Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  reprdifc Structured version   Visualization version   GIF version

Theorem reprdifc 31520
Description: Express the representations as a sum of integers in a difference of sets using conditions on each of the indices. (Contributed by Thierry Arnoux, 27-Dec-2021.)
Hypotheses
Ref Expression
reprdifc.c 𝐶 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵}
reprdifc.a (𝜑𝐴 ⊆ ℕ)
reprdifc.b (𝜑𝐵 ⊆ ℕ)
reprdifc.m (𝜑𝑀 ∈ ℕ0)
reprdifc.s (𝜑𝑆 ∈ ℕ0)
Assertion
Ref Expression
reprdifc (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = 𝑥 ∈ (0..^𝑆)𝐶)
Distinct variable groups:   𝐴,𝑐,𝑥   𝐵,𝑐,𝑥   𝑀,𝑐,𝑥   𝑆,𝑐,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑐)   𝐶(𝑥,𝑐)

Proof of Theorem reprdifc
Dummy variables 𝑑 𝑎 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nfv 1892 . . 3 𝑑𝜑
2 nfrab1 3344 . . 3 𝑑{𝑑 ∈ ((𝐴𝑚 (0..^𝑆)) ∖ (𝐵𝑚 (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀}
3 nfcv 2949 . . 3 𝑑 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵}
4 reprdifc.a . . . . . . . . . . 11 (𝜑𝐴 ⊆ ℕ)
5 reprdifc.m . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℕ0)
65nn0zd 11939 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℤ)
7 reprdifc.s . . . . . . . . . . 11 (𝜑𝑆 ∈ ℕ0)
84, 6, 7reprval 31503 . . . . . . . . . 10 (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑑 ∈ (𝐴𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀})
98eleq2d 2868 . . . . . . . . 9 (𝜑 → (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ↔ 𝑑 ∈ {𝑑 ∈ (𝐴𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀}))
10 rabid 3337 . . . . . . . . 9 (𝑑 ∈ {𝑑 ∈ (𝐴𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀} ↔ (𝑑 ∈ (𝐴𝑚 (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀))
119, 10syl6bb 288 . . . . . . . 8 (𝜑 → (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ↔ (𝑑 ∈ (𝐴𝑚 (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀)))
1211anbi1d 629 . . . . . . 7 (𝜑 → ((𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ 𝑑 ∈ (𝐵𝑚 (0..^𝑆))) ↔ ((𝑑 ∈ (𝐴𝑚 (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵𝑚 (0..^𝑆)))))
13 eldif 3873 . . . . . . . . . 10 (𝑑 ∈ ((𝐴𝑚 (0..^𝑆)) ∖ (𝐵𝑚 (0..^𝑆))) ↔ (𝑑 ∈ (𝐴𝑚 (0..^𝑆)) ∧ ¬ 𝑑 ∈ (𝐵𝑚 (0..^𝑆))))
1413anbi1i 623 . . . . . . . . 9 ((𝑑 ∈ ((𝐴𝑚 (0..^𝑆)) ∖ (𝐵𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴𝑚 (0..^𝑆)) ∧ ¬ 𝑑 ∈ (𝐵𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀))
15 an32 642 . . . . . . . . 9 (((𝑑 ∈ (𝐴𝑚 (0..^𝑆)) ∧ ¬ 𝑑 ∈ (𝐵𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴𝑚 (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵𝑚 (0..^𝑆))))
1614, 15bitri 276 . . . . . . . 8 ((𝑑 ∈ ((𝐴𝑚 (0..^𝑆)) ∖ (𝐵𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴𝑚 (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵𝑚 (0..^𝑆))))
1716a1i 11 . . . . . . 7 (𝜑 → ((𝑑 ∈ ((𝐴𝑚 (0..^𝑆)) ∖ (𝐵𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴𝑚 (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵𝑚 (0..^𝑆)))))
1812, 17bitr4d 283 . . . . . 6 (𝜑 → ((𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ 𝑑 ∈ (𝐵𝑚 (0..^𝑆))) ↔ (𝑑 ∈ ((𝐴𝑚 (0..^𝑆)) ∖ (𝐵𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀)))
19 nnex 11497 . . . . . . . . . . . . . 14 ℕ ∈ V
2019a1i 11 . . . . . . . . . . . . 13 (𝜑 → ℕ ∈ V)
21 reprdifc.b . . . . . . . . . . . . 13 (𝜑𝐵 ⊆ ℕ)
2220, 21ssexd 5124 . . . . . . . . . . . 12 (𝜑𝐵 ∈ V)
23 ovexd 7055 . . . . . . . . . . . 12 (𝜑 → (0..^𝑆) ∈ V)
24 elmapg 8274 . . . . . . . . . . . 12 ((𝐵 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑑 ∈ (𝐵𝑚 (0..^𝑆)) ↔ 𝑑:(0..^𝑆)⟶𝐵))
2522, 23, 24syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑑 ∈ (𝐵𝑚 (0..^𝑆)) ↔ 𝑑:(0..^𝑆)⟶𝐵))
2625adantr 481 . . . . . . . . . 10 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (𝑑 ∈ (𝐵𝑚 (0..^𝑆)) ↔ 𝑑:(0..^𝑆)⟶𝐵))
274adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝐴 ⊆ ℕ)
286adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑀 ∈ ℤ)
297adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑆 ∈ ℕ0)
30 simpr 485 . . . . . . . . . . . . . 14 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑑 ∈ (𝐴(repr‘𝑆)𝑀))
3127, 28, 29, 30reprf 31505 . . . . . . . . . . . . 13 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑑:(0..^𝑆)⟶𝐴)
3231ffnd 6388 . . . . . . . . . . . 12 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑑 Fn (0..^𝑆))
3332biantrurd 533 . . . . . . . . . . 11 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵 ↔ (𝑑 Fn (0..^𝑆) ∧ ∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵)))
34 ffnfv 6750 . . . . . . . . . . 11 (𝑑:(0..^𝑆)⟶𝐵 ↔ (𝑑 Fn (0..^𝑆) ∧ ∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵))
3533, 34syl6rbbr 291 . . . . . . . . . 10 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (𝑑:(0..^𝑆)⟶𝐵 ↔ ∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵))
3626, 35bitrd 280 . . . . . . . . 9 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (𝑑 ∈ (𝐵𝑚 (0..^𝑆)) ↔ ∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵))
3736notbid 319 . . . . . . . 8 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (¬ 𝑑 ∈ (𝐵𝑚 (0..^𝑆)) ↔ ¬ ∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵))
38 rexnal 3202 . . . . . . . 8 (∃𝑥 ∈ (0..^𝑆) ¬ (𝑑𝑥) ∈ 𝐵 ↔ ¬ ∀𝑥 ∈ (0..^𝑆)(𝑑𝑥) ∈ 𝐵)
3937, 38syl6bbr 290 . . . . . . 7 ((𝜑𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (¬ 𝑑 ∈ (𝐵𝑚 (0..^𝑆)) ↔ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑𝑥) ∈ 𝐵))
4039pm5.32da 579 . . . . . 6 (𝜑 → ((𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ 𝑑 ∈ (𝐵𝑚 (0..^𝑆))) ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑𝑥) ∈ 𝐵)))
4118, 40bitr3d 282 . . . . 5 (𝜑 → ((𝑑 ∈ ((𝐴𝑚 (0..^𝑆)) ∖ (𝐵𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑𝑥) ∈ 𝐵)))
42 fveq1 6542 . . . . . . . . . 10 (𝑐 = 𝑑 → (𝑐𝑥) = (𝑑𝑥))
4342eleq1d 2867 . . . . . . . . 9 (𝑐 = 𝑑 → ((𝑐𝑥) ∈ 𝐵 ↔ (𝑑𝑥) ∈ 𝐵))
4443notbid 319 . . . . . . . 8 (𝑐 = 𝑑 → (¬ (𝑐𝑥) ∈ 𝐵 ↔ ¬ (𝑑𝑥) ∈ 𝐵))
4544elrab 3619 . . . . . . 7 (𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵} ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑𝑥) ∈ 𝐵))
4645rexbii 3211 . . . . . 6 (∃𝑥 ∈ (0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵} ↔ ∃𝑥 ∈ (0..^𝑆)(𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑𝑥) ∈ 𝐵))
47 r19.42v 3311 . . . . . 6 (∃𝑥 ∈ (0..^𝑆)(𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑𝑥) ∈ 𝐵) ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑𝑥) ∈ 𝐵))
4846, 47bitri 276 . . . . 5 (∃𝑥 ∈ (0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵} ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑𝑥) ∈ 𝐵))
4941, 48syl6bbr 290 . . . 4 (𝜑 → ((𝑑 ∈ ((𝐴𝑚 (0..^𝑆)) ∖ (𝐵𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀) ↔ ∃𝑥 ∈ (0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵}))
50 rabid 3337 . . . 4 (𝑑 ∈ {𝑑 ∈ ((𝐴𝑚 (0..^𝑆)) ∖ (𝐵𝑚 (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀} ↔ (𝑑 ∈ ((𝐴𝑚 (0..^𝑆)) ∖ (𝐵𝑚 (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀))
51 eliun 4833 . . . 4 (𝑑 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵} ↔ ∃𝑥 ∈ (0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵})
5249, 50, 513bitr4g 315 . . 3 (𝜑 → (𝑑 ∈ {𝑑 ∈ ((𝐴𝑚 (0..^𝑆)) ∖ (𝐵𝑚 (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀} ↔ 𝑑 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵}))
531, 2, 3, 52eqrd 3912 . 2 (𝜑 → {𝑑 ∈ ((𝐴𝑚 (0..^𝑆)) ∖ (𝐵𝑚 (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀} = 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵})
5421, 6, 7reprval 31503 . . . 4 (𝜑 → (𝐵(repr‘𝑆)𝑀) = {𝑑 ∈ (𝐵𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀})
558, 54difeq12d 4025 . . 3 (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = ({𝑑 ∈ (𝐴𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀} ∖ {𝑑 ∈ (𝐵𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀}))
56 difrab2 29958 . . 3 ({𝑑 ∈ (𝐴𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀} ∖ {𝑑 ∈ (𝐵𝑚 (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀}) = {𝑑 ∈ ((𝐴𝑚 (0..^𝑆)) ∖ (𝐵𝑚 (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀}
5755, 56syl6eq 2847 . 2 (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = {𝑑 ∈ ((𝐴𝑚 (0..^𝑆)) ∖ (𝐵𝑚 (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑𝑎) = 𝑀})
58 reprdifc.c . . . 4 𝐶 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵}
5958a1i 11 . . 3 (𝜑𝐶 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵})
6059iuneq2d 4857 . 2 (𝜑 𝑥 ∈ (0..^𝑆)𝐶 = 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐𝑥) ∈ 𝐵})
6153, 57, 603eqtr4d 2841 1 (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = 𝑥 ∈ (0..^𝑆)𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1522  wcel 2081  wral 3105  wrex 3106  {crab 3109  Vcvv 3437  cdif 3860  wss 3863   ciun 4829   Fn wfn 6225  wf 6226  cfv 6230  (class class class)co 7021  𝑚 cmap 8261  0cc0 10388  cn 11491  0cn0 11750  cz 11834  ..^cfzo 12888  Σcsu 14881  reprcrepr 31501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-rep 5086  ax-sep 5099  ax-nul 5106  ax-pow 5162  ax-pr 5226  ax-un 7324  ax-cnex 10444  ax-resscn 10445  ax-1cn 10446  ax-icn 10447  ax-addcl 10448  ax-addrcl 10449  ax-mulcl 10450  ax-mulrcl 10451  ax-i2m1 10456  ax-1ne0 10457  ax-rnegex 10459  ax-rrecex 10460  ax-cnre 10461
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-ral 3110  df-rex 3111  df-reu 3112  df-rab 3114  df-v 3439  df-sbc 3710  df-csb 3816  df-dif 3866  df-un 3868  df-in 3870  df-ss 3878  df-pss 3880  df-nul 4216  df-if 4386  df-pw 4459  df-sn 4477  df-pr 4479  df-tp 4481  df-op 4483  df-uni 4750  df-iun 4831  df-br 4967  df-opab 5029  df-mpt 5046  df-tr 5069  df-id 5353  df-eprel 5358  df-po 5367  df-so 5368  df-fr 5407  df-we 5409  df-xp 5454  df-rel 5455  df-cnv 5456  df-co 5457  df-dm 5458  df-rn 5459  df-res 5460  df-ima 5461  df-pred 6028  df-ord 6074  df-on 6075  df-lim 6076  df-suc 6077  df-iota 6194  df-fun 6232  df-fn 6233  df-f 6234  df-f1 6235  df-fo 6236  df-f1o 6237  df-fv 6238  df-ov 7024  df-oprab 7025  df-mpo 7026  df-om 7442  df-1st 7550  df-2nd 7551  df-wrecs 7803  df-recs 7865  df-rdg 7903  df-map 8263  df-neg 10725  df-nn 11492  df-n0 11751  df-z 11835  df-seq 13225  df-sum 14882  df-repr 31502
This theorem is referenced by:  hgt750lema  31550
  Copyright terms: Public domain W3C validator