| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem5 | Structured version Visualization version GIF version | ||
| Description: A change of bound variable, often used in proofs for etransc 46288. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
| Ref | Expression |
|---|---|
| etransclem5 | ⊢ (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7397 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 − 𝑗) = (𝑦 − 𝑗)) | |
| 2 | 1 | oveq1d 7405 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) |
| 3 | 2 | cbvmptv 5214 | . . 3 ⊢ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) |
| 4 | oveq2 7398 | . . . . 5 ⊢ (𝑗 = 𝑘 → (𝑦 − 𝑗) = (𝑦 − 𝑘)) | |
| 5 | eqeq1 2734 | . . . . . 6 ⊢ (𝑗 = 𝑘 → (𝑗 = 0 ↔ 𝑘 = 0)) | |
| 6 | 5 | ifbid 4515 | . . . . 5 ⊢ (𝑗 = 𝑘 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = if(𝑘 = 0, (𝑃 − 1), 𝑃)) |
| 7 | 4, 6 | oveq12d 7408 | . . . 4 ⊢ (𝑗 = 𝑘 → ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) |
| 8 | 7 | mpteq2dv 5204 | . . 3 ⊢ (𝑗 = 𝑘 → (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) |
| 9 | 3, 8 | eqtrid 2777 | . 2 ⊢ (𝑗 = 𝑘 → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) |
| 10 | 9 | cbvmptv 5214 | 1 ⊢ (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1540 ifcif 4491 ↦ cmpt 5191 (class class class)co 7390 0cc0 11075 1c1 11076 − cmin 11412 ...cfz 13475 ↑cexp 14033 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-iota 6467 df-fv 6522 df-ov 7393 |
| This theorem is referenced by: etransclem27 46266 etransclem29 46268 etransclem31 46270 etransclem32 46271 etransclem33 46272 etransclem34 46273 etransclem35 46274 etransclem38 46277 etransclem40 46279 etransclem42 46281 etransclem44 46283 etransclem45 46284 etransclem46 46285 |
| Copyright terms: Public domain | W3C validator |