| Step | Hyp | Ref
| Expression |
| 1 | | nfmpt1 5250 |
. . . . . . 7
⊢
Ⅎ𝑠(𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉) |
| 2 | | ofpreima.1 |
. . . . . . 7
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 3 | | ofpreima.2 |
. . . . . . 7
⊢ (𝜑 → 𝐺:𝐴⟶𝐶) |
| 4 | | ofpreima.3 |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 5 | | eqidd 2738 |
. . . . . . 7
⊢ (𝜑 → (𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉) = (𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉)) |
| 6 | | ofpreima.4 |
. . . . . . . 8
⊢ (𝜑 → 𝑅 Fn (𝐵 × 𝐶)) |
| 7 | | fnov 7564 |
. . . . . . . 8
⊢ (𝑅 Fn (𝐵 × 𝐶) ↔ 𝑅 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ (𝑥𝑅𝑦))) |
| 8 | 6, 7 | sylib 218 |
. . . . . . 7
⊢ (𝜑 → 𝑅 = (𝑥 ∈ 𝐵, 𝑦 ∈ 𝐶 ↦ (𝑥𝑅𝑦))) |
| 9 | 1, 2, 3, 4, 5, 8 | ofoprabco 32674 |
. . . . . 6
⊢ (𝜑 → (𝐹 ∘f 𝑅𝐺) = (𝑅 ∘ (𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉))) |
| 10 | 9 | cnveqd 5886 |
. . . . 5
⊢ (𝜑 → ◡(𝐹 ∘f 𝑅𝐺) = ◡(𝑅 ∘ (𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉))) |
| 11 | | cnvco 5896 |
. . . . 5
⊢ ◡(𝑅 ∘ (𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉)) = (◡(𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉) ∘ ◡𝑅) |
| 12 | 10, 11 | eqtrdi 2793 |
. . . 4
⊢ (𝜑 → ◡(𝐹 ∘f 𝑅𝐺) = (◡(𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉) ∘ ◡𝑅)) |
| 13 | 12 | imaeq1d 6077 |
. . 3
⊢ (𝜑 → (◡(𝐹 ∘f 𝑅𝐺) “ 𝐷) = ((◡(𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉) ∘ ◡𝑅) “ 𝐷)) |
| 14 | | imaco 6271 |
. . 3
⊢ ((◡(𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉) ∘ ◡𝑅) “ 𝐷) = (◡(𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉) “ (◡𝑅 “ 𝐷)) |
| 15 | 13, 14 | eqtrdi 2793 |
. 2
⊢ (𝜑 → (◡(𝐹 ∘f 𝑅𝐺) “ 𝐷) = (◡(𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉) “ (◡𝑅 “ 𝐷))) |
| 16 | | dfima2 6080 |
. . 3
⊢ (◡(𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉) “ (◡𝑅 “ 𝐷)) = {𝑞 ∣ ∃𝑝 ∈ (◡𝑅 “ 𝐷)𝑝◡(𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉)𝑞} |
| 17 | | vex 3484 |
. . . . . . . 8
⊢ 𝑝 ∈ V |
| 18 | | vex 3484 |
. . . . . . . 8
⊢ 𝑞 ∈ V |
| 19 | 17, 18 | brcnv 5893 |
. . . . . . 7
⊢ (𝑝◡(𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉)𝑞 ↔ 𝑞(𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉)𝑝) |
| 20 | | funmpt 6604 |
. . . . . . . . 9
⊢ Fun
(𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉) |
| 21 | | funbrfv2b 6966 |
. . . . . . . . 9
⊢ (Fun
(𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉) → (𝑞(𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉)𝑝 ↔ (𝑞 ∈ dom (𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉) ∧ ((𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉)‘𝑞) = 𝑝))) |
| 22 | 20, 21 | ax-mp 5 |
. . . . . . . 8
⊢ (𝑞(𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉)𝑝 ↔ (𝑞 ∈ dom (𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉) ∧ ((𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉)‘𝑞) = 𝑝)) |
| 23 | | opex 5469 |
. . . . . . . . . . 11
⊢
〈(𝐹‘𝑠), (𝐺‘𝑠)〉 ∈ V |
| 24 | | eqid 2737 |
. . . . . . . . . . 11
⊢ (𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉) = (𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉) |
| 25 | 23, 24 | dmmpti 6712 |
. . . . . . . . . 10
⊢ dom
(𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉) = 𝐴 |
| 26 | 25 | eleq2i 2833 |
. . . . . . . . 9
⊢ (𝑞 ∈ dom (𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉) ↔ 𝑞 ∈ 𝐴) |
| 27 | 26 | anbi1i 624 |
. . . . . . . 8
⊢ ((𝑞 ∈ dom (𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉) ∧ ((𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉)‘𝑞) = 𝑝) ↔ (𝑞 ∈ 𝐴 ∧ ((𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉)‘𝑞) = 𝑝)) |
| 28 | 22, 27 | bitri 275 |
. . . . . . 7
⊢ (𝑞(𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉)𝑝 ↔ (𝑞 ∈ 𝐴 ∧ ((𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉)‘𝑞) = 𝑝)) |
| 29 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑞 → (𝐹‘𝑠) = (𝐹‘𝑞)) |
| 30 | | fveq2 6906 |
. . . . . . . . . . 11
⊢ (𝑠 = 𝑞 → (𝐺‘𝑠) = (𝐺‘𝑞)) |
| 31 | 29, 30 | opeq12d 4881 |
. . . . . . . . . 10
⊢ (𝑠 = 𝑞 → 〈(𝐹‘𝑠), (𝐺‘𝑠)〉 = 〈(𝐹‘𝑞), (𝐺‘𝑞)〉) |
| 32 | | opex 5469 |
. . . . . . . . . 10
⊢
〈(𝐹‘𝑞), (𝐺‘𝑞)〉 ∈ V |
| 33 | 31, 24, 32 | fvmpt 7016 |
. . . . . . . . 9
⊢ (𝑞 ∈ 𝐴 → ((𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉)‘𝑞) = 〈(𝐹‘𝑞), (𝐺‘𝑞)〉) |
| 34 | 33 | eqeq1d 2739 |
. . . . . . . 8
⊢ (𝑞 ∈ 𝐴 → (((𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉)‘𝑞) = 𝑝 ↔ 〈(𝐹‘𝑞), (𝐺‘𝑞)〉 = 𝑝)) |
| 35 | 34 | pm5.32i 574 |
. . . . . . 7
⊢ ((𝑞 ∈ 𝐴 ∧ ((𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉)‘𝑞) = 𝑝) ↔ (𝑞 ∈ 𝐴 ∧ 〈(𝐹‘𝑞), (𝐺‘𝑞)〉 = 𝑝)) |
| 36 | 19, 28, 35 | 3bitri 297 |
. . . . . 6
⊢ (𝑝◡(𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉)𝑞 ↔ (𝑞 ∈ 𝐴 ∧ 〈(𝐹‘𝑞), (𝐺‘𝑞)〉 = 𝑝)) |
| 37 | 36 | rexbii 3094 |
. . . . 5
⊢
(∃𝑝 ∈
(◡𝑅 “ 𝐷)𝑝◡(𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉)𝑞 ↔ ∃𝑝 ∈ (◡𝑅 “ 𝐷)(𝑞 ∈ 𝐴 ∧ 〈(𝐹‘𝑞), (𝐺‘𝑞)〉 = 𝑝)) |
| 38 | 37 | abbii 2809 |
. . . 4
⊢ {𝑞 ∣ ∃𝑝 ∈ (◡𝑅 “ 𝐷)𝑝◡(𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉)𝑞} = {𝑞 ∣ ∃𝑝 ∈ (◡𝑅 “ 𝐷)(𝑞 ∈ 𝐴 ∧ 〈(𝐹‘𝑞), (𝐺‘𝑞)〉 = 𝑝)} |
| 39 | | nfv 1914 |
. . . . 5
⊢
Ⅎ𝑞𝜑 |
| 40 | | nfab1 2907 |
. . . . 5
⊢
Ⅎ𝑞{𝑞 ∣ ∃𝑝 ∈ (◡𝑅 “ 𝐷)(𝑞 ∈ 𝐴 ∧ 〈(𝐹‘𝑞), (𝐺‘𝑞)〉 = 𝑝)} |
| 41 | | nfcv 2905 |
. . . . 5
⊢
Ⅎ𝑞∪ 𝑝 ∈ (◡𝑅 “ 𝐷)((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) |
| 42 | | eliun 4995 |
. . . . . 6
⊢ (𝑞 ∈ ∪ 𝑝 ∈ (◡𝑅 “ 𝐷)((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ↔ ∃𝑝 ∈ (◡𝑅 “ 𝐷)𝑞 ∈ ((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) |
| 43 | | ffn 6736 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝐴⟶𝐵 → 𝐹 Fn 𝐴) |
| 44 | | fniniseg 7080 |
. . . . . . . . . . . . 13
⊢ (𝐹 Fn 𝐴 → (𝑞 ∈ (◡𝐹 “ {(1st ‘𝑝)}) ↔ (𝑞 ∈ 𝐴 ∧ (𝐹‘𝑞) = (1st ‘𝑝)))) |
| 45 | 2, 43, 44 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑞 ∈ (◡𝐹 “ {(1st ‘𝑝)}) ↔ (𝑞 ∈ 𝐴 ∧ (𝐹‘𝑞) = (1st ‘𝑝)))) |
| 46 | | ffn 6736 |
. . . . . . . . . . . . 13
⊢ (𝐺:𝐴⟶𝐶 → 𝐺 Fn 𝐴) |
| 47 | | fniniseg 7080 |
. . . . . . . . . . . . 13
⊢ (𝐺 Fn 𝐴 → (𝑞 ∈ (◡𝐺 “ {(2nd ‘𝑝)}) ↔ (𝑞 ∈ 𝐴 ∧ (𝐺‘𝑞) = (2nd ‘𝑝)))) |
| 48 | 3, 46, 47 | 3syl 18 |
. . . . . . . . . . . 12
⊢ (𝜑 → (𝑞 ∈ (◡𝐺 “ {(2nd ‘𝑝)}) ↔ (𝑞 ∈ 𝐴 ∧ (𝐺‘𝑞) = (2nd ‘𝑝)))) |
| 49 | 45, 48 | anbi12d 632 |
. . . . . . . . . . 11
⊢ (𝜑 → ((𝑞 ∈ (◡𝐹 “ {(1st ‘𝑝)}) ∧ 𝑞 ∈ (◡𝐺 “ {(2nd ‘𝑝)})) ↔ ((𝑞 ∈ 𝐴 ∧ (𝐹‘𝑞) = (1st ‘𝑝)) ∧ (𝑞 ∈ 𝐴 ∧ (𝐺‘𝑞) = (2nd ‘𝑝))))) |
| 50 | | elin 3967 |
. . . . . . . . . . 11
⊢ (𝑞 ∈ ((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ↔ (𝑞 ∈ (◡𝐹 “ {(1st ‘𝑝)}) ∧ 𝑞 ∈ (◡𝐺 “ {(2nd ‘𝑝)}))) |
| 51 | | anandi 676 |
. . . . . . . . . . 11
⊢ ((𝑞 ∈ 𝐴 ∧ ((𝐹‘𝑞) = (1st ‘𝑝) ∧ (𝐺‘𝑞) = (2nd ‘𝑝))) ↔ ((𝑞 ∈ 𝐴 ∧ (𝐹‘𝑞) = (1st ‘𝑝)) ∧ (𝑞 ∈ 𝐴 ∧ (𝐺‘𝑞) = (2nd ‘𝑝)))) |
| 52 | 49, 50, 51 | 3bitr4g 314 |
. . . . . . . . . 10
⊢ (𝜑 → (𝑞 ∈ ((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ↔ (𝑞 ∈ 𝐴 ∧ ((𝐹‘𝑞) = (1st ‘𝑝) ∧ (𝐺‘𝑞) = (2nd ‘𝑝))))) |
| 53 | 52 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ (◡𝑅 “ 𝐷)) → (𝑞 ∈ ((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ↔ (𝑞 ∈ 𝐴 ∧ ((𝐹‘𝑞) = (1st ‘𝑝) ∧ (𝐺‘𝑞) = (2nd ‘𝑝))))) |
| 54 | | cnvimass 6100 |
. . . . . . . . . . . . . 14
⊢ (◡𝑅 “ 𝐷) ⊆ dom 𝑅 |
| 55 | 6 | fndmd 6673 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝑅 = (𝐵 × 𝐶)) |
| 56 | 54, 55 | sseqtrid 4026 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (◡𝑅 “ 𝐷) ⊆ (𝐵 × 𝐶)) |
| 57 | 56 | sselda 3983 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑝 ∈ (◡𝑅 “ 𝐷)) → 𝑝 ∈ (𝐵 × 𝐶)) |
| 58 | | 1st2nd2 8053 |
. . . . . . . . . . . 12
⊢ (𝑝 ∈ (𝐵 × 𝐶) → 𝑝 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉) |
| 59 | | eqeq2 2749 |
. . . . . . . . . . . 12
⊢ (𝑝 = 〈(1st
‘𝑝), (2nd
‘𝑝)〉 →
(〈(𝐹‘𝑞), (𝐺‘𝑞)〉 = 𝑝 ↔ 〈(𝐹‘𝑞), (𝐺‘𝑞)〉 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉)) |
| 60 | 57, 58, 59 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑝 ∈ (◡𝑅 “ 𝐷)) → (〈(𝐹‘𝑞), (𝐺‘𝑞)〉 = 𝑝 ↔ 〈(𝐹‘𝑞), (𝐺‘𝑞)〉 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉)) |
| 61 | | fvex 6919 |
. . . . . . . . . . . 12
⊢ (𝐹‘𝑞) ∈ V |
| 62 | | fvex 6919 |
. . . . . . . . . . . 12
⊢ (𝐺‘𝑞) ∈ V |
| 63 | 61, 62 | opth 5481 |
. . . . . . . . . . 11
⊢
(〈(𝐹‘𝑞), (𝐺‘𝑞)〉 = 〈(1st ‘𝑝), (2nd ‘𝑝)〉 ↔ ((𝐹‘𝑞) = (1st ‘𝑝) ∧ (𝐺‘𝑞) = (2nd ‘𝑝))) |
| 64 | 60, 63 | bitrdi 287 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑝 ∈ (◡𝑅 “ 𝐷)) → (〈(𝐹‘𝑞), (𝐺‘𝑞)〉 = 𝑝 ↔ ((𝐹‘𝑞) = (1st ‘𝑝) ∧ (𝐺‘𝑞) = (2nd ‘𝑝)))) |
| 65 | 64 | anbi2d 630 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑝 ∈ (◡𝑅 “ 𝐷)) → ((𝑞 ∈ 𝐴 ∧ 〈(𝐹‘𝑞), (𝐺‘𝑞)〉 = 𝑝) ↔ (𝑞 ∈ 𝐴 ∧ ((𝐹‘𝑞) = (1st ‘𝑝) ∧ (𝐺‘𝑞) = (2nd ‘𝑝))))) |
| 66 | 53, 65 | bitr4d 282 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑝 ∈ (◡𝑅 “ 𝐷)) → (𝑞 ∈ ((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ↔ (𝑞 ∈ 𝐴 ∧ 〈(𝐹‘𝑞), (𝐺‘𝑞)〉 = 𝑝))) |
| 67 | 66 | rexbidva 3177 |
. . . . . . 7
⊢ (𝜑 → (∃𝑝 ∈ (◡𝑅 “ 𝐷)𝑞 ∈ ((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ↔ ∃𝑝 ∈ (◡𝑅 “ 𝐷)(𝑞 ∈ 𝐴 ∧ 〈(𝐹‘𝑞), (𝐺‘𝑞)〉 = 𝑝))) |
| 68 | | abid 2718 |
. . . . . . 7
⊢ (𝑞 ∈ {𝑞 ∣ ∃𝑝 ∈ (◡𝑅 “ 𝐷)(𝑞 ∈ 𝐴 ∧ 〈(𝐹‘𝑞), (𝐺‘𝑞)〉 = 𝑝)} ↔ ∃𝑝 ∈ (◡𝑅 “ 𝐷)(𝑞 ∈ 𝐴 ∧ 〈(𝐹‘𝑞), (𝐺‘𝑞)〉 = 𝑝)) |
| 69 | 67, 68 | bitr4di 289 |
. . . . . 6
⊢ (𝜑 → (∃𝑝 ∈ (◡𝑅 “ 𝐷)𝑞 ∈ ((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})) ↔ 𝑞 ∈ {𝑞 ∣ ∃𝑝 ∈ (◡𝑅 “ 𝐷)(𝑞 ∈ 𝐴 ∧ 〈(𝐹‘𝑞), (𝐺‘𝑞)〉 = 𝑝)})) |
| 70 | 42, 69 | bitr2id 284 |
. . . . 5
⊢ (𝜑 → (𝑞 ∈ {𝑞 ∣ ∃𝑝 ∈ (◡𝑅 “ 𝐷)(𝑞 ∈ 𝐴 ∧ 〈(𝐹‘𝑞), (𝐺‘𝑞)〉 = 𝑝)} ↔ 𝑞 ∈ ∪
𝑝 ∈ (◡𝑅 “ 𝐷)((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)})))) |
| 71 | 39, 40, 41, 70 | eqrd 4003 |
. . . 4
⊢ (𝜑 → {𝑞 ∣ ∃𝑝 ∈ (◡𝑅 “ 𝐷)(𝑞 ∈ 𝐴 ∧ 〈(𝐹‘𝑞), (𝐺‘𝑞)〉 = 𝑝)} = ∪
𝑝 ∈ (◡𝑅 “ 𝐷)((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) |
| 72 | 38, 71 | eqtrid 2789 |
. . 3
⊢ (𝜑 → {𝑞 ∣ ∃𝑝 ∈ (◡𝑅 “ 𝐷)𝑝◡(𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉)𝑞} = ∪ 𝑝 ∈ (◡𝑅 “ 𝐷)((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) |
| 73 | 16, 72 | eqtrid 2789 |
. 2
⊢ (𝜑 → (◡(𝑠 ∈ 𝐴 ↦ 〈(𝐹‘𝑠), (𝐺‘𝑠)〉) “ (◡𝑅 “ 𝐷)) = ∪
𝑝 ∈ (◡𝑅 “ 𝐷)((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) |
| 74 | 15, 73 | eqtrd 2777 |
1
⊢ (𝜑 → (◡(𝐹 ∘f 𝑅𝐺) “ 𝐷) = ∪
𝑝 ∈ (◡𝑅 “ 𝐷)((◡𝐹 “ {(1st ‘𝑝)}) ∩ (◡𝐺 “ {(2nd ‘𝑝)}))) |