| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fimarab | Structured version Visualization version GIF version | ||
| Description: Expressing the image of a set as a restricted abstract builder. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
| Ref | Expression |
|---|---|
| fimarab | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝐹 “ 𝑋) = {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1914 | . 2 ⊢ Ⅎ𝑦(𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) | |
| 2 | nfcv 2891 | . 2 ⊢ Ⅎ𝑦(𝐹 “ 𝑋) | |
| 3 | nfrab1 3417 | . 2 ⊢ Ⅎ𝑦{𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦} | |
| 4 | ffn 6656 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 5 | fvelimab 6899 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝑋) ↔ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦)) | |
| 6 | 5 | anbi2d 630 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (𝐹 “ 𝑋)) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦))) |
| 7 | 4, 6 | sylan 580 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (𝐹 “ 𝑋)) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦))) |
| 8 | fimass 6676 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝑋) ⊆ 𝐵) | |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝐹 “ 𝑋) ⊆ 𝐵) |
| 10 | 9 | sseld 3936 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝑋) → 𝑦 ∈ 𝐵)) |
| 11 | 10 | pm4.71rd 562 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝑋) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (𝐹 “ 𝑋)))) |
| 12 | rabid 3418 | . . . 4 ⊢ (𝑦 ∈ {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦} ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦)) | |
| 13 | 12 | a1i 11 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑦 ∈ {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦} ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦))) |
| 14 | 7, 11, 13 | 3bitr4d 311 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝑋) ↔ 𝑦 ∈ {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦})) |
| 15 | 1, 2, 3, 14 | eqrd 3957 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝐹 “ 𝑋) = {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 {crab 3396 ⊆ wss 3905 “ cima 5626 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 |
| This theorem is referenced by: locfinreflem 33806 uspgrlimlem1 47973 uspgrlimlem2 47974 |
| Copyright terms: Public domain | W3C validator |