Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fimarab | Structured version Visualization version GIF version |
Description: Expressing the image of a set as a restricted abstract builder. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
Ref | Expression |
---|---|
fimarab | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝐹 “ 𝑋) = {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1918 | . 2 ⊢ Ⅎ𝑦(𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) | |
2 | nfcv 2906 | . 2 ⊢ Ⅎ𝑦(𝐹 “ 𝑋) | |
3 | nfrab1 3310 | . 2 ⊢ Ⅎ𝑦{𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦} | |
4 | ffn 6584 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
5 | fvelimab 6823 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝑋) ↔ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦)) | |
6 | 5 | anbi2d 628 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (𝐹 “ 𝑋)) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦))) |
7 | 4, 6 | sylan 579 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (𝐹 “ 𝑋)) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦))) |
8 | fimass 6605 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝑋) ⊆ 𝐵) | |
9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝐹 “ 𝑋) ⊆ 𝐵) |
10 | 9 | sseld 3916 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝑋) → 𝑦 ∈ 𝐵)) |
11 | 10 | pm4.71rd 562 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝑋) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (𝐹 “ 𝑋)))) |
12 | rabid 3304 | . . . 4 ⊢ (𝑦 ∈ {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦} ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦)) | |
13 | 12 | a1i 11 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑦 ∈ {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦} ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦))) |
14 | 7, 11, 13 | 3bitr4d 310 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝑋) ↔ 𝑦 ∈ {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦})) |
15 | 1, 2, 3, 14 | eqrd 3936 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝐹 “ 𝑋) = {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∃wrex 3064 {crab 3067 ⊆ wss 3883 “ cima 5583 Fn wfn 6413 ⟶wf 6414 ‘cfv 6418 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-fv 6426 |
This theorem is referenced by: locfinreflem 31692 |
Copyright terms: Public domain | W3C validator |