Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  etransclem5 Structured version   Visualization version   GIF version

Theorem etransclem5 45765
Description: A change of bound variable, often used in proofs for etransc 45809. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Assertion
Ref Expression
etransclem5 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
Distinct variable groups:   𝑗,𝑀,𝑘   𝑃,𝑗,𝑘,𝑥,𝑦   𝑗,𝑋,𝑘,𝑥,𝑦
Allowed substitution hints:   𝑀(𝑥,𝑦)

Proof of Theorem etransclem5
StepHypRef Expression
1 oveq1 7426 . . . . 5 (𝑥 = 𝑦 → (𝑥𝑗) = (𝑦𝑗))
21oveq1d 7434 . . . 4 (𝑥 = 𝑦 → ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
32cbvmptv 5262 . . 3 (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑦𝑋 ↦ ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))
4 oveq2 7427 . . . . 5 (𝑗 = 𝑘 → (𝑦𝑗) = (𝑦𝑘))
5 eqeq1 2729 . . . . . 6 (𝑗 = 𝑘 → (𝑗 = 0 ↔ 𝑘 = 0))
65ifbid 4553 . . . . 5 (𝑗 = 𝑘 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = if(𝑘 = 0, (𝑃 − 1), 𝑃))
74, 6oveq12d 7437 . . . 4 (𝑗 = 𝑘 → ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))
87mpteq2dv 5251 . . 3 (𝑗 = 𝑘 → (𝑦𝑋 ↦ ((𝑦𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
93, 8eqtrid 2777 . 2 (𝑗 = 𝑘 → (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
109cbvmptv 5262 1 (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))
Colors of variables: wff setvar class
Syntax hints:   = wceq 1533  ifcif 4530  cmpt 5232  (class class class)co 7419  0cc0 11140  1c1 11141  cmin 11476  ...cfz 13519  cexp 14062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-rab 3419  df-v 3463  df-dif 3947  df-un 3949  df-ss 3961  df-nul 4323  df-if 4531  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-iota 6501  df-fv 6557  df-ov 7422
This theorem is referenced by:  etransclem27  45787  etransclem29  45789  etransclem31  45791  etransclem32  45792  etransclem33  45793  etransclem34  45794  etransclem35  45795  etransclem38  45798  etransclem40  45800  etransclem42  45802  etransclem44  45804  etransclem45  45805  etransclem46  45806
  Copyright terms: Public domain W3C validator