| Step | Hyp | Ref
| Expression |
| 1 | | nfv 1914 |
. . 3
⊢
Ⅎ𝑑𝜑 |
| 2 | | nfrab1 3457 |
. . 3
⊢
Ⅎ𝑑{𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} |
| 3 | | nfcv 2905 |
. . 3
⊢
Ⅎ𝑑∪ 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵} |
| 4 | | reprdifc.a |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ⊆ ℕ) |
| 5 | | reprdifc.m |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈
ℕ0) |
| 6 | 5 | nn0zd 12639 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑀 ∈ ℤ) |
| 7 | | reprdifc.s |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑆 ∈
ℕ0) |
| 8 | 4, 6, 7 | reprval 34625 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐴(repr‘𝑆)𝑀) = {𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀}) |
| 9 | 8 | eleq2d 2827 |
. . . . . . . . 9
⊢ (𝜑 → (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ↔ 𝑑 ∈ {𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀})) |
| 10 | | rabid 3458 |
. . . . . . . . 9
⊢ (𝑑 ∈ {𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} ↔ (𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀)) |
| 11 | 9, 10 | bitrdi 287 |
. . . . . . . 8
⊢ (𝜑 → (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ↔ (𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀))) |
| 12 | 11 | anbi1d 631 |
. . . . . . 7
⊢ (𝜑 → ((𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑m (0..^𝑆))) ↔ ((𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑m (0..^𝑆))))) |
| 13 | | eldif 3961 |
. . . . . . . . . 10
⊢ (𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ↔ (𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∧ ¬ 𝑑 ∈ (𝐵 ↑m (0..^𝑆)))) |
| 14 | 13 | anbi1i 624 |
. . . . . . . . 9
⊢ ((𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∧ ¬ 𝑑 ∈ (𝐵 ↑m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀)) |
| 15 | | an32 646 |
. . . . . . . . 9
⊢ (((𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∧ ¬ 𝑑 ∈ (𝐵 ↑m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑m (0..^𝑆)))) |
| 16 | 14, 15 | bitri 275 |
. . . . . . . 8
⊢ ((𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑m (0..^𝑆)))) |
| 17 | 16 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → ((𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ↔ ((𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑m (0..^𝑆))))) |
| 18 | 12, 17 | bitr4d 282 |
. . . . . 6
⊢ (𝜑 → ((𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑m (0..^𝑆))) ↔ (𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀))) |
| 19 | | nnex 12272 |
. . . . . . . . . . . . . 14
⊢ ℕ
∈ V |
| 20 | 19 | a1i 11 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ℕ ∈
V) |
| 21 | | reprdifc.b |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐵 ⊆ ℕ) |
| 22 | 20, 21 | ssexd 5324 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ V) |
| 23 | | ovexd 7466 |
. . . . . . . . . . . 12
⊢ (𝜑 → (0..^𝑆) ∈ V) |
| 24 | | elmapg 8879 |
. . . . . . . . . . . 12
⊢ ((𝐵 ∈ V ∧ (0..^𝑆) ∈ V) → (𝑑 ∈ (𝐵 ↑m (0..^𝑆)) ↔ 𝑑:(0..^𝑆)⟶𝐵)) |
| 25 | 22, 23, 24 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝑑 ∈ (𝐵 ↑m (0..^𝑆)) ↔ 𝑑:(0..^𝑆)⟶𝐵)) |
| 26 | 25 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (𝑑 ∈ (𝐵 ↑m (0..^𝑆)) ↔ 𝑑:(0..^𝑆)⟶𝐵)) |
| 27 | | ffnfv 7139 |
. . . . . . . . . . 11
⊢ (𝑑:(0..^𝑆)⟶𝐵 ↔ (𝑑 Fn (0..^𝑆) ∧ ∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵)) |
| 28 | 4 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝐴 ⊆ ℕ) |
| 29 | 6 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑀 ∈ ℤ) |
| 30 | 7 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑆 ∈
ℕ0) |
| 31 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) |
| 32 | 28, 29, 30, 31 | reprf 34627 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑑:(0..^𝑆)⟶𝐴) |
| 33 | 32 | ffnd 6737 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → 𝑑 Fn (0..^𝑆)) |
| 34 | 33 | biantrurd 532 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵 ↔ (𝑑 Fn (0..^𝑆) ∧ ∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵))) |
| 35 | 27, 34 | bitr4id 290 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (𝑑:(0..^𝑆)⟶𝐵 ↔ ∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵)) |
| 36 | 26, 35 | bitrd 279 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (𝑑 ∈ (𝐵 ↑m (0..^𝑆)) ↔ ∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵)) |
| 37 | 36 | notbid 318 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (¬ 𝑑 ∈ (𝐵 ↑m (0..^𝑆)) ↔ ¬ ∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵)) |
| 38 | | rexnal 3100 |
. . . . . . . 8
⊢
(∃𝑥 ∈
(0..^𝑆) ¬ (𝑑‘𝑥) ∈ 𝐵 ↔ ¬ ∀𝑥 ∈ (0..^𝑆)(𝑑‘𝑥) ∈ 𝐵) |
| 39 | 37, 38 | bitr4di 289 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑑 ∈ (𝐴(repr‘𝑆)𝑀)) → (¬ 𝑑 ∈ (𝐵 ↑m (0..^𝑆)) ↔ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑‘𝑥) ∈ 𝐵)) |
| 40 | 39 | pm5.32da 579 |
. . . . . 6
⊢ (𝜑 → ((𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ 𝑑 ∈ (𝐵 ↑m (0..^𝑆))) ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑‘𝑥) ∈ 𝐵))) |
| 41 | 18, 40 | bitr3d 281 |
. . . . 5
⊢ (𝜑 → ((𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑‘𝑥) ∈ 𝐵))) |
| 42 | | fveq1 6905 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑑 → (𝑐‘𝑥) = (𝑑‘𝑥)) |
| 43 | 42 | eleq1d 2826 |
. . . . . . . . 9
⊢ (𝑐 = 𝑑 → ((𝑐‘𝑥) ∈ 𝐵 ↔ (𝑑‘𝑥) ∈ 𝐵)) |
| 44 | 43 | notbid 318 |
. . . . . . . 8
⊢ (𝑐 = 𝑑 → (¬ (𝑐‘𝑥) ∈ 𝐵 ↔ ¬ (𝑑‘𝑥) ∈ 𝐵)) |
| 45 | 44 | elrab 3692 |
. . . . . . 7
⊢ (𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵} ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘𝑥) ∈ 𝐵)) |
| 46 | 45 | rexbii 3094 |
. . . . . 6
⊢
(∃𝑥 ∈
(0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵} ↔ ∃𝑥 ∈ (0..^𝑆)(𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘𝑥) ∈ 𝐵)) |
| 47 | | r19.42v 3191 |
. . . . . 6
⊢
(∃𝑥 ∈
(0..^𝑆)(𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ¬ (𝑑‘𝑥) ∈ 𝐵) ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑‘𝑥) ∈ 𝐵)) |
| 48 | 46, 47 | bitri 275 |
. . . . 5
⊢
(∃𝑥 ∈
(0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵} ↔ (𝑑 ∈ (𝐴(repr‘𝑆)𝑀) ∧ ∃𝑥 ∈ (0..^𝑆) ¬ (𝑑‘𝑥) ∈ 𝐵)) |
| 49 | 41, 48 | bitr4di 289 |
. . . 4
⊢ (𝜑 → ((𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀) ↔ ∃𝑥 ∈ (0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵})) |
| 50 | | rabid 3458 |
. . . 4
⊢ (𝑑 ∈ {𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} ↔ (𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ∧ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀)) |
| 51 | | eliun 4995 |
. . . 4
⊢ (𝑑 ∈ ∪ 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵} ↔ ∃𝑥 ∈ (0..^𝑆)𝑑 ∈ {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵}) |
| 52 | 49, 50, 51 | 3bitr4g 314 |
. . 3
⊢ (𝜑 → (𝑑 ∈ {𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} ↔ 𝑑 ∈ ∪
𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵})) |
| 53 | 1, 2, 3, 52 | eqrd 4003 |
. 2
⊢ (𝜑 → {𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} = ∪
𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵}) |
| 54 | 21, 6, 7 | reprval 34625 |
. . . 4
⊢ (𝜑 → (𝐵(repr‘𝑆)𝑀) = {𝑑 ∈ (𝐵 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀}) |
| 55 | 8, 54 | difeq12d 4127 |
. . 3
⊢ (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = ({𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} ∖ {𝑑 ∈ (𝐵 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀})) |
| 56 | | difrab2 32517 |
. . 3
⊢ ({𝑑 ∈ (𝐴 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} ∖ {𝑑 ∈ (𝐵 ↑m (0..^𝑆)) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀}) = {𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀} |
| 57 | 55, 56 | eqtrdi 2793 |
. 2
⊢ (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = {𝑑 ∈ ((𝐴 ↑m (0..^𝑆)) ∖ (𝐵 ↑m (0..^𝑆))) ∣ Σ𝑎 ∈ (0..^𝑆)(𝑑‘𝑎) = 𝑀}) |
| 58 | | reprdifc.c |
. . . 4
⊢ 𝐶 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵} |
| 59 | 58 | a1i 11 |
. . 3
⊢ (𝜑 → 𝐶 = {𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵}) |
| 60 | 59 | iuneq2d 5022 |
. 2
⊢ (𝜑 → ∪ 𝑥 ∈ (0..^𝑆)𝐶 = ∪ 𝑥 ∈ (0..^𝑆){𝑐 ∈ (𝐴(repr‘𝑆)𝑀) ∣ ¬ (𝑐‘𝑥) ∈ 𝐵}) |
| 61 | 53, 57, 60 | 3eqtr4d 2787 |
1
⊢ (𝜑 → ((𝐴(repr‘𝑆)𝑀) ∖ (𝐵(repr‘𝑆)𝑀)) = ∪
𝑥 ∈ (0..^𝑆)𝐶) |