Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem5 Structured version   Visualization version   GIF version

Theorem etransclem5 46244
Description: A change of bound variable, often used in proofs for etransc 46288. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Assertion
Ref Expression
etransclem5 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
Distinct variable groups:   𝑗,𝑀,𝑘   𝑃,𝑗,𝑘,𝑥,𝑦   𝑗,𝑋,𝑘,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦)

Proof of Theorem etransclem5
StepHypRef Expression
1 oveq1 7397 . . . . 5 (𝑥 = 𝑦 → (𝑥𝑗) = (𝑦𝑗))
21oveq1d 7405 . . . 4 (𝑥 = 𝑦 → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
32cbvmptv 5214 . . 3 (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑦𝑋 ↦ ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
4 oveq2 7398 . . . . 5 (𝑗 = 𝑘 → (𝑦𝑗) = (𝑦𝑘))
5 eqeq1 2734 . . . . . 6 (𝑗 = 𝑘 → (𝑗 = 0 ↔ 𝑘 = 0))
65ifbid 4515 . . . . 5 (𝑗 = 𝑘 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = if(𝑘 = 0, (𝑃 − 1), 𝑃))
74, 6oveq12d 7408 . . . 4 (𝑗 = 𝑘 → ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))
87mpteq2dv 5204 . . 3 (𝑗 = 𝑘 → (𝑦𝑋 ↦ ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
93, 8eqtrid 2777 . 2 (𝑗 = 𝑘 → (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
109cbvmptv 5214 1 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  ifcif 4491  cmpt 5191  (class class class)co 7390  0cc0 11075  1c1 11076  cmin 11412  ...cfz 13475  cexp 14033
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-iota 6467  df-fv 6522  df-ov 7393
This theorem is referenced by:  etransclem27  46266  etransclem29  46268  etransclem31  46270  etransclem32  46271  etransclem33  46272  etransclem34  46273  etransclem35  46274  etransclem38  46277  etransclem40  46279  etransclem42  46281  etransclem44  46283  etransclem45  46284  etransclem46  46285
  Copyright terms: Public domain W3C validator