![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem5 | Structured version Visualization version GIF version |
Description: A change of bound variable, often used in proofs for etransc 46239. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
etransclem5 | ⊢ (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7438 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 − 𝑗) = (𝑦 − 𝑗)) | |
2 | 1 | oveq1d 7446 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) |
3 | 2 | cbvmptv 5261 | . . 3 ⊢ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) |
4 | oveq2 7439 | . . . . 5 ⊢ (𝑗 = 𝑘 → (𝑦 − 𝑗) = (𝑦 − 𝑘)) | |
5 | eqeq1 2739 | . . . . . 6 ⊢ (𝑗 = 𝑘 → (𝑗 = 0 ↔ 𝑘 = 0)) | |
6 | 5 | ifbid 4554 | . . . . 5 ⊢ (𝑗 = 𝑘 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = if(𝑘 = 0, (𝑃 − 1), 𝑃)) |
7 | 4, 6 | oveq12d 7449 | . . . 4 ⊢ (𝑗 = 𝑘 → ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) |
8 | 7 | mpteq2dv 5250 | . . 3 ⊢ (𝑗 = 𝑘 → (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) |
9 | 3, 8 | eqtrid 2787 | . 2 ⊢ (𝑗 = 𝑘 → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) |
10 | 9 | cbvmptv 5261 | 1 ⊢ (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ifcif 4531 ↦ cmpt 5231 (class class class)co 7431 0cc0 11153 1c1 11154 − cmin 11490 ...cfz 13544 ↑cexp 14099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-mpt 5232 df-iota 6516 df-fv 6571 df-ov 7434 |
This theorem is referenced by: etransclem27 46217 etransclem29 46219 etransclem31 46221 etransclem32 46222 etransclem33 46223 etransclem34 46224 etransclem35 46225 etransclem38 46228 etransclem40 46230 etransclem42 46232 etransclem44 46234 etransclem45 46235 etransclem46 46236 |
Copyright terms: Public domain | W3C validator |