MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fimarab Structured version   Visualization version   GIF version

Theorem fimarab 6896
Description: Expressing the image of a set as a restricted abstract builder. (Contributed by Thierry Arnoux, 27-Jan-2020.)
Assertion
Ref Expression
fimarab ((𝐹:𝐴𝐵𝑋𝐴) → (𝐹𝑋) = {𝑦𝐵 ∣ ∃𝑥𝑋 (𝐹𝑥) = 𝑦})
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝐹,𝑦   𝑥,𝑋,𝑦
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem fimarab
StepHypRef Expression
1 nfv 1915 . 2 𝑦(𝐹:𝐴𝐵𝑋𝐴)
2 nfcv 2894 . 2 𝑦(𝐹𝑋)
3 nfrab1 3415 . 2 𝑦{𝑦𝐵 ∣ ∃𝑥𝑋 (𝐹𝑥) = 𝑦}
4 ffn 6651 . . . 4 (𝐹:𝐴𝐵𝐹 Fn 𝐴)
5 fvelimab 6894 . . . . 5 ((𝐹 Fn 𝐴𝑋𝐴) → (𝑦 ∈ (𝐹𝑋) ↔ ∃𝑥𝑋 (𝐹𝑥) = 𝑦))
65anbi2d 630 . . . 4 ((𝐹 Fn 𝐴𝑋𝐴) → ((𝑦𝐵𝑦 ∈ (𝐹𝑋)) ↔ (𝑦𝐵 ∧ ∃𝑥𝑋 (𝐹𝑥) = 𝑦)))
74, 6sylan 580 . . 3 ((𝐹:𝐴𝐵𝑋𝐴) → ((𝑦𝐵𝑦 ∈ (𝐹𝑋)) ↔ (𝑦𝐵 ∧ ∃𝑥𝑋 (𝐹𝑥) = 𝑦)))
8 fimass 6671 . . . . . 6 (𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)
98adantr 480 . . . . 5 ((𝐹:𝐴𝐵𝑋𝐴) → (𝐹𝑋) ⊆ 𝐵)
109sseld 3933 . . . 4 ((𝐹:𝐴𝐵𝑋𝐴) → (𝑦 ∈ (𝐹𝑋) → 𝑦𝐵))
1110pm4.71rd 562 . . 3 ((𝐹:𝐴𝐵𝑋𝐴) → (𝑦 ∈ (𝐹𝑋) ↔ (𝑦𝐵𝑦 ∈ (𝐹𝑋))))
12 rabid 3416 . . . 4 (𝑦 ∈ {𝑦𝐵 ∣ ∃𝑥𝑋 (𝐹𝑥) = 𝑦} ↔ (𝑦𝐵 ∧ ∃𝑥𝑋 (𝐹𝑥) = 𝑦))
1312a1i 11 . . 3 ((𝐹:𝐴𝐵𝑋𝐴) → (𝑦 ∈ {𝑦𝐵 ∣ ∃𝑥𝑋 (𝐹𝑥) = 𝑦} ↔ (𝑦𝐵 ∧ ∃𝑥𝑋 (𝐹𝑥) = 𝑦)))
147, 11, 133bitr4d 311 . 2 ((𝐹:𝐴𝐵𝑋𝐴) → (𝑦 ∈ (𝐹𝑋) ↔ 𝑦 ∈ {𝑦𝐵 ∣ ∃𝑥𝑋 (𝐹𝑥) = 𝑦}))
151, 2, 3, 14eqrd 3954 1 ((𝐹:𝐴𝐵𝑋𝐴) → (𝐹𝑋) = {𝑦𝐵 ∣ ∃𝑥𝑋 (𝐹𝑥) = 𝑦})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wrex 3056  {crab 3395  wss 3902  cima 5619   Fn wfn 6476  wf 6477  cfv 6481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-br 5092  df-opab 5154  df-id 5511  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-fv 6489
This theorem is referenced by:  locfinreflem  33848  uspgrlimlem1  48018  uspgrlimlem2  48019
  Copyright terms: Public domain W3C validator