Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > etransclem5 | Structured version Visualization version GIF version |
Description: A change of bound variable, often used in proofs for etransc 43778. (Contributed by Glauco Siliprandi, 5-Apr-2020.) |
Ref | Expression |
---|---|
etransclem5 | ⊢ (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7275 | . . . . 5 ⊢ (𝑥 = 𝑦 → (𝑥 − 𝑗) = (𝑦 − 𝑗)) | |
2 | 1 | oveq1d 7283 | . . . 4 ⊢ (𝑥 = 𝑦 → ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) |
3 | 2 | cbvmptv 5191 | . . 3 ⊢ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) |
4 | oveq2 7276 | . . . . 5 ⊢ (𝑗 = 𝑘 → (𝑦 − 𝑗) = (𝑦 − 𝑘)) | |
5 | eqeq1 2743 | . . . . . 6 ⊢ (𝑗 = 𝑘 → (𝑗 = 0 ↔ 𝑘 = 0)) | |
6 | 5 | ifbid 4487 | . . . . 5 ⊢ (𝑗 = 𝑘 → if(𝑗 = 0, (𝑃 − 1), 𝑃) = if(𝑘 = 0, (𝑃 − 1), 𝑃)) |
7 | 4, 6 | oveq12d 7286 | . . . 4 ⊢ (𝑗 = 𝑘 → ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)) = ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))) |
8 | 7 | mpteq2dv 5180 | . . 3 ⊢ (𝑗 = 𝑘 → (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) |
9 | 3, 8 | eqtrid 2791 | . 2 ⊢ (𝑗 = 𝑘 → (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))) = (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) |
10 | 9 | cbvmptv 5191 | 1 ⊢ (𝑗 ∈ (0...𝑀) ↦ (𝑥 ∈ 𝑋 ↦ ((𝑥 − 𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦 ∈ 𝑋 ↦ ((𝑦 − 𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃)))) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1541 ifcif 4464 ↦ cmpt 5161 (class class class)co 7268 0cc0 10855 1c1 10856 − cmin 11188 ...cfz 13221 ↑cexp 13763 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-rab 3074 df-v 3432 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-nul 4262 df-if 4465 df-sn 4567 df-pr 4569 df-op 4573 df-uni 4845 df-br 5079 df-opab 5141 df-mpt 5162 df-iota 6388 df-fv 6438 df-ov 7271 |
This theorem is referenced by: etransclem27 43756 etransclem29 43758 etransclem31 43760 etransclem32 43761 etransclem33 43762 etransclem34 43763 etransclem35 43764 etransclem38 43767 etransclem40 43769 etransclem42 43771 etransclem44 43773 etransclem45 43774 etransclem46 43775 |
Copyright terms: Public domain | W3C validator |