆) ∧ ∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵))
284adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝐴 ⊆ ℕ)
296adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑀 ∈ ℤ)
307adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑆 ∈ ℕ0)
31 simpr 484 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑑 ∈ (𝐴(repr‘𝑆)𝑀))
3228, 29, 30, 31reprf 34603 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑑:(0..^𝑆)⟶𝐴)
3332ffnd 6689 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑑 Fn (0..^𝑆))
3433biantrurd 532 . . . . . . . . . . 11 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵 ↔ (𝑑 Fn (0..^𝑆) ∧ ∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵)))
3527, 34bitr4id 290 . . . . . . . . . 10 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (𝑑:(0..^𝑆)⟶𝐵 ↔ ∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵))
3626, 35bitrd 279 . . . . . . . . 9 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (𝑑 ∈ (𝐵m (0..^𝑆)) ↔ ∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵))
3736notbid 318 . . . . . . . 8 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (¬ 𝑑 ∈ (𝐵m (0..^𝑆)) ↔ ¬ ∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵))
38 rexnal 3082 . . . . . . . 8 (∃𝑥 ∈ (0..^𝑆) ¬ (𝑑𝑥) ∈ 𝐵 ↔ ¬ ∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵)
3937, 38bitr4di 289 . . . . . . 7 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (¬ 𝑑 ∈ (𝐵m (0..^𝑆)) ↔ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑𝑥) ∈ 𝐵))
4039pm5.32da 579 . . . . . 6 (𝜑 → ((𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ 𝑑 ∈ (𝐵m (0..^𝑆))) ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑𝑥) ∈ 𝐵)))
4118, 40bitr3d 281 . . . . 5 (𝜑 → ((𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑𝑥) ∈ 𝐵)))
42 fveq1 6857 . . . . . . . . . 10 (𝑐 = 𝑑 → (𝑐𝑥) = (𝑑𝑥))
4342eleq1d 2813 . . . . . . . . 9 (𝑐 = 𝑑 → ((𝑐𝑥) ∈ 𝐵 ↔ (𝑑𝑥) ∈ 𝐵))
4443notbid 318 . . . . . . . 8 (𝑐 = 𝑑 → (¬ (𝑐𝑥) ∈ 𝐵 ↔ ¬ (𝑑𝑥) ∈ 𝐵))
4544elrab 3659 . . . . . . 7 (𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵} ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑𝑥) ∈ 𝐵))
4645rexbii 3076 . . . . . 6 (∃𝑥 ∈ (0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵} ↔ ∃𝑥 ∈ (0..^𝑆)(𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑𝑥) ∈ 𝐵))
47 r19.42v 3169 . . . . . 6 (∃𝑥 ∈ (0..^𝑆)(𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑𝑥) ∈ 𝐵) ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑𝑥) ∈ 𝐵))
4846, 47bitri 275 . . . . 5 (∃𝑥 ∈ (0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵} ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑𝑥) ∈ 𝐵))
4941, 48bitr4di 289 . . . 4 (𝜑 → ((𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ↔ ∃𝑥 ∈ (0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵}))
50 rabid 3427 . . . 4 (𝑑 ∈ {𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀} ↔ (𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀))
51 eliun 4959 . . . 4 (𝑑 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵} ↔ ∃𝑥 ∈ (0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵})
5249, 50, 513bitr4g 314 . . 3 (𝜑 → (𝑑 ∈ {𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀} ↔ 𝑑 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵}))
531, 2, 3, 52eqrd 3966 . 2 (𝜑 → {𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀} = 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵})
5421, 6, 7reprval 34601 . . . 4 (𝜑 → (𝐵(repr‘𝑆)𝑀) = {𝑑 ∈ (𝐵m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀})
558, 54difeq12d 4090 . . 3 (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = ({𝑑 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀} ∖ {𝑑 ∈ (𝐵m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀}))
56 difrab2 32427 . . 3 ({𝑑 ∈ (𝐴m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀} ∖ {𝑑 ∈ (𝐵m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀}) = {𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀}
5755, 56eqtrdi 2780 . 2 (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = {𝑑 ∈ ((𝐴m (0..^𝑆)) ∖ (𝐵m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀})
58 reprdifc.c . . . 4 𝐶 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵}
5958a1i 11 . . 3 (𝜑𝐶 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵})
6059iuneq2d 4986 . 2 (𝜑 𝑥 ∈ (0..^𝑆)𝐶 = 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵})
6153, 57, 603eqtr4d 2774 1 (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = 𝑥 ∈ (0..^𝑆)𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3044  wrex 3053  {crab 3405  Vcvv 3447  cdif 3911  wss 3914   ciun 4955   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  0cc0 11068  cn 12186  0cn0 12442  cz 12529  ..^cfzo 13615  Σcsu 15652  reprcrepr 34599
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-i2m1 11136  ax-1ne0 11137  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-map 8801  df-neg 11408  df-nn 12187  df-n0 12443  df-z 12530  df-seq 13967  df-sum 15653  df-repr 34600
This theorem is referenced by:  hgt750lema  34648
  Copyright terms: Public domain W3C validator