Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fimarab Structured version   Visualization version   GIF version

Theorem fimarab 30980
Description: Expressing the image of a set as a restricted abstract builder. (Contributed by Thierry Arnoux, 27-Jan-2020.)
Assertion
Ref Expression
fimarab ((𝐹:𝐴𝐵𝑋𝐴) → (𝐹𝑋) = {𝑦𝐵 ∣ ∃𝑥𝑋 (𝐹𝑥) = 𝑦})
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem fimarab
StepHypRef Expression
1 nfv 1917 . 2 𝑦(𝐹:𝐴𝐵𝑋𝐴)
2 nfcv 2907 . 2 𝑦(𝐹𝑋)
3 nfrab1 3317 . 2 𝑦{𝑦𝐵 ∣ ∃𝑥𝑋 (𝐹𝑥) = 𝑦}
4 ffn 6600 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
5 fvelimab 6841 . . . . 5 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑦 ∈ (𝐹𝑋) ↔ ∃𝑥𝑋 (𝐹𝑥) = 𝑦))
65anbi2d 629 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → ((𝑦𝐵𝑦 ∈ (𝐹𝑋)) ↔ (𝑦𝐵 ∧ ∃𝑥𝑋 (𝐹𝑥) = 𝑦)))
74, 6sylan 580 . . 3 ((𝐹:𝐴𝐵𝑋𝐴) → ((𝑦𝐵𝑦 ∈ (𝐹𝑋)) ↔ (𝑦𝐵 ∧ ∃𝑥𝑋 (𝐹𝑥) = 𝑦)))
8 fimass 6621 . . . . . 6 (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)
98adantr 481 . . . . 5 ((𝐹:𝐴𝐵𝑋𝐴) → (𝐹𝑋) ⊆ 𝐵)
109sseld 3920 . . . 4 ((𝐹:𝐴𝐵𝑋𝐴) → (𝑦 ∈ (𝐹𝑋) → 𝑦𝐵))
1110pm4.71rd 563 . . 3 ((𝐹:𝐴𝐵𝑋𝐴) → (𝑦 ∈ (𝐹𝑋) ↔ (𝑦𝐵𝑦 ∈ (𝐹𝑋))))
12 rabid 3310 . . . 4 (𝑦 ∈ {𝑦𝐵 ∣ ∃𝑥𝑋 (𝐹𝑥) = 𝑦} ↔ (𝑦𝐵 ∧ ∃𝑥𝑋 (𝐹𝑥) = 𝑦))
1312a1i 11 . . 3 ((𝐹:𝐴𝐵𝑋𝐴) → (𝑦 ∈ {𝑦𝐵 ∣ ∃𝑥𝑋 (𝐹𝑥) = 𝑦} ↔ (𝑦𝐵 ∧ ∃𝑥𝑋 (𝐹𝑥) = 𝑦)))
147, 11, 133bitr4d 311 . 2 ((𝐹:𝐴𝐵𝑋𝐴) → (𝑦 ∈ (𝐹𝑋) ↔ 𝑦 ∈ {𝑦𝐵 ∣ ∃𝑥𝑋 (𝐹𝑥) = 𝑦}))
151, 2, 3, 14eqrd 3940 1 ((𝐹:𝐴𝐵𝑋𝐴) → (𝐹𝑋) = {𝑦𝐵 ∣ ∃𝑥𝑋 (𝐹𝑥) = 𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wrex 3065  {crab 3068  wss 3887  cima 5592   Fn wfn 6428  wf 6429  cfv 6433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fv 6441
This theorem is referenced by:  locfinreflem  31790
  Copyright terms: Public domain W3C validator