![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fimarab | Structured version Visualization version GIF version |
Description: Expressing the image of a set as a restricted abstract builder. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
Ref | Expression |
---|---|
fimarab | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝐹 “ 𝑋) = {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1911 | . 2 ⊢ Ⅎ𝑦(𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) | |
2 | nfcv 2902 | . 2 ⊢ Ⅎ𝑦(𝐹 “ 𝑋) | |
3 | nfrab1 3453 | . 2 ⊢ Ⅎ𝑦{𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦} | |
4 | ffn 6736 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
5 | fvelimab 6980 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝑋) ↔ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦)) | |
6 | 5 | anbi2d 630 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (𝐹 “ 𝑋)) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦))) |
7 | 4, 6 | sylan 580 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (𝐹 “ 𝑋)) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦))) |
8 | fimass 6756 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝑋) ⊆ 𝐵) | |
9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝐹 “ 𝑋) ⊆ 𝐵) |
10 | 9 | sseld 3993 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝑋) → 𝑦 ∈ 𝐵)) |
11 | 10 | pm4.71rd 562 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝑋) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (𝐹 “ 𝑋)))) |
12 | rabid 3454 | . . . 4 ⊢ (𝑦 ∈ {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦} ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦)) | |
13 | 12 | a1i 11 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑦 ∈ {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦} ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦))) |
14 | 7, 11, 13 | 3bitr4d 311 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝑋) ↔ 𝑦 ∈ {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦})) |
15 | 1, 2, 3, 14 | eqrd 4014 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝐹 “ 𝑋) = {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1536 ∈ wcel 2105 ∃wrex 3067 {crab 3432 ⊆ wss 3962 “ cima 5691 Fn wfn 6557 ⟶wf 6558 ‘cfv 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-10 2138 ax-11 2154 ax-12 2174 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-nf 1780 df-sb 2062 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2726 df-clel 2813 df-nfc 2889 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4912 df-br 5148 df-opab 5210 df-id 5582 df-xp 5694 df-rel 5695 df-cnv 5696 df-co 5697 df-dm 5698 df-rn 5699 df-res 5700 df-ima 5701 df-iota 6515 df-fun 6564 df-fn 6565 df-f 6566 df-fv 6570 |
This theorem is referenced by: locfinreflem 33800 uspgrlimlem1 47890 uspgrlimlem2 47891 |
Copyright terms: Public domain | W3C validator |