| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fimarab | Structured version Visualization version GIF version | ||
| Description: Expressing the image of a set as a restricted abstract builder. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
| Ref | Expression |
|---|---|
| fimarab | ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝐹 “ 𝑋) = {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfv 1915 | . 2 ⊢ Ⅎ𝑦(𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) | |
| 2 | nfcv 2895 | . 2 ⊢ Ⅎ𝑦(𝐹 “ 𝑋) | |
| 3 | nfrab1 3416 | . 2 ⊢ Ⅎ𝑦{𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦} | |
| 4 | ffn 6656 | . . . 4 ⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) | |
| 5 | fvelimab 6900 | . . . . 5 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝑋) ↔ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦)) | |
| 6 | 5 | anbi2d 630 | . . . 4 ⊢ ((𝐹 Fn 𝐴 ∧ 𝑋 ⊆ 𝐴) → ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (𝐹 “ 𝑋)) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦))) |
| 7 | 4, 6 | sylan 580 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → ((𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (𝐹 “ 𝑋)) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦))) |
| 8 | fimass 6676 | . . . . . 6 ⊢ (𝐹:𝐴⟶𝐵 → (𝐹 “ 𝑋) ⊆ 𝐵) | |
| 9 | 8 | adantr 480 | . . . . 5 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝐹 “ 𝑋) ⊆ 𝐵) |
| 10 | 9 | sseld 3929 | . . . 4 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝑋) → 𝑦 ∈ 𝐵)) |
| 11 | 10 | pm4.71rd 562 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝑋) ↔ (𝑦 ∈ 𝐵 ∧ 𝑦 ∈ (𝐹 “ 𝑋)))) |
| 12 | rabid 3417 | . . . 4 ⊢ (𝑦 ∈ {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦} ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦)) | |
| 13 | 12 | a1i 11 | . . 3 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑦 ∈ {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦} ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦))) |
| 14 | 7, 11, 13 | 3bitr4d 311 | . 2 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝑦 ∈ (𝐹 “ 𝑋) ↔ 𝑦 ∈ {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦})) |
| 15 | 1, 2, 3, 14 | eqrd 3950 | 1 ⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑋 ⊆ 𝐴) → (𝐹 “ 𝑋) = {𝑦 ∈ 𝐵 ∣ ∃𝑥 ∈ 𝑋 (𝐹‘𝑥) = 𝑦}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∃wrex 3057 {crab 3396 ⊆ wss 3898 “ cima 5622 Fn wfn 6481 ⟶wf 6482 ‘cfv 6486 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-fv 6494 |
| This theorem is referenced by: locfinreflem 33874 uspgrlimlem1 48112 uspgrlimlem2 48113 |
| Copyright terms: Public domain | W3C validator |