![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem5 | Structured version Visualization version GIF version |
Description: A change of bound variable, often used in proofs for etransc 44999. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
etransclem5 | ⊢ (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7416 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 − 𝑗) = (𝑦 − 𝑗)) | |
2 | 1 | oveq1d 7424 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) |
3 | 2 | cbvmptv 5262 | . . 3 ⊢ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) |
4 | oveq2 7417 | . . . . 5 ⊢ (𝑗 = 𝑘 → (𝑦 − 𝑗) = (𝑦 − 𝑘)) | |
5 | eqeq1 2737 | . . . . . 6 ⊢ (𝑗 = 𝑘 → (𝑗 = 0 ↔ 𝑘 = 0)) | |
6 | 5 | ifbid 4552 | . . . . 5 ⊢ (𝑗 = 𝑘 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = if(𝑘 = 0, (𝑃 − 1), 𝑃)) |
7 | 4, 6 | oveq12d 7427 | . . . 4 ⊢ (𝑗 = 𝑘 → ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) |
8 | 7 | mpteq2dv 5251 | . . 3 ⊢ (𝑗 = 𝑘 → (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) |
9 | 3, 8 | eqtrid 2785 | . 2 ⊢ (𝑗 = 𝑘 → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) |
10 | 9 | cbvmptv 5262 | 1 ⊢ (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1542 ifcif 4529 ↦ cmpt 5232 (class class class)co 7409 0cc0 11110 1c1 11111 − cmin 11444 ...cfz 13484 ↑cexp 14027 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-iota 6496 df-fv 6552 df-ov 7412 |
This theorem is referenced by: etransclem27 44977 etransclem29 44979 etransclem31 44981 etransclem32 44982 etransclem33 44983 etransclem34 44984 etransclem35 44985 etransclem38 44988 etransclem40 44990 etransclem42 44992 etransclem44 44994 etransclem45 44995 etransclem46 44996 |
Copyright terms: Public domain | W3C validator |