![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fimarab | Structured version Visualization version GIF version |
Description: Expressing the image of a set as a restricted abstract builder. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
Ref | Expression |
---|---|
fimarab | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝐹 “ 𝑋) = {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1913 | . 2 ⊢ Ⅎ𝑦(𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) | |
2 | nfcv 2908 | . 2 ⊢ Ⅎ𝑦(𝐹 “ 𝑋) | |
3 | nfrab1 3464 | . 2 ⊢ Ⅎ𝑦{𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦} | |
4 | ffn 6747 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
5 | fvelimab 6994 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝑋) ↔ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦)) | |
6 | 5 | anbi2d 629 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (𝐹 “ 𝑋)) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦))) |
7 | 4, 6 | sylan 579 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (𝐹 “ 𝑋)) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦))) |
8 | fimass 6767 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝑋) ⊆ 𝐵) | |
9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝐹 “ 𝑋) ⊆ 𝐵) |
10 | 9 | sseld 4007 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝑋) → 𝑦 ∈ 𝐵)) |
11 | 10 | pm4.71rd 562 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝑋) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (𝐹 “ 𝑋)))) |
12 | rabid 3465 | . . . 4 ⊢ (𝑦 ∈ {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦} ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦)) | |
13 | 12 | a1i 11 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑦 ∈ {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦} ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦))) |
14 | 7, 11, 13 | 3bitr4d 311 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝑋) ↔ 𝑦 ∈ {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦})) |
15 | 1, 2, 3, 14 | eqrd 4028 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝐹 “ 𝑋) = {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 {crab 3443 ⊆ wss 3976 “ cima 5703 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-fv 6581 |
This theorem is referenced by: locfinreflem 33786 uspgrlimlem1 47812 uspgrlimlem2 47813 |
Copyright terms: Public domain | W3C validator |