Step | Hyp | Ref
| Expression |
1 | | nfv 1920 |
. . 3
⊢
Ⅎ𝑑𝜑 |
2 | | nfrab1 3315 |
. . 3
⊢
Ⅎ𝑑{𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} |
3 | | nfcv 2908 |
. . 3
⊢
Ⅎ𝑑∪ 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵} |
4 | | reprdifc.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ ℕ) |
5 | | reprdifc.m |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
6 | 5 | nn0zd 12406 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℤ) |
7 | | reprdifc.s |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ∈
ℕ0) |
8 | 4, 6, 7 | reprval 32569 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀}) |
9 | 8 | eleq2d 2825 |
. . . . . . . . 9
⊢ (𝜑 → (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ↔ 𝑑 ∈ {𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀})) |
10 | | rabid 3308 |
. . . . . . . . 9
⊢ (𝑑 ∈ {𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} ↔ (𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀)) |
11 | 9, 10 | bitrdi 286 |
. . . . . . . 8
⊢ (𝜑 → (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ↔ (𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀))) |
12 | 11 | anbi1d 629 |
. . . . . . 7
⊢ (𝜑 → ((𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑m (0..^𝑆))) ↔ ((𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑m (0..^𝑆))))) |
13 | | eldif 3901 |
. . . . . . . . . 10
⊢ (𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ↔ (𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∧ ¬ 𝑑 ∈ (𝐵 ↑m (0..^𝑆)))) |
14 | 13 | anbi1i 623 |
. . . . . . . . 9
⊢ ((𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∧ ¬ 𝑑 ∈ (𝐵 ↑m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀)) |
15 | | an32 642 |
. . . . . . . . 9
⊢ (((𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∧ ¬ 𝑑 ∈ (𝐵 ↑m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑m (0..^𝑆)))) |
16 | 14, 15 | bitri 274 |
. . . . . . . 8
⊢ ((𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑m (0..^𝑆)))) |
17 | 16 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ((𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑m (0..^𝑆))))) |
18 | 12, 17 | bitr4d 281 |
. . . . . 6
⊢ (𝜑 → ((𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑m (0..^𝑆))) ↔ (𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀))) |
19 | | nnex 11962 |
. . . . . . . . . . . . . 14
⊢ ℕ
∈ V |
20 | 19 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ℕ ∈
V) |
21 | | reprdifc.b |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ⊆ ℕ) |
22 | 20, 21 | ssexd 5251 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ V) |
23 | | ovexd 7303 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0..^𝑆) ∈ V) |
24 | | elmapg 8602 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑑 ∈ (𝐵 ↑m (0..^𝑆)) ↔ 𝑑:(0..^𝑆)⟶𝐵)) |
25 | 22, 23, 24 | syl2anc 583 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑑 ∈ (𝐵 ↑m (0..^𝑆)) ↔ 𝑑:(0..^𝑆)⟶𝐵)) |
26 | 25 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (𝑑 ∈ (𝐵 ↑m (0..^𝑆)) ↔ 𝑑:(0..^𝑆)⟶𝐵)) |
27 | | ffnfv 6986 |
. . . . . . . . . . 11
⊢ (𝑑:(0..^𝑆)⟶𝐵 ↔ (𝑑 Fn (0..^𝑆) ∧ ∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵)) |
28 | 4 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝐴 ⊆ ℕ) |
29 | 6 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑀 ∈ ℤ) |
30 | 7 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑆 ∈
ℕ0) |
31 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) |
32 | 28, 29, 30, 31 | reprf 32571 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑑:(0..^𝑆)⟶𝐴) |
33 | 32 | ffnd 6597 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑑 Fn (0..^𝑆)) |
34 | 33 | biantrurd 532 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵 ↔ (𝑑 Fn (0..^𝑆) ∧ ∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵))) |
35 | 27, 34 | bitr4id 289 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (𝑑:(0..^𝑆)⟶𝐵 ↔ ∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵)) |
36 | 26, 35 | bitrd 278 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (𝑑 ∈ (𝐵 ↑m (0..^𝑆)) ↔ ∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵)) |
37 | 36 | notbid 317 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (¬ 𝑑 ∈ (𝐵 ↑m (0..^𝑆)) ↔ ¬ ∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵)) |
38 | | rexnal 3167 |
. . . . . . . 8
⊢
(∃𝑥 ∈
(0..^𝑆) ¬ (𝑑‘𝑥) ∈ 𝐵 ↔ ¬ ∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵) |
39 | 37, 38 | bitr4di 288 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (¬ 𝑑 ∈ (𝐵 ↑m (0..^𝑆)) ↔ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑‘𝑥) ∈ 𝐵)) |
40 | 39 | pm5.32da 578 |
. . . . . 6
⊢ (𝜑 → ((𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑m (0..^𝑆))) ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑‘𝑥) ∈ 𝐵))) |
41 | 18, 40 | bitr3d 280 |
. . . . 5
⊢ (𝜑 → ((𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑‘𝑥) ∈ 𝐵))) |
42 | | fveq1 6767 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑑 → (𝑐‘𝑥) = (𝑑‘𝑥)) |
43 | 42 | eleq1d 2824 |
. . . . . . . . 9
⊢ (𝑐 = 𝑑 → ((𝑐‘𝑥) ∈ 𝐵 ↔ (𝑑‘𝑥) ∈ 𝐵)) |
44 | 43 | notbid 317 |
. . . . . . . 8
⊢ (𝑐 = 𝑑 → (¬ (𝑐‘𝑥) ∈ 𝐵 ↔ ¬ (𝑑‘𝑥) ∈ 𝐵)) |
45 | 44 | elrab 3625 |
. . . . . . 7
⊢ (𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵} ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘𝑥) ∈ 𝐵)) |
46 | 45 | rexbii 3179 |
. . . . . 6
⊢
(∃𝑥 ∈
(0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵} ↔ ∃𝑥 ∈ (0..^𝑆)(𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘𝑥) ∈ 𝐵)) |
47 | | r19.42v 3278 |
. . . . . 6
⊢
(∃𝑥 ∈
(0..^𝑆)(𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘𝑥) ∈ 𝐵) ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑‘𝑥) ∈ 𝐵)) |
48 | 46, 47 | bitri 274 |
. . . . 5
⊢
(∃𝑥 ∈
(0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵} ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑‘𝑥) ∈ 𝐵)) |
49 | 41, 48 | bitr4di 288 |
. . . 4
⊢ (𝜑 → ((𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ↔ ∃𝑥 ∈ (0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵})) |
50 | | rabid 3308 |
. . . 4
⊢ (𝑑 ∈ {𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} ↔ (𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀)) |
51 | | eliun 4933 |
. . . 4
⊢ (𝑑 ∈ ∪ 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵} ↔ ∃𝑥 ∈ (0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵}) |
52 | 49, 50, 51 | 3bitr4g 313 |
. . 3
⊢ (𝜑 → (𝑑 ∈ {𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} ↔ 𝑑 ∈ ∪
𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵})) |
53 | 1, 2, 3, 52 | eqrd 3944 |
. 2
⊢ (𝜑 → {𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} = ∪
𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵}) |
54 | 21, 6, 7 | reprval 32569 |
. . . 4
⊢ (𝜑 → (𝐵(repr‘𝑆)𝑀) = {𝑑 ∈ (𝐵 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀}) |
55 | 8, 54 | difeq12d 4062 |
. . 3
⊢ (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = ({𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} ∖ {𝑑 ∈ (𝐵 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀})) |
56 | | difrab2 30824 |
. . 3
⊢ ({𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} ∖ {𝑑 ∈ (𝐵 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀}) = {𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} |
57 | 55, 56 | eqtrdi 2795 |
. 2
⊢ (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = {𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀}) |
58 | | reprdifc.c |
. . . 4
⊢ 𝐶 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵} |
59 | 58 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐶 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵}) |
60 | 59 | iuneq2d 4958 |
. 2
⊢ (𝜑 → ∪ 𝑥 ∈ (0..^𝑆)𝐶 = ∪ 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵}) |
61 | 53, 57, 60 | 3eqtr4d 2789 |
1
⊢ (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = ∪
𝑥 ∈ (0..^𝑆)𝐶) |